JPS60189270A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS60189270A
JPS60189270A JP4441584A JP4441584A JPS60189270A JP S60189270 A JPS60189270 A JP S60189270A JP 4441584 A JP4441584 A JP 4441584A JP 4441584 A JP4441584 A JP 4441584A JP S60189270 A JPS60189270 A JP S60189270A
Authority
JP
Japan
Prior art keywords
resistance
low
layer
type
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4441584A
Other languages
Japanese (ja)
Inventor
Takeshi Kajimura
梶村 武史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP4441584A priority Critical patent/JPS60189270A/en
Publication of JPS60189270A publication Critical patent/JPS60189270A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors with potential-jump barrier or surface barrier
    • H01L29/93Variable capacitance diodes, e.g. varactors

Abstract

PURPOSE:To enable to strictly control the respective thickness of the lowresistance layers and to obtain stably the various characteristics of a compound semiconductor device by a method wherein the compound semiconductor device is constituted including two processes of a process, wherein one side of the low-resistance layers is formed on the high-resistance layer formed on the substrate in the same conductive type as that of the high-resistance layer, and a process, wherein the other side having a conductive type inverse to that of the one side the low-resistance layers is formed on the one side of the low-resistance layers. CONSTITUTION:A high-resistance N type epitaxial layer 2 is formed on a low-resistance N type GaAs substrate 1 by a vapor-phase growth method, and after that, an ion-implantation is performed using Si and so forth as impurities, and following that, a low-resistance N type layer 3 is formed in a prescribed thickness by performing an annealing. The thickness of this ion-implanted layer can be precisely controlled by controlling the impurity dose and the accelerating voltage. Moreover, as the annealing to be performed for activating the implanted ions can make the ions activate at comparatively low temperatures, the depth of the implanted layer is not changed excessively. As a result, the thickness of the low-resistance N type layer can be easily obtained as indicated in the design value. Then, a low-resistance P type layer 4 is formed by a vapor-phase epitaxial growth method. This formation can be formed at 900 deg.C or thereabouts. When the low-resistance P type layer is formed, there is some shift of impurities, but the amount is a small amount and as the P type layer is formed at comparatively low temperatures, the thickness can be sufficiently controlled.

Description

【発明の詳細な説明】 (技術分野) 本発明は化合物半導体装置の製造方法に関し、特にヒ化
ガリウム(GaAs)の超階段接合バラクタの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing a compound semiconductor device, and more particularly to a method for manufacturing a superstep junction varactor of gallium arsenide (GaAs).

(従来技術) 近年1発振器の周波数変換器、変調器としてバラクタダ
イオードが広く使用されている。これは逆方向バイアス
を印加することによって接合容量が変化することを利用
したもので、特に小さな印加電圧で大きな容址変化比が
得られる超階段接合のものが有利である。
(Prior Art) In recent years, varactor diodes have been widely used as frequency converters and modulators for single oscillators. This utilizes the fact that the junction capacitance changes by applying a reverse bias, and a hyperstep junction is particularly advantageous because it can provide a large capacity change ratio with a small applied voltage.

このような超階段接合のSiバラクタはTVチューナ等
に広く利用されている。最近直列抵抗が小さく出来、そ
の結果Qの高い容量となるGaAsの超階段接合バラク
タの開発がさかんとなっている。
Such super-step junction Si varactors are widely used in TV tuners and the like. Recently, there has been an active development of GaAs superstep junction varactors, which have a small series resistance and, as a result, a high Q capacitance.

第1図は従来の代表的な超階段接合の不純物濃度分布を
示す図である。第1図に示すように。
FIG. 1 is a diagram showing the impurity concentration distribution of a typical conventional hyperstep junction. As shown in Figure 1.

低抵抗N型GaAs基板1に不純物m度が581015
cm−3程度のn型高抵抗層2と1016〜10178
m 程度の不純物濃度を有するn型低抵抗層3にP型の
低抵抗層4が形成されたものである。
The impurity level is 581015 in the low resistance N-type GaAs substrate 1.
n-type high resistance layer 2 of about cm-3 and 1016 to 10178
A P-type low-resistance layer 4 is formed on an n-type low-resistance layer 3 having an impurity concentration of approximately m2.

このような不純物濃度分布を有するQaAsウェーハに
所定の電極を形成して超階段接合バラクタを製造するも
のである。
A superstep junction varactor is manufactured by forming predetermined electrodes on a QaAs wafer having such an impurity concentration distribution.

従来、上記不純物濃度分布のウェーハを製造する方法と
しては、低抵抗基板1に気相成長によって高抵抗層2が
形成されたエピタキシャルウェーハにSiヲ不純物とし
たイオン注入によってn型低抵抗層3を形成したのちZ
n、拡散等によりP型低抵抗層4を形成していた。しか
し所要の容量−電圧特性を得るためには上記低抵抗層3
の厚さの制御が最も厳しく要求され、イオン注入でこの
厚さを厳しく押えても、その後のP型低抵抗層形成の拡
散のバラツキ等で変化し、目標とする容量−電圧特性を
安定して得ることが難しい。一般的に上記n型の高濃度
Iil!3の厚さは種々の要求、容量−電圧特性から0
.5〜1.0μmの範囲に設定されるが、この厚さを±
10%程朋に制御しなければならず、このような条件に
適合した製品の製造は困難で、すなわち量産性に欠ける
という欠点があった。
Conventionally, as a method for manufacturing a wafer with the above impurity concentration distribution, an n-type low resistance layer 3 is formed by ion implantation with Si as an impurity into an epitaxial wafer in which a high resistance layer 2 is formed on a low resistance substrate 1 by vapor phase growth. After forming Z
A P-type low resistance layer 4 was formed by diffusion or the like. However, in order to obtain the required capacitance-voltage characteristics, the low resistance layer 3
The most stringent requirement is to control the thickness of the capacitance, and even if this thickness is strictly controlled by ion implantation, it will change due to variations in diffusion during the subsequent formation of the P-type low resistance layer, making it difficult to stabilize the target capacitance-voltage characteristics. difficult to obtain. Generally, the above n-type high concentration Iil! The thickness of 3 is 0 due to various requirements and capacitance-voltage characteristics.
.. The thickness is set in the range of 5 to 1.0 μm, but the thickness can be changed to ±
It is necessary to control the temperature by about 10%, and it is difficult to manufacture products that meet such conditions, which has the drawback of lacking mass productivity.

また、一方最近P 層を使用しない方法として前記N型
低抵抗層3に直接金属を接続したショットキバリア型の
超階段バラクタが発表されたが、これは順方向電流の立
上り電圧がP」N接合を有したものに比べ低いために大
きな信号の発振器には適さないという欠点がある。
On the other hand, a Schottky barrier type hyper-step varactor in which a metal is directly connected to the N-type low resistance layer 3 has been recently announced as a method that does not use a P layer, but this is because the rising voltage of the forward current is It has the disadvantage that it is not suitable for large signal oscillators because it is lower than those with oscillators.

(発明の目的ン 本発明の目的は1以上の欠点を除去し、低抵抗層の厚さ
が厳密に制御でき、容量−電圧特性を特徴とする特性が
安定して得ることが出来る化合物半導体装置の製造方法
を提供することにある。
(Objective of the Invention) The object of the present invention is to eliminate one or more drawbacks of a compound semiconductor device in which the thickness of the low resistance layer can be strictly controlled and characteristics characterized by capacitance-voltage characteristics can be stably obtained. The purpose of this invention is to provide a method for manufacturing the same.

(発明の構成) 本発明の化合物半導体装置の製造方法は、低抵抗ヒ化ガ
リウム基板上に該基板と同一導電型の所定の不純物濃度
、厚さを有する高抵抗層が形成されたヒ化ガリウムウェ
ーハにおいて、該ウェーハにイオン注入、アニールによ
って前記高抵抗層と同一導電型で不純物濃度の高く所定
の厚さを有する低抵抗層を形成する工程と、前記低抵抗
層の上に、該低抵抗層と反対の導電型を有する低抵抗層
をエピタキシャル成長により形成する工程とを含んで構
成される。
(Structure of the Invention) A method for manufacturing a compound semiconductor device according to the present invention includes forming a high resistance layer on a low resistance gallium arsenide substrate and having a predetermined impurity concentration and thickness of the same conductivity type as the substrate. In the wafer, a step of forming a low resistance layer having the same conductivity type as the high resistance layer, high impurity concentration, and a predetermined thickness by ion implantation and annealing into the wafer, and forming the low resistance layer on the low resistance layer. The method includes a step of forming a low resistance layer having a conductivity type opposite to that of the layer by epitaxial growth.

(実施例) 以下1本発明の実施例について1図面を参照して説明す
る。第1図は従来の代表的な超階段接合の不純物濃度分
布を示す図であるが1本発低抵抗基板1に気相成長によ
って s x 1011015a 程度のn型高抵抗エ
ピタキシャルN2を形成した後、Si等全不純物とした
イオン注入続いてアニールすることによ、 1o16〜
1017c m−3程度のn型低抵抗層3を規定厚さに
形成する。このイオン注入層の厚さはドーズ量並びに加
速電圧の制御により精密に制御できる。また打込みイオ
ンの活性化のアニールは比較的低温で活性化できるため
注入層の深さはあまり変化することはなく設計値通りの
N型低抵抗層の厚さを得ることは容易である。
(Example) An example of the present invention will be described below with reference to one drawing. FIG. 1 is a diagram showing the impurity concentration distribution of a typical conventional super-step junction. After forming an n-type high-resistance epitaxial layer N2 of about s x 1011015a by vapor phase growth on a single low-resistance substrate 1, By ion implantation with all impurities such as Si, followed by annealing, 1o16 ~
An n-type low resistance layer 3 of about 1017cm-3 is formed to a specified thickness. The thickness of this ion-implanted layer can be precisely controlled by controlling the dose and accelerating voltage. Further, since the implanted ions can be activated at a relatively low temperature during annealing, the depth of the implanted layer does not change much, and it is easy to obtain the thickness of the N-type low resistance layer as designed.

次に%気相エピタキシャル成長によりP型低抵抗層4を
形成する。この形成は900°C程度で数十分のエピタ
キシャルにより形成できる。
Next, a P-type low resistance layer 4 is formed by vapor phase epitaxial growth. This formation can be done by epitaxially performing several tens of minutes at about 900°C.

従来の拡散法によるときは、拡散条件でP型不純物が急
速に拡散し時によりN型低抵抗層をつきぬけることがあ
り、またこの拡散の深さの制御性非常に困難であったが
1本実施例では比較的低温のエピタキシャル成長法によ
りP型低抵抗層全形成するので若干の不純物の移動はあ
るがその量は少く十分制御出来る。以上により本発明の
一実施例による制御されたバラクタの超階段接合を形成
することができ、これに所定の電極を形成すれば超階段
接合を有するバラクタは完成する。
When using the conventional diffusion method, the P-type impurity diffuses rapidly under the diffusion conditions, sometimes penetrating the N-type low resistance layer, and it is extremely difficult to control the depth of this diffusion. In this embodiment, the entire P-type low resistance layer is formed by epitaxial growth at a relatively low temperature, so although some impurity movement occurs, the amount is small and can be sufficiently controlled. As described above, a controlled hyper-step junction of a varactor according to an embodiment of the present invention can be formed, and by forming a predetermined electrode thereon, a varactor having a hyper-step junction is completed.

なお、実施例ではエピタキシャル成長によるP型低抵抗
層の形成は気相成長法によったが液、相エピタキシャル
法によっても出来ることは説明するまでもない。
In the embodiment, the P-type low resistance layer was formed by epitaxial growth using a vapor phase growth method, but it goes without saying that it can also be formed by a liquid phase epitaxial method.

(発明の効果) 以上説明したとおり1本発明によれば、N型低抵抗層の
厚さ等はイオン注入、アニールの条件のみによって決定
し、最も問題とされた後のP+型低抵抗層形成時の拡散
等の影響を受けないため所定の容量−電圧特性を安定し
て得ることが出来る。
(Effects of the Invention) As explained above, according to the present invention, the thickness etc. of the N-type low resistance layer are determined only by the ion implantation and annealing conditions, and the formation of the P+ type low resistance layer after the most problematic Since it is not affected by time diffusion, etc., a predetermined capacitance-voltage characteristic can be stably obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は代表的な超階段接合の不純物濃度分布を示す図
である。 l・・・・・・N型低抵抗GaAs基板、2・・・・・
・N型高抵抗エピタキシャル層、3・・・・・・イオン
注入形成によるN型低抵抗層、4・・・・・・P型低抵
抗層。 表1d力゛÷のIf−’夕十シャJL層力Ky亭11¥
FIG. 1 is a diagram showing the impurity concentration distribution of a typical hyperstep junction. l... N-type low resistance GaAs substrate, 2...
- N type high resistance epitaxial layer, 3... N type low resistance layer formed by ion implantation, 4... P type low resistance layer. Table 1d force ÷ If-' Yujusha JL layer force Kyitei 11 yen
I

Claims (1)

【特許請求の範囲】 低抵抗ヒ化ガリウム基板上に該基板と同一導電型の所定
の不純物濃度、厚さを有する高抵抗層が形成されたヒ化
ガリウムウェーハにおいて。 該ウェーハにイオン注入、アニールによって前記高抵抗
層と同一導電型で不純物濃度の高く所定の厚さを有する
低抵抗層を形成する工程と。 前記低抵抗層の上に該低抵抗層と反対の導電型を刹する
低抵抗層をエピタキシャル成長により形成する工程とを
含むこと全特徴とする化合物半導体装置の製造方法。
[Scope of Claim] A gallium arsenide wafer in which a high resistance layer having a predetermined impurity concentration and thickness of the same conductivity type as the substrate is formed on a low resistance gallium arsenide substrate. forming a low resistance layer having the same conductivity type as the high resistance layer, high impurity concentration, and a predetermined thickness by ion implantation and annealing into the wafer; A method for manufacturing a compound semiconductor device, comprising the step of forming, by epitaxial growth, a low resistance layer having a conductivity type opposite to that of the low resistance layer on the low resistance layer.
JP4441584A 1984-03-08 1984-03-08 Manufacture of compound semiconductor device Pending JPS60189270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4441584A JPS60189270A (en) 1984-03-08 1984-03-08 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4441584A JPS60189270A (en) 1984-03-08 1984-03-08 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS60189270A true JPS60189270A (en) 1985-09-26

Family

ID=12690865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4441584A Pending JPS60189270A (en) 1984-03-08 1984-03-08 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS60189270A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285476A (en) * 1986-06-03 1987-12-11 Nec Corp Manufacture of varactor diode
JPS63300570A (en) * 1987-05-29 1988-12-07 Nec Corp Manufacture of gallium arsenide hyper abrupt varactor diode
JPH05206486A (en) * 1992-01-13 1993-08-13 Nec Corp Manufacture of gaas varactor diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285476A (en) * 1986-06-03 1987-12-11 Nec Corp Manufacture of varactor diode
JPS63300570A (en) * 1987-05-29 1988-12-07 Nec Corp Manufacture of gallium arsenide hyper abrupt varactor diode
JPH05206486A (en) * 1992-01-13 1993-08-13 Nec Corp Manufacture of gaas varactor diode

Similar Documents

Publication Publication Date Title
US3183129A (en) Method of forming a semiconductor
JP3906076B2 (en) Semiconductor device
US4391651A (en) Method of forming a hyperabrupt interface in a GaAs substrate
US4901121A (en) Semiconductor device comprising a perforated metal silicide layer
US4033788A (en) Ion implanted gallium arsenide semiconductor devices fabricated in semi-insulating gallium arsenide substrates
US3943552A (en) Semiconductor devices
DE2711562A1 (en) SEMI-CONDUCTOR ARRANGEMENT AND THEIR PRODUCTION
DE2718449A1 (en) METHOD OF MANUFACTURING A SEMI-CONDUCTOR ARRANGEMENT AND ARRANGEMENT PRODUCED BY THIS METHOD
US4889824A (en) Method of manufacture semiconductor device of the hetero-junction bipolar transistor type
US3914784A (en) Ion Implanted gallium arsenide semiconductor devices fabricated in semi-insulating gallium arsenide substrates
JPH03774B2 (en)
JPS60189270A (en) Manufacture of compound semiconductor device
US4544937A (en) Formation of normal resistors by degenerate doping of substrates
US5650335A (en) Method of fabricating a semiconductor device including a process of adjusting fet characteristics after forming the fet
JPH02252267A (en) Manufacture of semeconductor device
US3936321A (en) Method of making a compound semiconductor layer of high resistivity
US4381952A (en) Method for fabricating a low loss varactor diode
WO1982001619A1 (en) Method of making a planar iii-v bipolar transistor by selective ion implantation and a device made therewith
US4886762A (en) Monolithic temperature compensated voltage-reference diode and method for its manufacture
JP3355334B2 (en) Manufacturing method of variable capacitance diode
US4814284A (en) GaAs plannar diode and manufacturing method therefor
JPS63148684A (en) Hyper abrupt type varactor diode
JPH01270277A (en) Manufacture of gallium arsenide hyper abrupt varactor diode
JP2001332697A (en) Semiconductor device comprising semiconductor resistor element and manufacturing method thereof
JPH02288364A (en) Schottky diode