JPS6018832Y2 - High voltage feedthrough capacitor - Google Patents

High voltage feedthrough capacitor

Info

Publication number
JPS6018832Y2
JPS6018832Y2 JP510380U JP510380U JPS6018832Y2 JP S6018832 Y2 JPS6018832 Y2 JP S6018832Y2 JP 510380 U JP510380 U JP 510380U JP 510380 U JP510380 U JP 510380U JP S6018832 Y2 JPS6018832 Y2 JP S6018832Y2
Authority
JP
Japan
Prior art keywords
insulating resin
capacitor
high voltage
feedthrough capacitor
outer case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP510380U
Other languages
Japanese (ja)
Other versions
JPS56108237U (en
Inventor
節雄 佐々木
Original Assignee
ティーディーケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーディーケイ株式会社 filed Critical ティーディーケイ株式会社
Priority to JP510380U priority Critical patent/JPS6018832Y2/en
Priority to GB8024798A priority patent/GB2061618B/en
Priority to DE19803029807 priority patent/DE3029807C2/en
Priority to NL8004481A priority patent/NL185314C/en
Priority to US06/177,374 priority patent/US4370698A/en
Publication of JPS56108237U publication Critical patent/JPS56108237U/ja
Application granted granted Critical
Publication of JPS6018832Y2 publication Critical patent/JPS6018832Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【考案の詳細な説明】 本考案は、高周波大電力装置、たとえば電子レンジ、放
送機器用のマグネトロンまたはX線管等のノイズフィル
タとして使用される高電圧貫通形コンデンサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-voltage feedthrough capacitor used as a noise filter for high-frequency, high-power devices, such as microwave ovens, magnetrons for broadcasting equipment, or X-ray tubes.

最近、放送用機器等の産業用機器、X線医療機器のみな
らず、電子レンジ等の民生機器にもUHF、 V□帯の
大電力の電磁波が利用されるようになりJその利用度が
高まるにつれて、これら機器から漏洩する電磁波による
雑音公害の防止が、置薬な課題となっている。
Recently, high-power electromagnetic waves in the UHF and V□ bands have come to be used not only in industrial equipment such as broadcasting equipment and medical X-ray equipment, but also in consumer equipment such as microwave ovens, and their use is increasing. As a result, prevention of noise pollution caused by electromagnetic waves leaking from these devices has become an important issue.

こうした雑音公害防止のため、従来より各種のノイズフ
ィルタが握索されている。
In order to prevent such noise pollution, various noise filters have been used in the past.

第1図はこの種のノイズフィルタの構成要素として使用
されて0た高電圧貫通形コンデンサの従来例を示し、軸
方向の両端面に電極2,3を形成した貫通形磁器コンデ
ンサ1を、接地金具4の浮上部5上に、電極3が対接す
るようにして固着すると共に、絶縁チューブ10を備え
た貫通導体8を、貫通形磁器コンデンサ1、接地金具4
の浮上部5に設けた貫通孔1a、5a内を貫通させたう
えで、電極金具6により貫通形磁器コンデンサ1の電極
2上に半田付けなどの手段で固着し、更に貫通形磁器コ
ンデンサ1、電極金具6および貫通導体8の貫通部分等
のまわりを絶縁樹脂9て被覆し、該絶縁樹脂9の外周を
外装ケース11で覆った構造となっている。
Figure 1 shows a conventional example of a high-voltage feedthrough capacitor used as a component of this type of noise filter. The electrodes 3 are fixed on the floating part 5 of the metal fitting 4 so as to be in contact with each other, and the through conductor 8 provided with the insulating tube 10 is connected to the through-hole ceramic capacitor 1 and the grounding fitting 4.
After passing through the through holes 1a and 5a provided in the floating part 5 of the through-hole ceramic capacitor 1, the electrode fitting 6 is fixed onto the electrode 2 of the through-hole ceramic capacitor 1 by means such as soldering, and the through-hole ceramic capacitor 1, The electrode fitting 6 and the penetrating portion of the through conductor 8 are covered with an insulating resin 9, and the outer periphery of the insulating resin 9 is covered with an exterior case 11.

12は絶縁カバーである。前記絶縁樹脂9は、貫通形磁
器コンデンサ1の絶縁性、耐湿性等を確保するために設
けられたもので、外装ケース11の内部にエポキシ樹脂
等の絶縁樹脂を注入して形成される。
12 is an insulating cover. The insulating resin 9 is provided to ensure insulation, moisture resistance, etc. of the through-type ceramic capacitor 1, and is formed by injecting an insulating resin such as epoxy resin into the exterior case 11.

また外装ケース1は、絶縁樹脂9との馳みが良く、強い
接着力が得られ、しかも難燃性を有する合成樹脂、たと
えばABS、ナイロン、ポリエチレン樹脂等によって構
成しである。
The outer case 1 is made of synthetic resin, such as ABS, nylon, polyethylene resin, etc., which has good adhesion to the insulating resin 9, provides strong adhesion, and is flame retardant.

しかし、外装ケース11を、絶縁樹脂9に対して接着性
を示す合成樹脂で構成すると、外装ケース11と絶縁樹
脂9との間の接着力が、絶縁樹脂9と貫通形磁器コンデ
ンサ1の磁器素体との接着力より大きくなるため、絶縁
樹脂9の硬化収縮時、ヒートサイクル試験時または耐熱
試験時に、各部の線膨張係数の差異等に基づいて発生す
る残留応力によって、磁器コンデンサ1と絶縁樹脂9の
界面に隙間、亀裂または剥離が発生し、これらの隙間、
亀裂、剥離部分に高電界力線が集中して沿面放電破壊等
を招き易く、信頼性に欠ける面があった。
However, if the outer case 11 is made of a synthetic resin that exhibits adhesive properties to the insulating resin 9, the adhesive force between the outer case 11 and the insulating resin 9 will be When the insulating resin 9 hardens and shrinks, during heat cycle tests, or during heat resistance tests, residual stress generated due to differences in linear expansion coefficients of each part causes the porcelain capacitor 1 and the insulating resin to bond together. Gaps, cracks, or peeling occur at the interface of 9, and these gaps,
High electric field lines concentrate in cracks and peeled areas, which tends to cause creeping discharge damage, resulting in a lack of reliability.

上述の欠点を除去するため、外装ケース11を、エポキ
シ樹脂に対して非接着性となる合成樹脂、たとえばポリ
プロピレン樹脂で構威し、該外装ケース11を利用して
絶縁樹脂9を注型する方法も提案されている。
In order to eliminate the above-mentioned drawbacks, there is a method in which the outer case 11 is made of a synthetic resin that is non-adhesive to epoxy resin, such as polypropylene resin, and the insulating resin 9 is cast using the outer case 11. has also been proposed.

しかし、ポリプロピレン樹脂は燃焼性があり、そのまま
外装ケースとして使用するには危険過ぎるから、絶縁樹
脂9の注型後に取り外さなければならず、性業性が悪く
、量産性に欠け、コスト高になる欠点がある。
However, polypropylene resin is flammable and too dangerous to be used as an exterior case as it is, so it must be removed after casting the insulating resin 9, resulting in poor workability, lack of mass production, and high costs. There are drawbacks.

本考案は上述する従来技術の諸問題点を解決し、絶縁樹
脂の注型後そのまま装着しても、耐温度特性、耐電圧特
性の劣化を招くことがない外装ケースを備えた高電圧貫
通形コンデンサを提供することを目的とする。
The present invention solves the problems of the prior art described above, and is a high-voltage feed-through type with an exterior case that does not cause deterioration of temperature and voltage resistance characteristics even if it is installed as is after insulating resin is cast. The purpose is to provide capacitors.

上記目的を遠戚するため、本考案は、貫通コンデンサの
まわりを被覆する絶縁樹脂を、線膨張係数が該絶縁樹脂
の線膨張係数よりは小さい外装ケースによって覆ったこ
とを特徴とする。
In order to achieve the above object, the present invention is characterized in that the insulating resin surrounding the feedthrough capacitor is covered with an exterior case whose coefficient of linear expansion is smaller than that of the insulating resin.

すなわち、第1図に示すような高電圧貫通形コンデンサ
において、絶縁樹脂9の線膨張係数をα1、外装ケース
11の外装ケースをα2としたとき、α1〉α2となる
ように、絶縁樹脂9および外装ケース11を選定するも
のである。
That is, in the high voltage feedthrough capacitor as shown in FIG. 1, when the linear expansion coefficient of the insulating resin 9 is α1 and the outer case of the outer case 11 is α2, the insulating resin 9 and the insulating resin 9 are adjusted so that α1>α2. The exterior case 11 is selected.

勿論、外装ケース11は難燃性を示すものによって構成
する。
Of course, the outer case 11 is made of a flame-retardant material.

前記絶縁樹脂9としては、エピコート、アラルダイト等
の商品名で知られるノボラックエポキシまたはポリグリ
コール形エポキシ等の可撓性エポキシ樹脂が適している
As the insulating resin 9, flexible epoxy resins such as novolak epoxy or polyglycol type epoxy known under trade names such as Epicote and Araldite are suitable.

これらのエポキシ樹脂は線膨張係数α1がα1=9.3
X10−5/℃程度で比較的大きい。
These epoxy resins have a linear expansion coefficient α1 of α1=9.3.
It is relatively large at approximately X10-5/°C.

また、これに対する外装ケース11の具体例としては、
ポリブチレンテレフタレート、ポリエチレンテレフタレ
ート等の合成樹脂が適当である。
Moreover, as a specific example of the exterior case 11 for this,
Synthetic resins such as polybutylene terephthalate and polyethylene terephthalate are suitable.

これらの合成樹脂の線膨張係数α2は、α2=2.3〜
2.5 X 10−5/℃前後であり、α1〉α2の関
係を充分に満足する。
The linear expansion coefficient α2 of these synthetic resins is α2=2.3~
It is around 2.5 x 10-5/°C, and fully satisfies the relationship α1>α2.

上述のように、外装ケース11の線膨張係数α2を、絶
縁樹脂9の線膨張係数α1より小さい値に選定すると、
ヒートサイクル試験、耐熱試験において温度を上昇させ
た場合、第2図に拡大して示すように、矢印A−Q示す
外装ケース11の膨張量が、・矢印Bで示す絶縁樹脂9
の膨張量より小さくなるから、絶縁樹脂9の膨張が外装
ケース11によって抑えられ、反作用的に、絶縁樹脂9
と磁器コンデンサ1との界面1bに、両者の接着力を高
める方向の力fが加わることとなる。
As mentioned above, if the linear expansion coefficient α2 of the outer case 11 is selected to be a value smaller than the linear expansion coefficient α1 of the insulating resin 9,
When the temperature is increased in a heat cycle test or a heat resistance test, as shown enlarged in FIG. 2, the amount of expansion of the outer case 11 shown by arrows A-Q is -
Since the expansion amount of the insulating resin 9 is smaller than the expansion amount of the insulating resin 9, the expansion of the insulating resin 9 is suppressed by the outer case 11, and reactionary
A force f is applied to the interface 1b between the capacitor 1 and the ceramic capacitor 1 in the direction of increasing the adhesive force between the two.

この結果、界面1bにおける隙間、亀裂または剥離など
の発生が防止され、耐電圧特性が著るしく向上すること
となる。
As a result, the occurrence of gaps, cracks, peeling, etc. at the interface 1b is prevented, and the withstand voltage characteristics are significantly improved.

これを仮に、外装ケース11の線膨張係数α2を、絶縁
樹脂9の線膨張係数α1より大きくした場合には、絶縁
樹脂9より外装ケース11の方が、より大きく膨張する
ため、絶縁樹脂9が磁器コンデンサ1から剥離しようと
する応力と、外装ケース11が絶縁樹脂9を引張る応力
との相乗作用により、磁器コンデンサ11と絶縁樹脂9
との界面1bに隙間、亀裂または剥離が発生し、耐電圧
不良を招くこととなる。
If the linear expansion coefficient α2 of the outer case 11 is made larger than the linear expansion coefficient α1 of the insulating resin 9, the outer case 11 will expand more than the insulating resin 9. Due to the synergistic effect of the stress that tends to cause the ceramic capacitor 1 to peel off and the stress that the exterior case 11 exerts on the insulating resin 9, the magnetic capacitor 11 and the insulating resin 9 are separated.
Gaps, cracks, or peeling occur at the interface 1b with the metal, resulting in poor withstand voltage.

第3図は本考案に係る高電圧貫通形コンデンサと従来の
高電圧貫通形コンデンサのヒートサイクル特性図を示し
ている。
FIG. 3 shows a heat cycle characteristic diagram of a high voltage feedthrough capacitor according to the present invention and a conventional high voltage feedthrough capacitor.

直線りは本考案に係る高電圧貫通形コンデンサのヒート
サイクル特性、直線L2は従来の高電圧貫通形コンデン
サのヒートサイクル特性をそれぞれ示している。
The straight line represents the heat cycle characteristics of the high voltage feedthrough capacitor according to the present invention, and the straight line L2 represents the heat cycle characteristics of the conventional high voltage feedthrough capacitor.

直線L2に示す如く、従来の高電圧貫通形コンデンサは
、100サイクル未満で累積故障率が殆んど100%に
達してしまうが、本考案に係る高電圧貫通形コンデンサ
は、直線杭に示す如<、100サイクル未満では殆んど
故障を生じることがなく、ヒートサイクル特性が著るし
く改善されている。
As shown by the straight line L2, the cumulative failure rate of conventional high voltage feedthrough capacitors reaches almost 100% in less than 100 cycles, but the high voltage feedthrough capacitor according to the present invention has a cumulative failure rate of almost 100% as shown by the straight line L2. <、With less than 100 cycles, almost no failure occurs, and the heat cycle characteristics are significantly improved.

以上述べたように、本考案は、貫通コンデンサのまわり
を被覆する絶縁樹脂を、線膨張係数が該絶縁11f1m
の線膨張係数より小さい外装ケースによって覆ったこと
を特徴とするから、絶縁樹脂のまわりを外装ケースで覆
っても、ヒートサイクル試験、耐熱試験時に、貫通コン
デンサと鉋縁樹脂との界面に隙間、亀裂または剥離など
が生じにくく、耐温度特性、耐電圧特性に優れた高信頼
度の高電圧貫通形コンデンサを提゛供することができる
As described above, the present invention provides that the insulating resin covering the feedthrough capacitor has a linear expansion coefficient of 11f1m
Even if the insulating resin is covered with an outer case, there will be gaps at the interface between the feedthrough capacitor and the edge resin during heat cycle tests and heat resistance tests. It is possible to provide a highly reliable high-voltage feed-through capacitor that is resistant to cracking or peeling and has excellent temperature and voltage resistance characteristics.

また、外装ケース難燃性のものによって構威し、絶縁樹
脂9の注型後もそのまま装着しておく。
In addition, the outer case is made of a flame-retardant material and is left in place even after the insulating resin 9 is cast.

ことができるから、組立作楽性゛が良く、量産的で、コ
ストの安価な高電圧貫通形コンデンサを提供することが
できる。
Therefore, it is possible to provide a high-voltage feed-through capacitor that is easy to assemble, can be mass-produced, and is inexpensive.

なお、本考案は他のタイプ、たとえば二連型の高電圧貫
通形コンデンサにも適用し得ることは勿論である。
It goes without saying that the present invention can also be applied to other types of high voltage feedthrough capacitors, for example, double type high voltage feedthrough capacitors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高電圧貫通形コンデンサの断面図、第2図は本
考案に係る高電圧貫通形コンデンサの作用効果を説明す
るための要部拡大断面図、第3図はヒートサイクルの特
性図である。 1・・・・・・貫通コンデンサ、9・・・・・・絶縁樹
脂、・・・・・・外装ケース。 1
Figure 1 is a cross-sectional view of a high voltage feed-through capacitor, Figure 2 is an enlarged cross-sectional view of the main parts to explain the effects of the high voltage feed-through capacitor according to the present invention, and Figure 3 is a characteristic diagram of heat cycle. be. 1...Feedthrough capacitor, 9...Insulating resin,...Exterior case. 1

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)貫通コンデンサのまわりを被覆する絶縁樹脂を、
線膨張係数が該絶縁樹脂の線膨張係数よりは小さい外装
ケースによって覆ったことを特徴とする高電圧貫通形コ
ンデンサ。
(1) Insulating resin covering the feedthrough capacitor,
1. A high-voltage feed-through capacitor, characterized in that the capacitor is covered with an exterior case having a coefficient of linear expansion smaller than that of the insulating resin.
(2)前記外装ケースは難燃性を有することを特徴とす
る実用新案登録請求の範囲第1項に記載の高電圧貫通部
コンデンサ。
(2) The high voltage feed-through capacitor according to claim 1, wherein the outer case has flame retardancy.
JP510380U 1979-08-15 1980-01-19 High voltage feedthrough capacitor Expired JPS6018832Y2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP510380U JPS6018832Y2 (en) 1980-01-19 1980-01-19 High voltage feedthrough capacitor
GB8024798A GB2061618B (en) 1979-08-15 1980-07-29 Through type high-withstand-voltage ceramic capacitor
DE19803029807 DE3029807C2 (en) 1979-08-15 1980-08-06 Ceramic double feed-through capacitor with high dielectric strength
NL8004481A NL185314C (en) 1979-08-15 1980-08-06 CERAMIC TRANSIT CAPACITOR WITH A HIGH STANDARD VOLTAGE.
US06/177,374 US4370698A (en) 1979-10-08 1980-08-12 Through type high-withstand-voltage ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP510380U JPS6018832Y2 (en) 1980-01-19 1980-01-19 High voltage feedthrough capacitor

Publications (2)

Publication Number Publication Date
JPS56108237U JPS56108237U (en) 1981-08-22
JPS6018832Y2 true JPS6018832Y2 (en) 1985-06-07

Family

ID=29601783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP510380U Expired JPS6018832Y2 (en) 1979-08-15 1980-01-19 High voltage feedthrough capacitor

Country Status (1)

Country Link
JP (1) JPS6018832Y2 (en)

Also Published As

Publication number Publication date
JPS56108237U (en) 1981-08-22

Similar Documents

Publication Publication Date Title
DE3781752T2 (en) PERFORMANCE TYPE CAPACITOR AND ITS USE IN A MAGNETRON.
US9494263B2 (en) Flexible pipe
JPS593907A (en) Molded transformer
CN108519543A (en) A kind of plug-in cable connector partial discharge sensor and its installation method
JPS6018832Y2 (en) High voltage feedthrough capacitor
US3443251A (en) Discoidal feed-through capacitors
JPH0150090B2 (en)
JPH0518835Y2 (en)
JPS5940759Y2 (en) High voltage feedthrough capacitor
JP2001231114A (en) Gas-insulated switch
JPH021834Y2 (en)
JPS61167325A (en) Joint of extrusion molded insulating cable and dielectric fluid insulating cable
US3304452A (en) Carbon brushes and connector means
JPH10160781A (en) Electrode for detection of partial discharge
JP2698132B2 (en) Magnetron
JPS5915480Y2 (en) High voltage feed-through capacitor
JPS62114410A (en) Gas insulated switchgear
JPS6028117Y2 (en) High voltage feed-through capacitor
JPH039313Y2 (en)
JP3571143B2 (en) Metal cross-linked polyethylene insulated power cable
JPH0214273Y2 (en)
JPH0423312Y2 (en)
JPS5930576Y2 (en) Magnetic levitation railway ground coil connection device
JPS6316279Y2 (en)
JPS5930574Y2 (en) Conductor connection device