JPS60187323A - Removing method of hydrocarbon - Google Patents

Removing method of hydrocarbon

Info

Publication number
JPS60187323A
JPS60187323A JP59042044A JP4204484A JPS60187323A JP S60187323 A JPS60187323 A JP S60187323A JP 59042044 A JP59042044 A JP 59042044A JP 4204484 A JP4204484 A JP 4204484A JP S60187323 A JPS60187323 A JP S60187323A
Authority
JP
Japan
Prior art keywords
oxygen
amount
hydrocarbon
gaseous
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59042044A
Other languages
Japanese (ja)
Other versions
JPS6363016B2 (en
Inventor
Junichi Hosokawa
純一 細川
Kazuo Someya
染矢 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59042044A priority Critical patent/JPS60187323A/en
Publication of JPS60187323A publication Critical patent/JPS60187323A/en
Publication of JPS6363016B2 publication Critical patent/JPS6363016B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To reduce amount of remaining oxygen by detecting flow rate of gaseous starting material and quantity of heat for combustion of hydrocarbon in removing method of the hydrocarbon, computing the amount of gaseous oxygen to be added from the detected value and controlling the amount. CONSTITUTION:One part of gaseous starting material is collected in a calorimeter 7 and hydrocarbon which is combustible components is burned to measure the quantity of heat on this occasion. The detection signal Q of the calorimeter 7 and a flowmeter 6 of gaseous starting material is inputted to an arithmetic unit 2 and the amount of gaseous oxygen to be added is computed on basis of these detection signals. The signal showing feed rate F0 of gaseous oxygen computed in said unit 2 is supplied to a gaseous oxygen controller 4 as control command and a control valve 3 is adjusted by the controller 4 to control oxygen flow rate. Further, the detected value of an analyzer 5 is inputted to the arithmetic unit and the feed rate of gaseous oxygen is controlled so that the concn. of the hydrocarbon becomes less than predetermined value. By this way, the hydrocarbon is removed at a catalyst tank 1 and the remaining oxygen is reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原料ガス中の炭化水素を除去する炭化水素除
去方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a hydrocarbon removal method for removing hydrocarbons from a raw material gas.

〔発明の背景〕[Background of the invention]

アルゴン回収装置などでは、原料ガス中に含′よれる炭
化水素を除去することが前処理として行なわれている。
In argon recovery equipment and the like, pretreatment is performed to remove hydrocarbons contained in the raw material gas.

炭化水素を除去する方法としては、。As a method to remove hydrocarbons.

パラジウム等を充填した触媒槽に、原料ガスに潰素ガス
を添加したガスを通し、触媒槽内にて原料ガス中に含ま
れる炭化水素を酸素と反応させ、炭酸ガスと水を生成さ
せることによって炭化水素を除去するものが一般的によ
(知られている。通常、炭化水素を完全に除去するため
に、酸素ガスは過剰となるように添加される。なお、生
成された炭酸ガスと水は、触媒槽を通過した原料ガスを
吸着塔に供給し、この吸着塔で吸着除去される。さて、
炭化水素を除去するために酸素ガスを過剰に供給した場
合、アルゴン回収プラントなどでは、アルゴンと、残留
酸素との分離が側バ、このようなプラントでは残留酸素
量を少なくする(通常IPPM以下にする。)必要があ
った。したがって、添加される酸素ガス量は適正値に制
御されなければならない。従来行なわれてきた制御例を
第1図。
By passing a gas prepared by adding ultiple gas to the raw material gas through a catalyst tank filled with palladium, etc., the hydrocarbons contained in the raw material gas are reacted with oxygen in the catalyst tank to generate carbon dioxide gas and water. Oxygen gas is generally added in excess to completely remove hydrocarbons. Note that the carbon dioxide and water produced are The raw material gas that has passed through the catalyst tank is supplied to the adsorption tower, where it is adsorbed and removed.
When excessive oxygen gas is supplied to remove hydrocarbons, in argon recovery plants, argon and residual oxygen must be separated from each other in a side tank, and in such plants, the amount of residual oxygen must be reduced (usually below IPPM). ) It was necessary. Therefore, the amount of oxygen gas added must be controlled to an appropriate value. FIG. 1 shows an example of conventional control.

第2図により説明する。N料ガス中に多く含まれる炭化
水素は、CH4e CgH6+ C3H6である。
This will be explained with reference to FIG. Hydrocarbons contained in large amounts in the N source gas are CH4e CgH6+ C3H6.

第1図の例は、触媒槽1の出口において酸素と燃焼する
際最も高温となるCH4濃度を分析記録計5で検出する
と共に、原料ガス流量を原料ガス流量illで検出し、
これらに基づいて、触媒槽1の出口におけるCH4濃度
が所定値以下(通常0.1嗟以下)になるように、酸素
ガス供給量を定めて制御するものである。つまり、演算
装置12は、酸素ガス供給指令を演算し、酸素ガス調節
器4は二〇指伶により調節弁3を調節することによって
制御がなされる。第1図の例では、CH4濃度のみを設
定値以下におさえるように制御するので、CH4濃度が
設定値以下になった場合には他の炭化水素C2H6,C
3H8などの濃度のいかんにかかわらず制御がなされな
いという問題がある。
In the example shown in FIG. 1, the CH4 concentration that reaches the highest temperature when combusting with oxygen at the outlet of the catalyst tank 1 is detected by the analysis recorder 5, and the raw material gas flow rate is detected by the raw material gas flow rate ill.
Based on these, the oxygen gas supply amount is determined and controlled so that the CH4 concentration at the outlet of the catalyst tank 1 is below a predetermined value (usually below 0.1 mo). That is, the calculation device 12 calculates the oxygen gas supply command, and the oxygen gas regulator 4 is controlled by adjusting the control valve 3 with the 20 fingers. In the example shown in Figure 1, only the CH4 concentration is controlled to be below the set value, so when the CH4 concentration falls below the set value, other hydrocarbons C2H6, C
The problem is that there is no control regardless of the concentration of 3H8 and the like.

第2図の例は、触媒槽1の入口において予想される炭化
水素の種類に応じて、夫々の濃度を検出する分析記録計
7.8.9を設け、この検出値および原料ガス湾量計6
の検出値により、炭化水素を予定濃度以下にすることを
可能にする酸素ガス併給量を定めて制御するものである
。この例の場合、第1図のものに較べると、炭化水素の
種類毎の濃度をめて、酸素ガス供給′M(酸素ガス供給
指令)の演算に反映させているので、きめの細かい制御
を行なえる可能性がある。しかし、第2図の場合、コス
ト的に不利になること、および各炭化水素成分最適な酸
素ガス供給量が必ずしも一致せず、結局はそれらの最大
公約数的な制御しかできないという問題を残す。
In the example shown in FIG. 2, analytical recorders 7, 8, and 9 are installed to detect the respective concentrations of hydrocarbons expected at the inlet of the catalyst tank 1, and these detected values and feedstock gas flow rate meters are installed. 6
Based on the detected value, the amount of oxygen gas co-supplied that makes it possible to reduce the hydrocarbon concentration to a predetermined concentration is determined and controlled. In this example, compared to the one in Figure 1, the concentration of each type of hydrocarbon is determined and reflected in the calculation of oxygen gas supply 'M (oxygen gas supply command), allowing for more detailed control. There is a possibility that it can be done. However, in the case of FIG. 2, there remains the problem that it is disadvantageous in terms of cost, and that the optimal oxygen gas supply amount for each hydrocarbon component does not necessarily match, and in the end, it is only possible to control them according to the greatest common divisor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、残留酸素量を少なくとも炭化水素を除
去することのできる炭化水素除去方法を提供することで
ある。
An object of the present invention is to provide a method for removing hydrocarbons that can reduce the amount of residual oxygen by removing at least the amount of hydrocarbons.

〔発明の概要〕[Summary of the invention]

本発明は、原料ガス流量と、原料ガス中の炭化水素を燃
焼させた際に発生する熱量とを検出し、この検出値に基
づいて添加する酸素ガス量をめ、制御することを特徴と
する。
The present invention is characterized in that the raw material gas flow rate and the amount of heat generated when hydrocarbons in the raw material gas are combusted are detected, and the amount of oxygen gas to be added is determined and controlled based on the detected values. .

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を第3図に示す実施例により説明する。第
3図において、1は触媒槽、2は演算装置、3は調節弁
、4は酸素ガス調節器、5は分析記録計、6は原料ガス
流量計、7は熱量計である。
The present invention will be explained below with reference to an embodiment shown in FIG. In FIG. 3, 1 is a catalyst tank, 2 is an arithmetic unit, 3 is a control valve, 4 is an oxygen gas regulator, 5 is an analysis recorder, 6 is a raw gas flow meter, and 7 is a calorimeter.

熱量計7は、原料ガス中の炭化水素を燃焼させた際に発
生する熱量を検出する。
The calorimeter 7 detects the amount of heat generated when hydrocarbons in the raw material gas are combusted.

原料ガスの一部は、熱量計7内に採取され、可燃成分で
ある炭化水素は燃焼され、その際の熱量を測定する。こ
の測定値は、原料ガス単位量(INm”/H)当りであ
る。例えば、原料ガス中の炭化水素をCH4,C2H6
,C3H,とすると、熱量計7により検出される熱量Q
は、これらの総和となる。
A part of the raw material gas is collected in the calorimeter 7, and the combustible components, hydrocarbons, are burned, and the amount of heat at that time is measured. This measurement value is per unit amount of raw material gas (INm"/H). For example, when hydrocarbons in raw material gas are
, C3H, the amount of heat Q detected by the calorimeter 7 is
is the sum of these.

すなわち、 CH4+202 →C02+2 H20+ Q 1 ・
・・・・・(1)02N(6+T02→2CO2+3H
20+Q2 町・・伐)c3as+5og =3CO2
+4H20+Qs +・+・el)Q = Qt + 
Q 2+ Qs ・旧・・(4)ただし、Ql;CH4
による反応熱量 Q2;C2H6による反応熱量 Qs; CaHsによる反応熱量 となる。各炭化水素成分の単位量当りの燃焼による発熱
量は一定であるので、熱量計7により測定された熱量は
炭化水素濃度に比例する。演算装置2は、この熱量計7
と原料ガス流量計6の検出信号Qを入力し、これらの検
出信号に基づいて、添加すべき酸素ガス量をめる。演算
式は、例えば次式によって行なわれる。
That is, CH4+202 →C02+2 H20+ Q 1 ・
...(1)02N(6+T02→2CO2+3H
20+Q2 town/cutting) c3as+5og =3CO2
+4H20+Qs +・+・el)Q = Qt +
Q 2+ Qs ・Old...(4) However, Ql; CH4
Reaction heat amount Q2; Reaction heat amount Qs due to C2H6; Reaction heat amount Qs due to CaHs. Since the amount of heat generated by combustion per unit amount of each hydrocarbon component is constant, the amount of heat measured by the calorimeter 7 is proportional to the hydrocarbon concentration. The calculation device 2 is this calorimeter 7
and the detection signal Q of the raw material gas flowmeter 6 are input, and the amount of oxygen gas to be added is calculated based on these detection signals. The calculation formula is performed, for example, by the following formula.

、4 FO”” (Q/ Qls) X 2 X FoX f
 ・=−(51ここで、 Fo;添加酸素ガス流量(酸
素ガス供給量) FG;原料ガス流量 f ;流量補正係数 この(5)式において、QlllはCH4が多量に含ま
れている場合に、基準となるCH4による熱量であり、
設定値である。fは添加酸素が炭化水素に対し余剰とな
ることを防止するための補正係数であり、通常fは0.
9〜0.95程度の値である。演算装置2で演算さnた
酸素ガス供給量Foを表わす信号は、制御指令として酸
素ガス調節器4に供給される。
, 4 FO”” (Q/Qls) X 2 X FoX f
・=-(51 Here, Fo: Added oxygen gas flow rate (oxygen gas supply amount) FG: Raw material gas flow rate f; Flow rate correction coefficient In this equation (5), Qllll is when a large amount of CH4 is included. It is the amount of heat due to CH4 which is the standard,
This is the setting value. f is a correction coefficient to prevent added oxygen from becoming surplus to hydrocarbons, and usually f is 0.
The value is about 9 to 0.95. A signal representing the oxygen gas supply amount Fo calculated by the calculation device 2 is supplied to the oxygen gas regulator 4 as a control command.

調節器4は、これによって調節弁3を調節し、酸素流量
を制御する。なお、演算装置2は、分析記録計5の検出
値を入力し、予定した濃度を超えている場合には、炭化
水素濃度を予定値以下になるように、酸素ガス供給量を
調整する。具体的には、(51式におけるFoの演算値
を適正方向く増加方向)に修正する適応修正制御を行な
う。
The regulator 4 thereby regulates the regulating valve 3 and controls the oxygen flow rate. Note that the calculation device 2 inputs the detection value of the analysis recorder 5, and if the detected value exceeds the scheduled concentration, adjusts the oxygen gas supply amount so that the hydrocarbon concentration becomes below the scheduled value. Specifically, adaptive correction control is performed to correct the calculated value of Fo in Equation 51 in an appropriate direction and in an increasing direction.

この実施例によれば、原料ガス中に含まれる炭化水素成
分が多い場合でも、1個の熱量計7によって対処でき、
構成が簡単となる。コスト的にも有利である。また、触
媒槽1に供給される前で検出し、適正酸素量となるよう
制御するので、原料ガスの変動に対する応答性が良い。
According to this embodiment, even if there are many hydrocarbon components contained in the raw material gas, it can be handled with one calorimeter 7.
The configuration is simple. It is also advantageous in terms of cost. In addition, since the oxygen is detected before being supplied to the catalyst tank 1 and controlled to have an appropriate amount of oxygen, responsiveness to fluctuations in the raw material gas is good.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、残留酸素量を少な
くしかも炭化水素を除去することができる。
As explained above, according to the present invention, it is possible to reduce the amount of residual oxygen and remove hydrocarbons.

【図面の簡単な説明】[Brief explanation of drawings]

1E1図および第2図は従来の炭化水素除去方法を説明
するための図、第3図は本発明の一実施例を示す図であ
る。 1・・・・・・触媒槽、2・・・・・・演算装置、3゛
・・・・・・調節弁、4・・・・・・酸素ガス調節器、
6・・・・・・原料ガス流量計、 7 オ1図 才2図
FIG. 1E1 and FIG. 2 are diagrams for explaining a conventional hydrocarbon removal method, and FIG. 3 is a diagram showing an embodiment of the present invention. 1... Catalyst tank, 2... Arithmetic device, 3... Control valve, 4... Oxygen gas regulator,
6... Raw material gas flow meter, 7 Figure 1 Diagram 2

Claims (1)

【特許請求の範囲】[Claims] 1、原料ガスに酸素ガスを添加し、これを触媒槽に供給
して、該原料ガス中の炭化水素を除去する炭化水素除去
方法において、計原料ガス流量および該炭化水素燃焼に
よって発生する熱量を検出し、骸検出値に基づいて該酸
素ガス量を制御することを特徴とする炭化水素除去方法
1. In a hydrocarbon removal method in which oxygen gas is added to the raw material gas and the gas is supplied to a catalyst tank to remove hydrocarbons in the raw material gas, the flow rate of the raw material gas and the amount of heat generated by the combustion of the hydrocarbons are measured. A method for removing hydrocarbons, comprising: detecting a carcass, and controlling the amount of oxygen gas based on the detected value of the carcass.
JP59042044A 1984-03-07 1984-03-07 Removing method of hydrocarbon Granted JPS60187323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59042044A JPS60187323A (en) 1984-03-07 1984-03-07 Removing method of hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59042044A JPS60187323A (en) 1984-03-07 1984-03-07 Removing method of hydrocarbon

Publications (2)

Publication Number Publication Date
JPS60187323A true JPS60187323A (en) 1985-09-24
JPS6363016B2 JPS6363016B2 (en) 1988-12-06

Family

ID=12625125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59042044A Granted JPS60187323A (en) 1984-03-07 1984-03-07 Removing method of hydrocarbon

Country Status (1)

Country Link
JP (1) JPS60187323A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547652A (en) * 1993-07-16 1996-08-20 Sinco Engineering S.P.A. Process for the purification of inert gases
US5612011A (en) * 1993-07-16 1997-03-18 Sinco Engineering S.P.A. Process for the purification of inert gases
WO2019187710A1 (en) * 2018-03-28 2019-10-03 理研計器株式会社 Gas detecting method and gas detecting device
WO2019186794A1 (en) * 2018-03-28 2019-10-03 理研計器株式会社 Gas detecting method and gas detecting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547652A (en) * 1993-07-16 1996-08-20 Sinco Engineering S.P.A. Process for the purification of inert gases
US5612011A (en) * 1993-07-16 1997-03-18 Sinco Engineering S.P.A. Process for the purification of inert gases
WO2019187710A1 (en) * 2018-03-28 2019-10-03 理研計器株式会社 Gas detecting method and gas detecting device
WO2019186794A1 (en) * 2018-03-28 2019-10-03 理研計器株式会社 Gas detecting method and gas detecting device
JP2019174435A (en) * 2018-03-28 2019-10-10 理研計器株式会社 Method and device for detecting gas

Also Published As

Publication number Publication date
JPS6363016B2 (en) 1988-12-06

Similar Documents

Publication Publication Date Title
US7025801B2 (en) Method for controlling a unit for the treatment by pressure swing adsorption of at least one feed gas
US4188190A (en) Input control method and means for nitrogen oxide removal means
KR101119357B1 (en) Air demand feedback control systems and methods for sulfur recovery units
JPH0342930B2 (en)
CA2452258A1 (en) Improvement to methods for the continuous production of acetic acid and/or methyl acetate
Guedea et al. Control system for an oxy-fuel combustion fluidized bed with flue gas recirculation
JPS60187323A (en) Removing method of hydrocarbon
CN108919845B (en) Automatic control method for nitrogen oxide concentration of denitration system
US4493635A (en) Oxygen-enriched air ratio control device for combustion apparatus
US4905160A (en) Device for regulating the operation of a chemical treatment plant, to improve efficiency by attenuation of the variances of the regulating parameters
US3692480A (en) Method for controlling a sulfur recovery process
US20080118423A1 (en) Closed loop control of air/fuel ratio in a reformer for modulating diesel exhaust
JPS5969195A (en) Controlling method of anaerobic digester
JPH0411248B2 (en)
RU2642859C1 (en) Method of control of sulphur production process according to claus
JPS6312650B2 (en)
JPS6056969B2 (en) Boiler - combustion air control method
SU1020373A1 (en) Method for automatically controlling ammonia synthesis
CN220583129U (en) Oxygen content control system applied to waste acid regeneration cracking furnace
SU1693322A1 (en) Device for automatic control of oxidation process in unit with fluidized layer
RU2091297C1 (en) Method of control of process for reducing oxygen-containing sulfur dioxides
SU571051A1 (en) Method for automatically controlling nitric acid production
SU611876A1 (en) Method of regulating process of hydrogen sulfide gas burning in furnace
SU1333637A1 (en) Method of controlling temperature of output product of tubular furnace
SU958315A1 (en) Method for controlling process of conversion of natural gas