JPS60189750A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS60189750A
JPS60189750A JP59045503A JP4550384A JPS60189750A JP S60189750 A JPS60189750 A JP S60189750A JP 59045503 A JP59045503 A JP 59045503A JP 4550384 A JP4550384 A JP 4550384A JP S60189750 A JPS60189750 A JP S60189750A
Authority
JP
Japan
Prior art keywords
cgl
charge generation
layer
charge
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59045503A
Other languages
Japanese (ja)
Inventor
Yuko Nakajima
中嶋 祐子
Masami Sugiuchi
政美 杉内
Sadao Kajiura
貞夫 梶浦
Mariko Maeda
真理子 前田
Koichi Mizushima
公一 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59045503A priority Critical patent/JPS60189750A/en
Publication of JPS60189750A publication Critical patent/JPS60189750A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0525Coating methods

Abstract

PURPOSE:To improve carrier generation efficiency and to enhance sensitivity by adding, as the material of an electrostatic charge generating layer, a specified amt. of the same material as a conductive substrate to a functionally separated laminate type photosensitive layer. CONSTITUTION:An ultrafine powder of aluminum same as the material of a conductive substrate of an aluminum plate is added to a charge generating layer (CGL) of a laminated photosensitive layer of said CGL and a charge transfer layer CTL formed on said conductive substrate in an amt. of 5-40wt% of a charge generating material (CGM). Said aluminum powder same as the material of the conductive substrate is dispersed concentratedly in the width of at largest 1/2 the total width of CGL from the interface of the substrate till the middle of CGL. It is preferred to form CGL by vapor depositing CGM together with the ultrafine aluminum powder. The addition of aluminum same as the substrate material into CGL enlarges the substantial area of the interface between CGL and the substrate, and the site contributing to charge generation, thus permitting both of charge generating efficiency and sensitivity of the photosensitive body to be elevated.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電子写真感光体に関し、更に詳しくは。[Detailed description of the invention] [Technical field of invention] The present invention relates to an electrophotographic photoreceptor, and more particularly, to an electrophotographic photoreceptor.

カールソン方式における積層型の電子写真感光体に関す
る。
This invention relates to a laminated electrophotographic photoreceptor using the Carlson method.

〔発明の技術的背景〕[Technical background of the invention]

近年、電子写真方式を用いたプリンターの光源として半
導体レーザーが使用されるようになってきたが、半導体
レーザーの発振波長は約800nmと長いため、該長波
長域においても高感度を保持できる電子写真感光体の開
発が活発に行なわれている工 開発初期においては、導電性支持体上に一層の光伝導体
i積層した感光体が用いられてい九が、現在に至っては
、光伝導体を電荷発生層と電荷輸送層とに分離した構造
の感光体が使用されている。
In recent years, semiconductor lasers have come to be used as light sources for printers using electrophotography, but since the oscillation wavelength of semiconductor lasers is long at approximately 800 nm, electrophotography that can maintain high sensitivity even in this long wavelength range In the early days of photoconductor development, when photoconductors were being actively developed, photoconductors with a single layer of photoconductor laminated on a conductive support were used. A photoreceptor having a structure in which a generation layer and a charge transport layer are separated is used.

後者の感光体にあっては、電荷発生層は電荷輸送層より
も薄く、しかも機械的強度も弱いため、通常、電荷輸送
層が最上層とされ、電荷発生層は中間層とされている。
In the latter photoreceptor, since the charge generation layer is thinner than the charge transport layer and has weaker mechanical strength, the charge transport layer is usually the uppermost layer and the charge generation layer is the middle layer.

該感光体の電荷輸送層の材料としては、該層では電荷を
発生させる必要がないため、浸れた電荷保持能力及び電
荷輸送能力を有する電荷輸送物質が用いられており、そ
の結果、上記した後者の感光体は、前者の感光体よりも
感度、帯電性等が優れている。
As the material for the charge transport layer of the photoreceptor, since there is no need to generate a charge in the layer, a charge transport material having a submerged charge retention ability and charge transport ability is used, and as a result, the above-mentioned latter The former photoreceptor has better sensitivity, chargeability, etc. than the former photoreceptor.

電荷輸送物質は可視光に対して透明であり、係る物質と
しては、ポリビニル力ルバゾールモシくはその誘導体等
の高分子有機半導体;オキザジアゾール誘導体、トリフ
ェニルアミン誘導体もしくはピラゾリン訪導体等の低分
子有機半導体をポリエステル樹脂等の有機結着剤中に分
散したもの等が知られている。これらの電荷輸送物質は
、正孔を輸送することは可能であるが、電子を輸送する
ことはできない。尚、電荷発生物質としては、通常、銅
フタロシアニン等の色素類が用いられ、導電性支持体と
しては、 AI!板やポリエチレンテレフタレート樹脂
膜上にA/等の金属を蒸着したもの等が用いられている
The charge transport material is transparent to visible light, and examples of such materials include polymeric organic semiconductors such as polyvinyl rubazol or its derivatives; low molecular weight organic semiconductors such as oxadiazole derivatives, triphenylamine derivatives, or pyrazoline conductors. Those dispersed in organic binders such as polyester resins are known. These charge transport materials are capable of transporting holes, but not electrons. As the charge generating substance, dyes such as copper phthalocyanine are usually used, and as the conductive support, AI! A plate or a polyethylene terephthalate resin film on which a metal such as A/ is deposited is used.

上記した感光体の静電潜像形成機構は、次のよプに考え
られている。即ち、光照射により電荷発生層で生成した
エキシトン(励起子)は、電荷発生層内又は電荷発生層
と電荷輸送層との境界において電子と正孔とに解離して
キャリアー(正孔)を発生し、該キャリアーは電荷輸送
層に注入され。
The electrostatic latent image forming mechanism of the photoreceptor described above is considered as follows. In other words, excitons generated in the charge generation layer by light irradiation dissociate into electrons and holes within the charge generation layer or at the boundary between the charge generation layer and the charge transport layer, generating carriers (holes). The carriers are then injected into the charge transport layer.

感光体表面の負電荷を中和することにより静電潜像を形
成する。一方、電子は導電性支持体に移行する。
An electrostatic latent image is formed by neutralizing negative charges on the surface of the photoreceptor. On the other hand, electrons migrate to the conductive support.

〔背景技術の問題点〕[Problems with background technology]

このような積層型感光体の感度を向上させるには、電荷
発生層内で生じるキャリアの数を増し。
In order to improve the sensitivity of such a laminated photoreceptor, the number of carriers generated within the charge generation layer must be increased.

発生したキャリアの再結合や捕獲されることなく電荷輸
送層に注入する必要がある。
It is necessary to inject the generated carriers into the charge transport layer without recombining or trapping them.

そとで電荷発生の向上を目的に種々検討を行なった結果
、AI!等の導電性基体と電荷発生層の界面で生じるシ
ョットキー障壁によって主に電荷発生が生じていること
を見い出し本発明に至ったものである。
As a result of various studies aimed at improving charge generation, AI! The present invention was based on the discovery that charge generation is mainly caused by a Schottky barrier generated at the interface between a conductive substrate and a charge generation layer.

〔発明の目的〕[Purpose of the invention]

本発明はキャリアー発生効率のよい高感度な電子写真感
光体を提供することを目的とする。
An object of the present invention is to provide a highly sensitive electrophotographic photoreceptor with good carrier generation efficiency.

〔発明の概要〕[Summary of the invention]

本発明は導電性支持体上に電荷発生層と電荷輸送層の積
層構造からなる電子写・真感光体において電荷発生層中
に導電性支持体と同一材料を電荷発生材料に対して5〜
40wt%添加したことを特徴とする。すなわち電荷発
生層中に導電性支持体材料を添加することにより電荷発
生材料と導電性支持体との界面の実質面積が広くなり電
荷発生に害毒するサイトが増加するため高感度になった
ものと考えられる。
The present invention provides an electrophotographic/photosensitive member having a laminated structure of a charge generation layer and a charge transport layer on a conductive support.
It is characterized by adding 40 wt%. In other words, by adding a conductive support material to the charge generation layer, the effective area of the interface between the charge generation material and the conductive support increases, increasing the number of sites that are harmful to charge generation, resulting in high sensitivity. Conceivable.

以下1本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明感光体は電荷発生材料と導電性材料の接触面積を
増加する目的で電荷発生膚中C二導電性材料を添加して
いるがそれ以外は光導電体を発生層と輸送層に分離した
従来の感光体と同一のものが用いられる。
In the photoreceptor of the present invention, a C2 conductive material is added in the charge generation layer for the purpose of increasing the contact area between the charge generation material and the conductive material, but other than that, the photoconductor is separated into a generation layer and a transport layer. The same photoreceptor as a conventional photoreceptor is used.

本発明≦二剤いられる導電性材料としてはA/、In。The present invention≦The conductive materials that can be used as two agents are A/ and In.

Au、Cu、Ni 、Sn、Zn、Ag等の金属が使用
されル。支持体としてはこれらの金属シリンダーを用い
る場合や樹脂フィルム上に導電性物質を蒸着して用いる
場合がある。
Metals such as Au, Cu, Ni, Sn, Zn, and Ag are used. As the support, these metal cylinders may be used, or a conductive substance may be deposited on a resin film.

電荷発生層を構成する電荷発生物質は、電荷輸送層にお
ける電荷輸送物質よりも、イオノ化エネルギーが大きく
、かつフェルミ準位が高いことが好ましい。該層は通常
0.1〜1μmの厚さを有する。
It is preferable that the charge generation material constituting the charge generation layer has a higher ionization energy and a higher Fermi level than the charge transport material in the charge transport layer. The layer usually has a thickness of 0.1 to 1 μm.

電荷発生物質は、正孔を電荷輸送ノーに供給して、該層
のマイナスの荷電を中和する機能があり、かつ長波長域
(400〜900nm)に吸収帯を有する有機半導体物
質である。該物質としては、従来から電子写真感光体に
おける電荷発生物質として用いられていた物質であれば
、bかなるものも使用可能であるが、通常、芳香族系の
色素類が使用される。
The charge generating material is an organic semiconductor material that has the function of supplying holes to the charge transport layer to neutralize the negative charges of the layer, and has an absorption band in a long wavelength range (400 to 900 nm). As the substance, any substance b that has been conventionally used as a charge generating substance in electrophotographic photoreceptors can be used, but aromatic dyes are usually used.

この具体例とじ又は、例えば%銅フタロシアニン。An example of this is binding or, for example, % copper phthalocyanine.

アルミニウムフタロシアニン、ゲルマニウムフタロシア
ニン等のフタロシアニン類やピリリウム塩色素、アゾ系
色素、ペリレン系色素、インジゴイド色素、ペリノン系
色素、キノン系色素、アントラキノン系色素、キナクリ
ドン系色素、ジオキサジン系色素、シアニン系色素停が
あげられる。
Phthalocyanines such as aluminum phthalocyanine and germanium phthalocyanine, pyrylium salt dyes, azo dyes, perylene dyes, indigoid dyes, perinone dyes, quinone dyes, anthraquinone dyes, quinacridone dyes, dioxazine dyes, and cyanine dyes. can give.

これらの材料に対して導電性材料の添加量は5〜40w
t*が適当でそれよりも少ないと添加効果は明らかでな
い。逆に多すぎると、電荷発生層の導電性が高くなり、
飽和帯電電位が低くなり感度にも悪影響を及ぼす、また
電荷発生層中1−分散される導電性材料が主に導電性支
持体界面から多くても電荷発生層全体の厚さの1/2 
の所までに集中していることが好ましい。す々わち導電
性材料は支持体との界面近傍に多く分散し、輸送層近傍
ではほとんど存在せず、電荷発生1#内で厚さ方向12
4度が徐々≦二減少している状態が最も好ましい。
The amount of conductive material added to these materials is 5 to 40w.
If t* is appropriate and less than that, the effect of addition is not obvious. On the other hand, if it is too large, the conductivity of the charge generation layer will increase,
The saturation charging potential becomes low and the sensitivity is adversely affected, and the conductive material dispersed in the charge generation layer is mainly distributed from the interface of the conductive support to at most 1/2 of the thickness of the entire charge generation layer.
It is preferable to concentrate up to . In other words, the conductive material is largely dispersed near the interface with the support, is hardly present near the transport layer, and is dispersed in the thickness direction 12 within charge generation 1#.
Most preferably, the number of degrees gradually decreases by ≦2.

このような電荷発生層の形成法として、結着剤であるポ
リマーに電荷発生材料と導電性材料を分散した溶液を塗
布する方法と共蒸着によって゛9電荷生材料と導′峨性
材料を同時に蒸着形成する方法がある。塗布法による場
合は、一端l:分散した溶液を塗布し、乾燥する過程で
導′成性材料が徐々1:沈降していくため、導電性支持
体近傍の濃度が高くなる。この方法は厚さ方向の導電性
材料の分布がコントロール困難であるが、量産性に優れ
ており、蒸着不可能な材料に適している。結着剤として
は。
Methods for forming such a charge generation layer include coating a solution in which a charge generation material and a conductive material are dispersed in a polymer as a binder, and co-evaporation to form a charge generation material and a conductive material. There is a method of simultaneous vapor deposition. In the case of the coating method, a dispersed solution is coated and the conductive material gradually settles during the drying process, so that the concentration near the conductive support becomes high. Although this method makes it difficult to control the distribution of conductive material in the thickness direction, it is suitable for mass production and is suitable for materials that cannot be vapor deposited. As a binder.

島分子化合物の種類は特C:限定されず、既知の電子写
真感光体用結合剤材料たとえば、ポリスチレン、ポリ塩
化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸
ビニル、ポリビニルアセタール。
The type of the island molecule compound is not limited to any known binder materials for electrophotographic photoreceptors, such as polystyrene, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, and polyvinyl acetal.

フェノール樹脂、エポキシ樹脂、アルキッド樹脂を適宜
使用することができる。また導電性材料は超微粉末平均
粒径0.3μm以下ものが好ましくそれ以上であると製
膜性に問題がある。
Phenol resins, epoxy resins, and alkyd resins can be used as appropriate. Further, the conductive material preferably has an ultrafine powder average particle diameter of 0.3 μm or less, and if it is larger than that, there is a problem in film formability.

共蒸着による方法としては、導電性材料と電荷発生材料
を混合して一元で行なう方法と2つのるつぼから別々に
蒸着する二元で行なう方法が可能であるが、各材料の蒸
着温度をそれぞれに設定して蒸着する二元蒸着が材料の
制限もなく、しかも厚さ方向のコントロールが容易であ
る点で有効である。
Co-evaporation methods include a method in which a conductive material and a charge-generating material are mixed together and a dual method in which they are separately deposited from two crucibles. Two-dimensional vapor deposition, which is performed by setting and vapor depositing, is effective because there are no restrictions on materials and it is easy to control the thickness direction.

電荷輸送層は、長波長域の可視光に対して透過性を有す
る正孔輸送物質から成る。該層は、通常2〜50μmの
厚さを有する。該材料としては、通常、高分子有機半導
体又は低分子有機半導体を有機結着剤に分散したもの等
が使用される。
The charge transport layer is made of a hole transport material that is transparent to visible light in the long wavelength range. The layer usually has a thickness of 2 to 50 μm. As the material, a material in which a high-molecular organic semiconductor or a low-molecular organic semiconductor is dispersed in an organic binder is usually used.

〔発明の効果〕〔Effect of the invention〕

本発明の感光体によれば、電荷発生層に導電性材料が添
加されているため電荷発生材料との接触面接すなわち電
荷発生C:有゛効な活性サイトが増加しているため、電
荷発生効率のよい高感度な感光体を得ることができる。
According to the photoreceptor of the present invention, since the conductive material is added to the charge generation layer, the number of contact surfaces with the charge generation material, that is, charge generation C: effective active sites is increased, so that the charge generation efficiency is increased. A photoreceptor with good sensitivity and high sensitivity can be obtained.

〔発明の実施例〕[Embodiments of the invention]

実施例1 市販のA/板(99,91)を導電性支持体として用い
Example 1 A commercially available A/plate (99, 91) was used as a conductive support.

その上に電荷発生層として銅フタロシアニンとA/の混
合層を共蒸着によって設けた。ペルジャー内圧力が5 
X 1O−6Torrで銅フタロシアニン蒸着は昇華製
のボートを用いボート温度450〜470℃で、 A/
の蒸着はスパイラル状のボートを用い850〜900℃
でシャッターを開は同時に蒸着を開始し、2分後にA/
蒸着を終了、ついで10分後I:銅フタロシアンこの蒸
着を終了し、支持体近傍にムlが分散した電荷発生層0
.3μを形成した。その上に電荷輸送層として、PUK
IQwt饅(クロルベンゼン、 THF混合溶媒)溶液
をスピンナーを用いて厚さ約10μC二塗布し感光体を
作製しft、。
A mixed layer of copper phthalocyanine and A/ was provided thereon as a charge generation layer by co-evaporation. Pel jar internal pressure is 5
A/
Vapor deposition is carried out at 850-900℃ using a spiral boat.
When the shutter is opened, vapor deposition starts at the same time, and after 2 minutes, the A/
The vapor deposition was completed, and then 10 minutes later I: Copper phthalocyanide.The vapor deposition was completed, and the charge generation layer 0 with mulch dispersed near the support.
.. 3μ was formed. On top of that, as a charge transport layer, PUK
A photoreceptor was prepared by applying a solution of IQwt (chlorobenzene, THF mixed solvent) to a thickness of about 10 μC using a spinner.

次に銅フタロシアニンのみを0.3μ蒸着形成したもの
を電荷発生層として他は上記感光体と同じ構成の感光体
を作製し比較例とした。
Next, a photoreceptor having the same structure as the above-mentioned photoreceptor was prepared by using a charge generation layer in which only copper phthalocyanine was deposited at 0.3 μm, and used as a comparative example.

これらの感光体について帯電および減衰の様子をエレク
トロスタティックペーパーアナライザーを用いて調べた
。その結果は感度を表面電荷の初期値vOが1/2に減
衰するのに必要な露光量(単位I!ux −sec )
 で表わすと、負帯電で実施例では8.5/u x s
ec (Vq=−980V )であるのC二対し比較例
ではl81ux sec (Vo =−1020V )
であった。
The charging and attenuation behavior of these photoreceptors was investigated using an electrostatic paper analyzer. The result is the exposure amount required to attenuate the initial value vO of the surface charge to 1/2 (unit: I!ux - sec).
Expressed as 8.5/u x s in the example with negative charge
ec (Vq=-980V) vs. l81ux sec (Vo =-1020V) in the comparative example
Met.

尚実施例の電荷発生層中のA/の添加鼠を化学分析した
ところ3Owt%であり、厚さ方向はおよそ支持体から
800λ程度までの所I:多く存在していることがIM
人 より確認された。
Chemical analysis of the added A/ in the charge generation layer of the example showed that it was 3 Owt%, and it was found that a large amount of A was present at about 800λ from the support in the thickness direction.
Confirmed by humans.

実施例2 実施例1と同様のλl支持体上にポリクロロ鋼フタロシ
アニンA/の混合層を共蒸着によって設けた。
Example 2 On the same λl support as in Example 1, a mixed layer of polychlorosteel phthalocyanine A/ was provided by codeposition.

ペルジャー内圧力s x tO−6tartでポリフロ
ロ鋼フタロシアニンは石英るつぼ中で550″0〜57
0”Oで、A/蒸着はスパイラル状ボートを用い850
〜900 ”0でシャッターを開は同時に蒸着を開始し
た。3分後にAI!蒸着を終了し、7分後ポリクロロ鋼
フタロシアニンの蒸着を終了した。こうして得られた電
荷発生層は0.2μで、Mの添加量は18wt%厚さ方
向では600人までに多く分散していた。その上に電荷
輸送層として次式で示されるオキクジアゾール60w 
t%がポリエステル樹脂【二分散された溶液を15μm
の厚さC二塗布し感光体を作製した。
Polyfluoro steel phthalocyanine is 550″0-57 in a quartz crucible at Pelger internal pressure s x tO-6 tart.
At 0"O, A/deposition was carried out using a spiral boat at 850
The shutter was opened at ~900"0 and vapor deposition was started at the same time. After 3 minutes, the AI! vapor deposition was finished, and after 7 minutes, the vapor deposition of polychlorosteel phthalocyanine was finished. The charge generation layer thus obtained had a thickness of 0.2μ, The amount of M added was 18wt%, which was widely dispersed up to 600% in the thickness direction.On top of that, oxic diazole 60w expressed by the following formula was added as a charge transport layer.
t% is polyester resin [bidispersed solution is 15 μm
A photoreceptor was prepared by coating the film to a thickness of C2.

比較例としてポリクロロ鋼フタロシア二ノのみを蒸着し
九ものを電荷発生層として他は上記感光体と同じ構成の
感光体を作製した。
As a comparative example, a photoreceptor having the same structure as the above-mentioned photoreceptor was prepared except that only polychlorosteel phthalocyanino was deposited and nine layers were used as a charge generation layer.

これらの感光体特性を評価したところ、実施例は初期帯
電量−5oo Vで7.61!ux secであるのに
対し比較例では初期帯電量−840vで21.5 /u
x secであった。
When these photoreceptor characteristics were evaluated, the initial charge amount of Example was 7.61 at -5oo V! ux sec, whereas in the comparative example, the initial charge amount was 21.5/u at -840V.
It was x sec.

代理人弁理士 則近憲佑(ほか1名) 第1頁の続き ■Int、C1,’ fi別記号庁内 ■発明者水島 公−川 所 整理番号 2H 5F 崎市幸区小向東芝町1 東京芝浦電気株式会社総合研究
Representative Patent Attorney Kensuke Norichika (and 1 other person) Continued from page 1 ■ Int, C1, ' fi Separate symbol Inside the office ■ Inventor Ko Mizushima - Kawadokoro Reference number 2H 5F 1 Komukai Toshiba-cho, Saiwai-ku, Saki-shi Tokyo Shibaura Electric Co., Ltd. General Research Center

Claims (1)

【特許請求の範囲】 1)導電性支持体上(二電荷発生層と電荷輸送層の積層
構造からなる感光層を設けた電子写真感光体において、
電荷発生層材料に導電性支持体と同一材料を電荷発生材
料に対して5〜40 wt%添加しなことを特徴とする
電子写真感光体。 2)電荷発生層中の導電性支持体と同一材料からなる添
加成分が、主に導電性支持体界面から、多くても電荷発
生層全体の厚さの1/2の所までf;集中して分散され
たことを特徴とする特許請求範囲第一項記載の電子写真
感光体。 3)電荷発生材料と導電性材料からなる電荷発生層が共
蒸着によって形成されていることを特徴とする特許請求
の範囲第1項記載の′4子写真感光体0
[Scope of Claims] 1) In an electrophotographic photoreceptor in which a photosensitive layer having a laminated structure of a two charge generation layer and a charge transport layer is provided on a conductive support,
An electrophotographic photoreceptor characterized in that the same material as the conductive support is added to the charge generation layer material in an amount of 5 to 40 wt% based on the charge generation material. 2) The additive component made of the same material as the conductive support in the charge generation layer is mainly concentrated from the interface of the conductive support to at most 1/2 of the thickness of the entire charge generation layer. An electrophotographic photoreceptor according to claim 1, characterized in that the electrophotographic photoreceptor is dispersed in: 3) The quadruplets photographic photoreceptor 0 according to claim 1, wherein the charge generation layer made of a charge generation material and a conductive material is formed by co-evaporation.
JP59045503A 1984-03-12 1984-03-12 Electrophotographic sensitive body Pending JPS60189750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59045503A JPS60189750A (en) 1984-03-12 1984-03-12 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59045503A JPS60189750A (en) 1984-03-12 1984-03-12 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS60189750A true JPS60189750A (en) 1985-09-27

Family

ID=12721205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59045503A Pending JPS60189750A (en) 1984-03-12 1984-03-12 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS60189750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163345A (en) * 1985-01-16 1986-07-24 Canon Inc Electrophotographic sensitive body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163345A (en) * 1985-01-16 1986-07-24 Canon Inc Electrophotographic sensitive body
JPH0462577B2 (en) * 1985-01-16 1992-10-06 Canon Kk

Similar Documents

Publication Publication Date Title
JP3483976B2 (en) Electrophotographic imaging member
JP2864583B2 (en) Electrophotographic photoreceptor
JP3718674B2 (en) Positively charged organic photoreceptor and method for producing the same
JP2004341528A (en) Image forming member
JPS60189750A (en) Electrophotographic sensitive body
JPH02228673A (en) Xerographic image forming member
JPH0862862A (en) Electrophotographic image forming device
JP4239133B2 (en) Electrophotographic photoreceptor and method for producing the same
JPH02259769A (en) Overcoated photosensitive body
JPH10115941A (en) Electrophotographic photoreceptor
JPS60189748A (en) Electrophotographic sensitive body
JPS60189753A (en) Electrophotographic sensitive body
JPS59178464A (en) Electrophotographic sensitive body
JP2541283B2 (en) Electrophotographic photoreceptor
JPH02244055A (en) Photosensitive body
JP3345689B2 (en) Single-layer electrophotographic photoreceptor
JPS60189751A (en) Electrophotographic sensitive body
JPH0827545B2 (en) Electrophotographic photoreceptor
JPS60201348A (en) Electrophotographic sensitive body
JPH0331854A (en) Electrophotographic sensitive body
JPS59178465A (en) Electrophotographic sensitive body
JPS59211048A (en) Electrophotographic sensitive body
JPH0778641B2 (en) Electrophotographic photoreceptor
JPS60201346A (en) Electrophotographic sensitive body
JP2003270809A (en) Positively-charged electrophotographic organophotoreceptor