JPS60187712A - Exhaust manifold for internal-combustion engine - Google Patents

Exhaust manifold for internal-combustion engine

Info

Publication number
JPS60187712A
JPS60187712A JP4459984A JP4459984A JPS60187712A JP S60187712 A JPS60187712 A JP S60187712A JP 4459984 A JP4459984 A JP 4459984A JP 4459984 A JP4459984 A JP 4459984A JP S60187712 A JPS60187712 A JP S60187712A
Authority
JP
Japan
Prior art keywords
pipe body
exhaust manifold
external
ceramic fiber
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4459984A
Other languages
Japanese (ja)
Inventor
Yutaka Tazaki
豊 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4459984A priority Critical patent/JPS60187712A/en
Publication of JPS60187712A publication Critical patent/JPS60187712A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/102Other arrangements or adaptations of exhaust conduits of exhaust manifolds having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • F01N13/141Double-walled exhaust pipes or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1861Construction facilitating manufacture, assembly, or disassembly the assembly using parts formed by casting or moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/28Tubes being formed by moulding or casting x
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/06Aluminium or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/26Multi-layered walls

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

PURPOSE:To simplify manufacture, and to lighten the weight of the titled exhaust manifold by forming an external pipe body unified by casting an internal pipe body consisting of an inner layer made of hard ceramic fiber and an outer layer made of soft ceramic fiber from the outside by aluminum and using the external pipe body as the exhaust manifold. CONSTITUTION:An inner layer 11A for an internal pipe body 11 in an exhaust manifold proper 10 is formed by hard ceramic fiber and an external layer 11B by soft ceramic fiber, and an external pipe body 12 made of aluminum is cast to the outside of the internal pipe body and unified, thus manufacturing the exhaust manifold proper. Accordingly, the melting point on casting lowers, excessive thermal stress is not applied to the internal pipe body 11, the external layer 11B absorbs heat shrinkage and expansion difference with the external pipe body 12 and prevents the generation of excessive thermal stress because the external layer 11B is soft, and the exhaust manifold can be lightened because an aluminum material is used.

Description

【発明の詳細な説明】 (技術分野) この発明は内j!l!i lj3を関の排気マニホール
1〜に関づる。
[Detailed Description of the Invention] (Technical Field) This invention is based on l! i lj3 is related to the exhaust manifolds 1 to 1.

(背景並びに従来技術) 一般に、自動車用多気筒内燃機関においては、その各気
筒の排気口に接続して471気マニホールド(排気茅岐
管)が取付【ノられることは良く知られており、この排
気マニホールドは、鋳造時及びエンジン作動時の熱的悪
影響を回避し、また軽量化をはかるために、その構造に
種々の工夫がなされていることも良く知られている。
(Background and Prior Art) It is generally well known that in multi-cylinder internal combustion engines for automobiles, a 471 air manifold (exhaust manifold) is installed connected to the exhaust port of each cylinder. It is well known that various improvements have been made to the structure of exhaust manifolds in order to avoid adverse thermal effects during casting and engine operation, and to reduce weight.

このような従来の排気マニホールドとしては、例えば実
公昭56−37047M公報や実開昭57−47713
号公報に開示されたものがあり、このうち後者につき第
1図(Δ)、(B)に示す。
Examples of such conventional exhaust manifolds include those disclosed in Japanese Utility Model Publication No. 56-37047M and Japanese Utility Model Publication No. 57-47713.
The latter is shown in FIGS. 1 (Δ) and (B).

これは、JJ)気マニホールド本体1を、固体のセラミ
ック+Aを用いて所定の多岐管形状に成形してなる内側
管体、2と、この内側管体2を一体的に鋳込むJ、うに
して鋳造成形された上記内側管体2と略相似形のvJ′
鉄製外側管体3とからなる二車管構造に形成η−るど共
に、気筒列方向にこれを3分割A、B、CLで4iS成
したものである。
This is made by molding the air manifold main body 1 into a predetermined manifold shape using solid ceramic +A, and the inner tube body 2 is integrally cast. vJ', which has a substantially similar shape to the inner tube body 2 which is cast by
It is formed into a two-car tube structure consisting of an iron outer tube body 3, and is divided into three parts A, B, and CL in the cylinder row direction to form 4iS.

これによれば、上記セラミック材の使用により、重■の
重いvi畝祠料部分の大幅な削減が可能になり、排気マ
ニホールド本体1の軽量化がはれかるのである。
According to this, by using the above-mentioned ceramic material, it is possible to significantly reduce the heavy vi-ridge polishing material portion, and the weight of the exhaust manifold main body 1 can be reduced.

一方、排気マニホールド本体1の鋳造時に内側管体2に
加わる熱衝撃や、機関の運転、停止に伴う熱応力、振動
等は、上述した3分割格造により吸収する。これは内側
管体2を柔軟性のない固体状セラミック拐として、その
外側管体3に融点の高い鋳鉄(鋳造時の溶湯温度は1.
500〜1゜600℃)を用いるため、排気マニホール
ド本体1の製造時の熱衝撃、またエンジン作動時の両管
体2,3の熱膨張係数の違いにJ一つて生じる熱応力等
のよって内側笛体2が破損づるのを防ぐためである。
On the other hand, the thermal shock applied to the inner pipe body 2 during casting of the exhaust manifold main body 1, the thermal stress, vibrations, etc. accompanying the operation and stop of the engine are absorbed by the three-part structure described above. The inner tubular body 2 is made of inflexible solid ceramic material, and the outer tubular body 3 is made of cast iron with a high melting point (the molten metal temperature during casting is 1.5 mm).
500 to 1 to 600 degrees Celsius), thermal shock during the manufacture of the exhaust manifold body 1, and thermal stress caused by the difference in the coefficient of thermal expansion between the two tubes 2 and 3 during engine operation, etc. This is to prevent the flute body 2 from being damaged.

ところが、このうよむ従来の内燃機関の排気マニホール
ドにあっては、排気マニホールド本体1が上述したよう
な熱的悪影響を回避するために長手方向に3分割づる構
造になっていたため、部品点数の増大で製造並びに組付
工数が増加してコストアップになるという問題点があっ
た。
However, in conventional exhaust manifolds for internal combustion engines, the exhaust manifold main body 1 is divided into three parts in the longitudinal direction in order to avoid the above-mentioned adverse thermal effects, resulting in an increase in the number of parts. However, there is a problem in that the number of man-hours for manufacturing and assembly increases, leading to an increase in costs.

また、内側管体2を形成J゛る固体状セラミック材は気
孔率が低く断熱性が充分でないため、外側管体3の温度
が高くなりやずく、外側管体3に耐熱性の高い鋳鉄等の
材料を用いることが不可欠となり、このため排気マニホ
ールドのなお一層の軽量化を阻害する要因となっていた
In addition, since the solid ceramic material forming the inner tube 2 has a low porosity and does not have sufficient heat insulation, the temperature of the outer tube 3 may become high. It has become essential to use materials such as these, and this has become a factor that hinders further weight reduction of exhaust manifolds.

(発明の目的) この発明は、このような従来の問題点に着目してなされ
たもので、排気マニホールドの一体化構造及びアルミ材
の使用による徹底した軽量化をはかりつつ、その耐久性
を向上させることを目的と覆る。
(Purpose of the Invention) This invention was made by focusing on these conventional problems, and aims to completely reduce the weight of the exhaust manifold by using an integrated structure and aluminum material, while improving its durability. cover with the purpose of making it happen.

(発明の開示) この発明では上)ホしたような自動車用多気筒内燃機関
の排気マニホールドにおいて、所定の多岐管形状に成形
してなる内側管体を排気ガスがあたる内側には硬いセラ
ミックファイバ成形体を用い、その外側を柔かいセラミ
ックファイバで被覆した構造とし、この内側管体を一体
的に外側から鋳込むJ:うにして鋳造成形された上記管
体と略相似形のアルミ製外側管体とで、二車管構造の排
気マニホールド本体を形成する。
(Disclosure of the Invention) In this invention, in the exhaust manifold of a multi-cylinder internal combustion engine for automobiles as shown in (a) above, the inner pipe body is formed into a predetermined manifold shape, and the inner side that is exposed to exhaust gas is molded with hard ceramic fibers. The outer tube is coated with soft ceramic fiber, and this inner tube is integrally cast from the outside. This forms an exhaust manifold body having a two-vehicle tube structure.

これによれば、熱伝導率の小さいセラミックファイバの
内側管体によって高温の排気熱が断熱されるため、外側
管体には融点の低いアルミ材の使用が可能となり、精鉄
製に比べて大幅に重置が軽減される。
According to this, the high-temperature exhaust heat is insulated by the ceramic fiber inner tube with low thermal conductivity, making it possible to use aluminum with a low melting point for the outer tube, which is significantly more effective than refined steel. Overlapping is reduced.

セラミックファイバからなる内側管体の外層は固体状セ
ラミックより大幅に柔軟性がある一方、アルミ材は上述
したように鋳鉄に比べて大幅に融点が低い(鋳造時の溶
湯温度は約700℃位である)ため鋳造時等において内
側筐体に発生する熱応力はわずかであり、またエンジン
の稼動、停止に伴う熱応力も充分に吸収することができ
、一体fS1の排気マニホールドが形成可能どなってコ
ストダウンがはかれる。内側管体の内層は硬いセラミッ
クファイバのため、排気ガスによりささくれることがな
く、十分な耐久性を発揮する。
The outer layer of the inner tube made of ceramic fiber is much more flexible than solid ceramic, while aluminum has a much lower melting point than cast iron (the temperature of the molten metal during casting is around 700°C), as mentioned above. As a result, the thermal stress generated in the inner casing during casting is minimal, and the thermal stress caused by engine operation and stoppage can be sufficiently absorbed, making it possible to form an integrated fS1 exhaust manifold. Cost reduction can be achieved. The inner layer of the inner tube is made of hard ceramic fiber, so it won't get crushed by exhaust gas and has sufficient durability.

(実施例) 以下、この発明の一実施例を図面に基づいて説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図(A)、(B)、(C)に示づ−ように、まず排
気マニホールド本体10は全気筒分(6気筒)が一体4
ス4造で形成される。
As shown in FIGS. 2(A), (B), and (C), the exhaust manifold main body 10 consists of 4 cylinders (6 cylinders).
It is formed of 4 structures.

この排気マニホールド本体10は内側管体11と外側管
体12との二重管構造で形成され、さらに内側管体11
は内層11Aと外層11Bの2層により形成されている
This exhaust manifold main body 10 is formed of a double pipe structure including an inner pipe body 11 and an outer pipe body 12, and further includes an inner pipe body 11 and an outer pipe body 12.
is formed of two layers: an inner layer 11A and an outer layer 11B.

内側管体11は、セラミックファイバを用いて所定の多
岐管形状に形成され、外側管体12はアルミ材を用いて
内側管体11を一体的に鋳込んで内側管体11と略相似
形に鋳造成形される。
The inner tube 11 is formed into a predetermined manifold shape using ceramic fiber, and the outer tube 12 is made of aluminum and is integrally cast with the inner tube 11 to have a substantially similar shape to the inner tube 11. Cast molded.

上記内側管体11を成形するセラミックファイバの拐貿
として、シリカ・アルミナファイバ、アルミナファイバ
及びシリカファイバ等が用いられるが、排気ガスと接触
する内IH11Aは剛性と硬さをもち、これに対して外
層11Bは容易に収縮する柔かいものを用いる。
Silica/alumina fiber, alumina fiber, silica fiber, etc. are used as ceramic fibers for forming the inner tube body 11, but IH11A, which comes into contact with exhaust gas, has rigidity and hardness; The outer layer 11B is made of a soft material that shrinks easily.

その性状の一例をあげると下記のものとなる。An example of its properties is as follows.

そして、上記内層11△は、シリカ系水溶液等バインダ
ーを含浸させた薄いペーパ状のセラミックファイバを何
枚も積層して成形するベーパ積層法、またはセラミック
ファイバを浮遊さけた水溶液の中に金網の型を入れてリ
クションにJ:り成形する真空成形力を用いて半割りま
たは一体品として成形する。
The inner layer 11Δ is formed by a vapor lamination method in which a number of thin paper-like ceramic fibers impregnated with a binder such as a silica-based aqueous solution are laminated and molded, or by a wire mesh mold in an aqueous solution in which ceramic fibers are suspended. The product is then molded into a liquid and molded into halves or as a single piece using vacuum forming force.

真空成形法を用いると、金網の形に接する側、ずなわち
排気カス通路側が高密度となり、排気ガスによるフ?イ
バのむくれ等に対して耐久性をもつ。これに対して外層
11Bはプランケラ1〜状セラミックファイバをプレス
等により半割り成形し、内層11Aの外側にシリカゾル
等の接着剤により張り合ゼ一体化する。
When the vacuum forming method is used, the side that is in contact with the shape of the wire mesh, that is, the exhaust gas passage side, has a high density, which prevents fumes caused by exhaust gas. Durable against swelling of varnish, etc. On the other hand, the outer layer 11B is formed by splitting and molding Plankera 1-shaped ceramic fibers in half using a press or the like, and pasting them together with an adhesive such as silica sol on the outside of the inner layer 11A.

ところで、排気マニホールド本体10(外側管体12)
の鋳造時には、従来の鋳鉄に比べて大幅に’lB+ f
5Jの低い700℃(=J近のアルミの溶湯を用いるこ
とになるので、内側管体11どの温度落差が略半分に減
少し、さらにアルミ材と接触する外層1.1Bを従来の
固体状セラミックより大幅に柔軟性のあるセラミック7
71イバの成形体としたため比較的硬い内層11Δに対
しても発生する熱応力はわずかなものとなり、鋳造時の
熱衝撃にもとづく内側管体11の破]Qを防止できる。
By the way, the exhaust manifold main body 10 (outer pipe body 12)
When casting, 'lB+f' is significantly lower than that of conventional cast iron.
Since molten aluminum with a low temperature of 700°C (near J) is used, the temperature drop in the inner tube 11 is reduced by approximately half, and the outer layer 1.1B in contact with the aluminum material is replaced with a conventional solid ceramic. Ceramic 7 is significantly more flexible
Since the molded body is made of 71 fibers, the thermal stress generated even on the relatively hard inner layer 11Δ is small, and it is possible to prevent the inner tube body 11 from breaking due to thermal shock during casting.

また、排気マニホールド本体10を全気筒一体重14造
で形成すると、部品点数の減少にもとづき製造並びに組
付工数が削減されてコストダウンがはかれる。一方、内
側管体11の外層11Bは、エンジンの稼動、停止の繰
返しにお(プる、アルミ外側管体12との熱収縮、Pt
f、服を容易に吸収し、熱応力低減が図れ、耐久性アッ
プが期待できる。
Furthermore, if the exhaust manifold main body 10 is made of a single-weight 14-piece structure for all cylinders, the number of manufacturing and assembly steps can be reduced due to the reduction in the number of parts, resulting in cost reduction. On the other hand, the outer layer 11B of the inner tubular body 11 undergoes heat shrinkage with the aluminum outer tubular body 12 due to repeated operation and stopping of the engine.
f. Easily absorbs clothing, reduces thermal stress, and can be expected to increase durability.

ところで、以下にセラミックファイバとともに代表的な
固体ヒラミックの熱衝撃による破損限界温度落差を示す
By the way, the critical temperature drop for failure due to thermal shock of typical solid heramics as well as ceramic fibers is shown below.

また、本実施例では内側管体11がセラミックファイバ
製であるため、従来の固体セラミック製にり熱伝導率が
小さいので、排気カスが冷1.11されず排気路に設り
た触媒の汀1化効率が向」−する一方、外側包・体12
に対り−る温度伝達を小さくして外側管体12に融点の
低いアルミ4Δを用いることを充分可能どしている。
In addition, in this embodiment, since the inner tube body 11 is made of ceramic fiber, the thermal conductivity is lower than that of the conventional solid ceramic material, so that the exhaust gas is not cooled and the catalyst stagnation installed in the exhaust passage is not cooled. 1, while the outer capsule/body 12
This makes it possible to use aluminum 4Δ, which has a low melting point, for the outer tubular body 12 by reducing the temperature transfer to the outer tubular body 12.

以下にセラミック及び比較のlこめ空気の熱伝導率と、
機関高負伺運転時く排気ガス温度750へ・850℃)
の排気マニホールド本体10における内側管体11と外
側管体12との境界面の温度を示す (1τ単位cal /cm−sec −℃)このように
し、て、外側管体12にアルミ材が使用可能となる結果
、鋳鉄製の従来例に比べ−C排気マニホールド本体10
の重量が大幅に軽減され、機関の軽量化がはかれる。
Below are the thermal conductivities of ceramic and comparative air,
Exhaust gas temperature reaches 750°C/850°C during engine high-speed operation)
Indicates the temperature at the interface between the inner pipe body 11 and the outer pipe body 12 in the exhaust manifold main body 10 (1τ unit cal/cm-sec -°C) In this way, aluminum material can be used for the outer pipe body 12. As a result, -C exhaust manifold body 10 compared to the conventional example made of cast iron
The weight of the engine is significantly reduced, making the engine lighter.

〈発明の効果) 以上説明したJ:うにこの発明によれば、セラミックフ
ン・イバの成形体からなる内側管体を、排気ガスの接触
する内層を硬いセラミックファイバで、また外層を柔か
いセラミックファイバで形成し、この内側管体を一体的
に鋳込むようにしてその外側にアルミ製外側管体を鋳造
成形したので、鋳造時の融点が下がり、内側管体に過大
な熱応力が加わることがなくなって排気マニホールド本
体を全気筒一体(M造とづることが可能となり、製造並
びに取付工数の削減でロストダウンがはかれると共に、
アルミ材の使用により徹底した軽量化がはかれるという
効果が得られる。
<Effects of the Invention> According to the above-described invention, the inner tube body made of a ceramic molded body is made of a hard ceramic fiber for the inner layer that comes in contact with exhaust gas, and a soft ceramic fiber for the outer layer. Since the inner tube is integrally cast and the aluminum outer tube is cast on the outside, the melting point during casting is lowered, and excessive thermal stress is not applied to the inner tube, making it easier to exhaust air. The manifold body can be integrated with all cylinders (M construction), reducing manufacturing and installation man-hours and reducing costs.
The use of aluminum material has the effect of completely reducing weight.

また、内側管体の内層は硬いため排気ガスどの接触にd
3いて損傷を受りにクク、外層は柔かいため外側管体と
の熱収縮、膨張差を吸収して過大な熱応)jが発生する
のを防ぎ、その耐久性を向上させられるという効果を生
じる。
In addition, since the inner layer of the inner pipe body is hard, it is difficult to contact any part of the exhaust gas.
3.The outer layer is soft and absorbs the difference in thermal contraction and expansion with the outer tube, preventing excessive thermal response and improving its durability. arise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A>は従来例の正面図、同図(B’)はその■
−r線断面図である。 第2図(A)はこの発明の第1実施例め正面図、同図(
B)はその■−■線断面図、同図(、C)は同図(B)
の■−■線断面図である。 10・・・排気マニホールド本体、11・・・内側管体
、12・・・外側管体、11A・・・内層、11B・・
・外層。 特許出願人 日産自動車株式会社 第1図(A) 第1図(B) 第2図(A) 第2図(B) 第2図(C)
Figure 1 (A> is a front view of the conventional example, and Figure 1 (B') is its ■
-r line sectional view. FIG. 2(A) is a front view of the first embodiment of the present invention;
B) is a cross-sectional view along the ■-■ line, and the same figure (, C) is the same figure (B)
It is a sectional view taken along the line ■-■. DESCRIPTION OF SYMBOLS 10... Exhaust manifold main body, 11... Inner pipe body, 12... Outer pipe body, 11A... Inner layer, 11B...
・Outer layer. Patent applicant Nissan Motor Co., Ltd. Figure 1 (A) Figure 1 (B) Figure 2 (A) Figure 2 (B) Figure 2 (C)

Claims (1)

【特許請求の範囲】[Claims] 多岐管形状に形成した内細管体と外側管体との二重管構
造の排気マニホールドに83いて、排気ガスがあたる内
層は硬いセラミツフッアバを用い、その外側を柔かいヒ
ラミックファイバで被覆して外層を形成した内側管体と
、この内側管体を外側から鋳込んで一体化したアルミ製
外側管体とで構成したことを特徴とする内燃機関の排気
マニホールド。
The exhaust manifold has a double pipe structure consisting of an inner tube body and an outer tube body formed in the shape of a manifold.The inner layer that is exposed to the exhaust gas is made of hard ceramic fiber, and the outer layer is covered with soft helical fiber. An exhaust manifold for an internal combustion engine, comprising a formed inner pipe body and an aluminum outer pipe body integrally formed by casting the inner pipe body from the outside.
JP4459984A 1984-03-08 1984-03-08 Exhaust manifold for internal-combustion engine Pending JPS60187712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4459984A JPS60187712A (en) 1984-03-08 1984-03-08 Exhaust manifold for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4459984A JPS60187712A (en) 1984-03-08 1984-03-08 Exhaust manifold for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60187712A true JPS60187712A (en) 1985-09-25

Family

ID=12695915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4459984A Pending JPS60187712A (en) 1984-03-08 1984-03-08 Exhaust manifold for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60187712A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145921U (en) * 1986-03-11 1987-09-14
JPS6456209U (en) * 1987-10-02 1989-04-07
JPH0583320U (en) * 1992-04-20 1993-11-12 いすゞ自動車株式会社 Exhaust manifold
JPH0583319U (en) * 1992-04-20 1993-11-12 いすゞ自動車株式会社 Exhaust manifold with heat shield structure
WO1997006909A1 (en) * 1995-08-16 1997-02-27 Northrop-Grumman Corporation Ceramic liner infiltrated with pre-ceramic polymer resin
US6349542B1 (en) * 1998-08-17 2002-02-26 Soundwich, Inc. Silicon carbide (SiC) composite exhaust manifold and method of making it
WO2003050397A3 (en) * 2001-12-07 2003-09-18 Soundwich Inc Insulated exhaust manifold having internal catalyst support body
US6725656B2 (en) 2001-12-07 2004-04-27 Dan T. Moore Company Insulated exhaust manifold
WO2004061279A1 (en) * 2002-12-26 2004-07-22 3M Innovative Properties Company Pollution control device and mat for mounting a pollution control element
WO2007017583A1 (en) * 2005-08-09 2007-02-15 Faurecia Systemes D'echappement Exhaust pipe
FR2916227A1 (en) * 2007-05-18 2008-11-21 Faurecia Sys Echappement MOTOR VEHICLE EXHAUST DUCT

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145921U (en) * 1986-03-11 1987-09-14
JPS6456209U (en) * 1987-10-02 1989-04-07
JPH0583320U (en) * 1992-04-20 1993-11-12 いすゞ自動車株式会社 Exhaust manifold
JPH0583319U (en) * 1992-04-20 1993-11-12 いすゞ自動車株式会社 Exhaust manifold with heat shield structure
WO1997006909A1 (en) * 1995-08-16 1997-02-27 Northrop-Grumman Corporation Ceramic liner infiltrated with pre-ceramic polymer resin
US6349542B1 (en) * 1998-08-17 2002-02-26 Soundwich, Inc. Silicon carbide (SiC) composite exhaust manifold and method of making it
WO2003050397A3 (en) * 2001-12-07 2003-09-18 Soundwich Inc Insulated exhaust manifold having internal catalyst support body
US6725656B2 (en) 2001-12-07 2004-04-27 Dan T. Moore Company Insulated exhaust manifold
WO2004061279A1 (en) * 2002-12-26 2004-07-22 3M Innovative Properties Company Pollution control device and mat for mounting a pollution control element
CN100371566C (en) * 2002-12-26 2008-02-27 3M创新有限公司 Pollution control device and mat for mounting a pollution control element
WO2007017583A1 (en) * 2005-08-09 2007-02-15 Faurecia Systemes D'echappement Exhaust pipe
FR2889721A1 (en) * 2005-08-09 2007-02-16 Faurecia Sys Echappement EXHAUST DUCT
JP2009504968A (en) * 2005-08-09 2009-02-05 フォーレシア・システムズ・デシャップマン Exhaust pipe
FR2916227A1 (en) * 2007-05-18 2008-11-21 Faurecia Sys Echappement MOTOR VEHICLE EXHAUST DUCT
WO2008142350A1 (en) * 2007-05-18 2008-11-27 Faurecia Systemes D'echappement Motor vehicle exhaust pipe
US8261778B2 (en) 2007-05-18 2012-09-11 Faurecia Systemes D'echappement Motor vehicle exhaust pipe

Similar Documents

Publication Publication Date Title
US4972674A (en) Heat insulating ceramic insert-cast articles for use in exhaust channels in internal combustion engines and a process for producing the same
EP0587802B1 (en) Improved internal combustion engine cylinder heads and similar articles of manufacture and methods of manufacturing same
US4884400A (en) Exhaust manifold of internal combustion engine
US4676064A (en) Heat-insulated port liner arrangement and method of fabrication
JPS60187712A (en) Exhaust manifold for internal-combustion engine
EP0437302A2 (en) Ceramic port liners
US5404721A (en) Cast-in-place ceramic manifold and method of manufacturing same
CA1120404A (en) Low cost cast-in-place port liner
JPH0238392A (en) Heat-insulating molded product composed of compression molding microporous heat-insulating material coated with metal
JPS6081420A (en) Exhaust manifold of internal-combustion engine
US5558801A (en) Casting stalk
JP3555431B2 (en) Structure of heat shield type engine
JPS5917495Y2 (en) Cylindrical insulation structure casting
JP2581900Y2 (en) Exhaust manifold with heat shield
JP2577793Y2 (en) Exhaust manifold
JP2519219Y2 (en) Engine parts with manifold exhaust passage
JPH0734200Y2 (en) Engine parts with manifold exhaust passage
JPH068265Y2 (en) Exhaust manifold structure
JP3158456B2 (en) Adiabatic intake / exhaust port and method of manufacturing the same
JP2586564Y2 (en) Exhaust manifold with heat shielding structure
JPS61175254A (en) Port liner of engine
JPH029058Y2 (en)
JPS6018417Y2 (en) insulation structure casting
JPH0313551Y2 (en)
JPH0735645Y2 (en) Stoke for casting