JPS60187251A - Disc-shaped brushless motor containing frequency generator - Google Patents

Disc-shaped brushless motor containing frequency generator

Info

Publication number
JPS60187251A
JPS60187251A JP3861884A JP3861884A JPS60187251A JP S60187251 A JPS60187251 A JP S60187251A JP 3861884 A JP3861884 A JP 3861884A JP 3861884 A JP3861884 A JP 3861884A JP S60187251 A JPS60187251 A JP S60187251A
Authority
JP
Japan
Prior art keywords
frequency generator
magnet rotor
forming
disc
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3861884A
Other languages
Japanese (ja)
Inventor
Manabu Shiraki
学 白木
Hiroshi Nishikawa
浩 西川
Masaki Ogawa
小川 昌貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIKOO GIKEN KK
Brother Industries Ltd
Original Assignee
SHIKOO GIKEN KK
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIKOO GIKEN KK, Brother Industries Ltd filed Critical SHIKOO GIKEN KK
Priority to JP3861884A priority Critical patent/JPS60187251A/en
Publication of JPS60187251A publication Critical patent/JPS60187251A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/14Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with speed sensing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)

Abstract

PURPOSE:To readily and accurately magnetize poles for forming a frequency generator on the outer periphery of alternately magnetizing N- and S-poles on a circular magnet rotor which has an irregular surface at an equal interval on the outer periphery. CONSTITUTION:A disc-shaped magnet rotor 6 integrated with a rotational shaft made of a plastic magnet which has an irregular surface is formed. The rotor 6 is magnetized to axially form 2P (P is 2 or larger integer number) drive poles 6a to alternately have N- and S-poles circumferentially. Poles 6b for forming a frequency generator alternately having an equal interval pitch strongly magnetized N-poles at the projections and weakly magnetized N'-poles at the recesses by magnetizing the N-poles on the outer periphery of a plastic magnet having the irregular surface on the outer periphery on the outer periphery of a magnetic ring 7 are formed on the outer periphery of the drive poles 6a.

Description

【発明の詳細な説明】 本発明は周波数発電機を内蔵するディスク型グラシレス
e−夕に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a disc-type glassless e-van with a built-in frequency generator.

従来、この種の周波数発電N?4を内蔵するディスク型
グラシレスe−夕としては、回転子を構成する界磁マグ
ネット(駆動用ffl&)に面対向するステータ電機子
面に周波数発電機形成用のくし歯状ノ導電パターンを形
成したプリント基板を配設し。
Conventionally, this type of frequency power generation N? As for the disk-type glassless e-tube with a built-in 4, a comb-like conductive pattern for forming a frequency generator is formed on the stator armature surface that faces the field magnet (driving ffl&) that constitutes the rotor. Install the printed circuit board.

該47電パターンと界磁マグネット(マグネットロータ
)とで周波数発電機を形成したものが知られている。ま
た他の周波数発電機を内蔵するディスク型グラシレス〔
−夕としては、回転子を構成するマグネットロータ面に
、更にもう一度、N、Sの磁極を細かな等間ピッチで有
する周波数発電機形成用klを形成するための着磁を行
なって、同一面に周波数検出用磁極と駆動用磁極とを形
成したマグネットロータを形成し、該マグネットロータ
の駆動用磁極と面対向するステータtrL磯子面に。
It is known that a frequency generator is formed by the 47-volt pattern and a field magnet (magnet rotor). In addition, there is also a disc-type Graciles with built-in frequency generator [
- As a final step, the magnet rotor surface constituting the rotor is magnetized once again to form a frequency generator forming kl having N and S magnetic poles at fine equal pitches. A magnet rotor having a frequency detection magnetic pole and a driving magnetic pole is formed on the stator trL, which faces the driving magnetic pole of the magnet rotor.

七記周波数発電機形成用磁仇と面対向する位置に周波数
発電機形成用のくし歯状の導電パターンを形成したプリ
ント基板を配設し、該導電パターンと上記周波数発電機
を形成したものとなっている。
A printed circuit board on which a comb-shaped conductive pattern for forming a frequency generator is formed is disposed at a position facing the magnetic head for forming the frequency generator described in item 7 above, and the conductive pattern and the above-mentioned frequency generator are formed. It has become.

以上が、主な周波数発電機を有するディ、スフ型7ラシ
レスe−夕の代表例である。
The above is a typical example of a D, Suff type 7 Lasires e-U, which has a main frequency generator.

前行の例のものは、クシ歯状の導電パターンの半径方向
の線分群がマグネットロータのNQとS極の境界部を相
対的に通過していくことで発生する周波数発電圧を定速
制御に利用するものである。
In the previous example, the frequency generated voltage generated when the radial line segments of the comb-shaped conductive pattern relatively pass through the boundary between the NQ and S poles of the magnet rotor is controlled at a constant speed. It is used for.

このものは1位置決めDやっかいな周波数発電機形成用
磁極を着磁形成しないで済むので、安価に量産できる利
ζがある。しかし、導電パターンの半径方向の線分群が
、マグネットロータの1回転当りにおいて、マグネット
ロータのNtiとS極との境界部を通過する数が少ない
ために少ない発電周波数しか得られず、この結果、高い
周波数電圧が得られず、この為に精度が良く、定速制御
のできる周波数発電機を有するディスク型グラシレスC
−夕を借成し得ない欠αを有する。
This device has the advantage of being mass-produced at low cost since it is not necessary to magnetize and form the troublesome magnetic poles for forming the frequency generator. However, because the number of line segments in the radial direction of the conductive pattern passing through the boundary between the Nti and S poles of the magnet rotor is small per rotation of the magnet rotor, only a small power generation frequency can be obtained. Because high frequency voltage cannot be obtained, the disc-type Gracilless C has a frequency generator that has good accuracy and can perform constant speed control.
- Has a deficiency that cannot be borrowed.

これに対し、後# 6周波数発y11を有するディスク
型グラシレスe−夕は、マグネットロータ面に更に周波
数発電機形成用のための着磁を行なわなければならない
ため、着磁工程が1回分だけ増加するので、高価になる
欠へかある。しかし、着磁工程か1回分増加するが、周
波数光′心機形成用磁極を着磁形成しているので、すな
わら、発電機形成用磁化は細かな等間隔ピッチで多数の
N、 Sの磁極を形成しているので、上記導電パターン
の発電に寄与する線分群が周波数検出用磁(返のNとS
極との磁(−の境界部を通過する数が多くなるため、よ
り多くの発電周波数(信号)が得られるために、高い周
波数発電々圧を得ることができるので、極めて精度が良
い定速制御のできる周波数発電機を有するディスク型グ
ラシレスe−夕を構成し得て望ましいっ ここにおいて1回転子であるマグネットロータの周速度
は外周部はど回転速度が速いため、駆動用磁極又は周波
数発電様形成用磁極と面対向配設するくし歯状の導電パ
ターンは、プリント、IJ板面の外周部に形成した方が
、より大きな振幅の周波数発電々圧が得られて、より精
度よく定速制御を行なうことのできるグラシレスe−夕
を構成し得る。
On the other hand, in the case of the disk-type glassless e-vehicle with rear #6 frequency generator Y11, the magnet rotor surface must be further magnetized to form a frequency generator, so the magnetization process is increased by one time. Therefore, it is inevitable that it will be expensive. However, although the magnetization process is increased by one step, since the frequency light is used to magnetize the magnetic poles for forming the core machine, the magnetization for forming the generator is performed by forming a large number of N and S at fine, evenly spaced pitches. Since the magnetic poles are formed, the line segments that contribute to the power generation of the conductive pattern are the frequency detection magnets (reverse N and S).
Since the number passing through the magnetic (-) boundary with the pole increases, more power generation frequencies (signals) can be obtained, and high frequency power generation pressure can be obtained, resulting in a constant speed with extremely high accuracy. It is desirable to configure a disk-type glassless e-vector with a frequency generator that can be controlled.In this case, the circumferential speed of the magnet rotor, which is one rotor, is faster at the outer periphery, so the driving magnetic pole or the frequency generator is used. It is better to print the comb-like conductive pattern, which is placed face-to-face with the magnetic pole for pattern formation, on the outer periphery of the IJ board surface to obtain a frequency power generation pressure with a larger amplitude, and to achieve a constant speed with higher accuracy. It is possible to construct a glassless e-controller capable of performing control.

また通常グラシレスe−夕では、界磁マグネットの位置
により、所定の電機子コイルに所定の方向の電流を通電
しなければならないため1位置検知手段を設ける必要が
ある。ここに最近のブラシレスe−夕では、ホール素子
、ホールIC,磁気抵抗素P等の磁電変換素子を位置検
知素子として用いている。該位置検1:O素子を配設す
るのに、種々の方法があるが、上記クシ門状の導電パタ
ーンを形成したプリント基板を利用するのが1周波数発
電機を有するディスク型グラシレスe−夕ヲ安価に量産
し得て望ましい。L記位置検翅索子は。
Further, in a normal glassless e-tube, it is necessary to provide a one-position detection means because current must be passed in a predetermined direction to a predetermined armature coil depending on the position of the field magnet. In recent brushless electronic devices, magnetoelectric conversion elements such as Hall elements, Hall ICs, and magnetoresistive elements P are used as position detection elements. There are various methods for arranging the position detection 1: O element, but the one that uses the printed circuit board on which the comb-shaped conductive pattern is formed is the disk type glassless e-wavelength generator with a single frequency generator. It is desirable that it can be mass-produced at low cost. The location of the L.

位置決めに当ってその精度を非常に要求されるもので、
h記くし歯状の導電パターンを形成したプリント基板の
外周部1こ配設するほど、高精度に位置決めできる。位
置検知素子のプリント基板への配設方法としては、h記
導電パターンを形成したプリント基板の背面に、位置検
知素子を容易且つ位置精度良く固定するために、上記プ
リント基板に位置検知素子収納用の透孔をあけるものが
行えられる。しかし、かかる透孔は、に記等電パターン
と対向しないプリント基板面部に形成しなければならな
いため1通常、1記透孔又は導電パターンのいずれか一
方を内側に形成する必要がある。
Extremely high accuracy is required for positioning.
(h) The more the comb-like conductive pattern is provided on the outer circumference of the printed circuit board, the more accurate the positioning can be. As for the method of installing the position sensing element on the printed circuit board, in order to easily and accurately fix the position sensing element on the back side of the printed circuit board on which the conductive pattern h is formed, the position sensing element is placed on the printed circuit board for storing the position sensing element. It is possible to make a hole in the hole. However, since such a through hole must be formed on the surface of the printed circuit board that does not face the isoelectric pattern described in 1.1, it is usually necessary to form either the through hole or the conductive pattern on the inside.

ここに丘記尋電パターンを優先して、プリント基板の外
周に形成した場合には1位置検知素子の位1こ決めかや
りかいで、容易に量産できず、しかも位置決め精度が悪
くなるので性能の劣下をきたし、また位置検知素子収納
用の透孔を優先して、プ!J7)i板の外側に形成した
場合には、クシ歯状の等電パターンから得られる周波数
発電々圧出力は、振幅が小さくなり、精度良く定速制御
できる周波数発電機を有するディスク型グラシレスe−
夕を溝成し得ない欠弘があった。また周波数発電機形成
用磁極は、例えば、フェライトで形成しり円環状のマグ
ネットに、その厚手方向に2p(pは1以上の正の整1
&)他の駆動用磁(趣を着磁形成した後、当該駆動用磁
極面に正しい泣1a決めを行なって1周波数発電機形成
用磁仏を着磁しないと1周波数発電々圧出力が得られな
かったり。
If the Okagi Hidenden pattern is prioritized and formed on the outer periphery of the printed circuit board, it will be difficult to mass-produce it because it will be difficult to determine the position of one position sensing element, and the positioning accuracy will deteriorate, resulting in poor performance. In addition, priority was given to the through hole for storing the position sensing element, and the pu! J7) When formed on the outside of the i-plate, the amplitude of the frequency power generation output obtained from the comb-toothed isoelectric pattern becomes smaller, making it possible to create a disc type glassless e with a frequency power generator that can be accurately controlled at a constant speed. −
There was a flaw that made it impossible to complete the evening. In addition, the magnetic poles for forming the frequency generator are, for example, made of ferrite and placed in an annular magnet with 2p (p is a positive integer of 1 or more) in the thickness direction.
&) After magnetizing and forming other drive magnets, if you do not make the correct position 1a on the drive magnetic pole face and magnetize the magnetic Buddha for forming a 1-frequency generator, you will not be able to obtain a 1-frequency generator output. I couldn't do it.

あるいは精度の良い周波数発電機を有するディスク型ブ
ランレスe−夕が得られない欠弘力5ある5更にまた。
Alternatively, there is still a lack of ability to obtain a disc-type blankless electronic device with a high-precision frequency generator.

従来の周波数発電機を有するディスク型グランレスe−
夕は1回転子を(鱈成するマグネットロータと面対向T
る固定側位置6ζ配設したステータ電機子面に1周eL
数発電機形成用のくし歯状の等電パターンを形成したプ
リント基板を配設しなければならず、該プリント基板の
厚み分だけエアーギャップか増長するので、その結果1
強い回転トルクが得られない欠点がある◎ 本発明の周波数発電機を内蔵するディスク型ブラシレス
6−夕は、上記事情を鑑みてなされたもので、やっかい
な位置決めを必要としないで、界磁マグネットの外周に
同波数発電機形成用の磁極を他めて容易に形成できて、
大きな振幅の高い瓜波数発電々圧を得て極めて精度の良
い定速制御ができるようにすると共に、マグネットロー
タと面対向する固定側位1δに配設したステータ電橙子
面嘉こ、周波数発電(成形成用のくし歯状の導電パター
ンを形成したプリント基板を配設する必要性をなくして
、大きな回転トルクを得ることができるようにすること
を目的としてなさgたものである。
Disc-type granless e- with conventional frequency generator
In the evening, one rotor (the magnetic rotor and the face-to-face T
One round eL on the stator armature surface located at the fixed side position 6ζ
A printed circuit board with a comb-like isoelectric pattern for forming several generators must be installed, and the air gap increases by the thickness of the printed circuit board, resulting in 1.
The disadvantage is that strong rotational torque cannot be obtained. ◎ The disc-type brushless six-wheel drive device incorporating a built-in frequency generator of the present invention was developed in view of the above circumstances, and it does not require troublesome positioning, and can easily be used with field magnets. It can be easily formed by adding magnetic poles for forming the same wave number generator on the outer periphery of the
In addition to obtaining high wave number power generation pressure with a large amplitude and achieving extremely precise constant speed control, the stator electric power generator installed at the fixed side 1δ facing the magnet rotor, and the frequency power generation ( The purpose of this design is to eliminate the need for a printed circuit board on which a comb-shaped conductive pattern is formed and to obtain a large rotational torque.

かかる本発明の目的は、外周部に細かな等間隔ピッチで
凹凸を有するようにプラスチックマグネット等のマグネ
ットで円板状若しくはフラットな円環状のマグネットロ
ータを形成し、該マグネットロータにN、Sの磁極を周
方間に交互に有するように軸方向に着磁して2p(pは
2以との正の整数)他の駆動用!a極を形成し、と記凹
凸を有するマグネットロータの外周にN&又はS&のい
ずれか一方の磁極を着磁することでN1哩又はsLaの
強弱の磁極を細かな等間隔ピッチで有する周波数発電機
形成用磁極を形成し、を記マグネットロータの駆動用磁
極と面対向する固定側位fellζステータ電機子を配
設し、上記7ダネツトロータの周波数発電似形成用磁極
と対向する固定側に周波数発電機形成用のクシ歯状の導
電パターンを設けた周波数発電機を内蔵するディスク型
ブラシレスE −タを提供することlこよりで達成さイ
Lる。
An object of the present invention is to form a disc-shaped or flat annular magnet rotor using a magnet such as a plastic magnet so that the outer periphery has unevenness at a finely spaced pitch, and to form a disc-shaped or flat annular magnet rotor with N and S magnets. Magnetized in the axial direction so that magnetic poles are alternately arranged around the circumference, and 2p (p is a positive integer greater than or equal to 2) is used for other drives! A frequency generator that has magnetic poles of strength N1 or sLa at fine equal pitches by magnetizing either N& or S& magnetic poles on the outer periphery of a magnet rotor that forms a pole and has irregularities as described. A stator armature is disposed on a fixed side facing the driving magnetic pole of the magnet rotor, and a frequency generator is arranged on the fixed side facing the forming magnetic pole similar to the frequency power generation of the seven-dannet rotor. This is achieved by providing a disk-type brushless electric motor incorporating a frequency generator provided with a comb-shaped conductive pattern for formation.

以下、図面を参j(1シつつ本発明の一実施例を説明す
る。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一例として示す周波数発電機を内蔵す
るディスク型グラシレスe−夕17.)Fa 断面図で
ある。
FIG. 1 shows a disk-type Graciles e-17.0 equipped with a built-in frequency generator as an example of the present invention. )Fa is a sectional view.

1は周波数発電機を内蔵するディスク型ブラシレスE−
9%2は該ディスク型グランレス日−タ1のケーシング
で、磁性体によって形成している。
1 is a disc type brushless E- with a built-in frequency generator.
9% 2 is the casing of the disc-type Granless Date 1, which is made of a magnetic material.

6.4はケーシング2っl1li11中心部に装着され
た軸受、5は軸受3,4によって回動自在に軸支された
回転軸、6は回転軸5に一体化されたマグネットロータ
 (界磁マグネット)で1回転軸5と共に回転子を構成
する。マグネットロータ6Iれ回転軸5を適宜な図示し
ない型に装着した後に、プラスチックの創出成形手段と
同様に、適宜な型にプラスチックマグネットを注入し、
冷却固化して、型から取り出すことで回転軸5と一体化
する。マグネットロータ6は、第2図に示すように外周
部に細かな等間「1゛5ピツチで凹凸を有するように上
記型を設計して置く必要がある。また上記型に(ハその
外周部磁性体リング7を装備しておき、上記のようにプ
ラスチックマグネットの射出成形手段をh出こしてやる
と、磁性体リング7を介して外周部に細かな等間Pf’
5ピッチで、第2図に示ずように凹凸を有するプラスチ
ックマグネットからなる回転軸5と一体化した円板状の
マグネットロータ6か形成される。該マグネットロータ
6は、Il’J方回lこN、 Sの磁極が交互に有11
−るようにφm一方rjJ 1こ2p (pは2以上の
正の車数)他の駆動用−(−6aを着磁形成している。
6.4 is a bearing attached to the center of the casing 2l1li11, 5 is a rotating shaft rotatably supported by bearings 3 and 4, and 6 is a magnet rotor integrated into the rotating shaft 5 (field magnet ) constitutes a rotor together with the rotation shaft 5. After mounting the rotating shaft 5 of the magnet rotor 6I in an appropriate mold (not shown), a plastic magnet is injected into an appropriate mold in the same manner as the plastic creation molding means.
It is cooled and solidified and taken out from the mold to be integrated with the rotating shaft 5. As shown in Fig. 2, the magnet rotor 6 needs to be designed and placed in the mold so that its outer periphery has fine irregularities of 1 to 5 pitches. When the magnetic ring 7 is equipped and the plastic magnet injection molding means is ejected as described above, fine equal spaces Pf' are formed on the outer periphery via the magnetic ring 7.
A disc-shaped magnet rotor 6 is formed with five pitches, as shown in FIG. 2, which is integrated with a rotating shaft 5 made of a plastic magnet having unevenness. The magnet rotor 6 has magnetic poles of Il'J direction l, N and S alternately.
-6a is magnetized so that φm is one rjJ 1ko2p (p is a positive number of wheels of 2 or more) and the other drive -(-6a).

この伜jでは、駆動用磁極6aは、No 5(7J磁他
を交互に有する4他のものに着磁形成している。該駆動
用磁極6aの外n部に設けた磁性体リング7の外周部l
こ、外周部に凹凸を有するプラスチックマグネット部の
外周にはN(瓶の着磁を行なうことで、凸部には強いN
1m着磁部を、凹部には弱いN′極着磁部を交互に細か
な等間隔ピッチで有する周波数発電機形成用磁極6bを
着磁形成する。弱いN′他着磁部はS極と同様の作用を
なす。従って、マグネットロータ6の外n部には、N、
Sのfairxを交互に細かな等間隔ピッチで着磁した
周波数発電機形成用磁極を形成したと同じになる。尚、
上記凹凸を有するマグネットロータ6の外周にS極の着
磁を行なって周波数発電銭形成用磁極6bを着磁形成し
ても良く、この場合には、凸部に強いS極着磁部が、四
部に(は弱いS′他若磁部が交互に細かな等間隔ピッチ
で着磁形成され、結果として、マグネットロータ6の外
周部には、N、Sの磁極を交互に廁がな等間隔ピッチで
着磁した周波Wt電機形成用磁極を形成したと同じよう
になる。このように1本発明においては、予めマグネッ
トロータの外n部に細かな等間隔ピッチで凹凸を形成し
ているため、単にその外周部にNlk又はS極のいずれ
か一方の磁(龜をも着磁するだけで、規則正しく周波数
検出用磁極を着磁形成できるので、従来のように正しく
位1δ決めしなければならないというやっかいさがなく
なるので、極めて容易に量産できる。また周波数検出用
1磁極を形成するのに当って、従来において、N、Sの
磁極を細かな等間隔ピッチで着磁するために複雑で、高
価な着磁ヨークを用いなければならないのに対して1本
発明によれば、N又はSのいずれか一方の磁極を着磁す
れば良いので、安価な着磁ヨークを用いることができる
利弘がある、尚、マグネットロータ6をプラスチックマ
グネットの射出成形手段により回転軸5と一体化形成し
ない場合には、マグネットロータ6は円環状又は円板状
(この場合には、適宜な手段により、中心部に透孔を形
成する)に形成し1回転軸5に敗り着けたロータヨーク
の下面に固着してやると良い。
In this case, the drive magnetic pole 6a is magnetized into 4 other magnets having No. 5 (7J) magnets alternately. Outer periphery l
The outer periphery of the plastic magnet part, which has unevenness on the outer periphery, is coated with N (by magnetizing the bottle, strong N is applied to the protrusions).
Magnetic poles 6b for forming a frequency generator are formed by magnetizing, having 1 m magnetized portions and weak N' pole magnetized portions in the recessed portions alternately at fine equal pitches. The weak N′ other magnetized portion has the same effect as the S pole. Therefore, the outer part of the magnet rotor 6 has N,
The result is the same as forming magnetic poles for forming a frequency generator in which S fairx are alternately magnetized at fine equal pitches. still,
The outer periphery of the magnet rotor 6 having the above-mentioned unevenness may be magnetized with an S pole to form the frequency generating coin forming magnetic pole 6b. In this case, the S pole magnetized portion, which is strong on the convex portion In the four parts (weak S' and other magnetic parts are magnetized alternately at fine equal pitches, as a result, on the outer periphery of the magnet rotor 6, N and S magnetic poles are alternately arranged at evenly spaced intervals). The result is the same as forming magnetic poles for forming a frequency Wt electric machine magnetized at a pitch.In this way, in the present invention, since the unevenness is formed in advance on the outer n part of the magnet rotor at a fine evenly spaced pitch. , simply by magnetizing either the Nlk or the S pole on its outer periphery, the frequency detection magnetic poles can be regularly magnetized, so the position 1δ must be determined correctly as in the conventional method. This eliminates the troublesome process of mass production, making it extremely easy to mass-produce.Also, when forming one magnetic pole for frequency detection, in the past, N and S magnetic poles were magnetized at fine, evenly spaced pitches, which was complicated. Whereas an expensive magnetizing yoke must be used, according to the present invention, it is only necessary to magnetize either the N or S magnetic pole, so Toshihiro can use an inexpensive magnetizing yoke. Yes, if the magnet rotor 6 is not integrally formed with the rotating shaft 5 by injection molding means of plastic magnets, the magnet rotor 6 may be formed into an annular or disk shape (in this case, the center portion may be formed by an appropriate means). It is preferable to form a through hole in the rotor yoke and fix it to the lower surface of the rotor yoke which is attached to the one-rotation shaft 5.

尚、磁性体リング7を設けた理由は1局波数発電機形成
用磁他6bか駆動用磁極6aの強い磁束kf、%3 W
を受けないようにするためである。9はマグネットロー
タ6の駆動用磁極6aと面対向するケーシング2面に固
設されたステータミス子で、例えば、発生トルクに寄与
する半径方向の導体部の開角か駆動用磁極6aの一磁(
−幅と略等しい幅の扇枠状lこ右同形成された電機子コ
イル10分3個等間隔配置して形成している。3個の電
機子コイル10を用いたのlie 効率の良い3相のデ
ィスク型グラシレスe−夕1とするためである。11は
位置検知素子として用いたホール素子、ホールIC1磁
気抵抗素子等の磁電変換素子で、各1個をそれぞれの電
機子コイル11の枠内空胴部の適宜位置に配設している
。12はフレキシブル帯状刃。
The reason why the magnetic ring 7 is provided is that the strong magnetic flux kf of the magnetic pole 6b for forming the single-station wave number generator or the driving magnetic pole 6a is %3W.
This is to avoid receiving. Reference numeral 9 denotes a stator miss which is fixedly installed on the second surface of the casing that faces the driving magnetic pole 6a of the magnet rotor 6.
- The armature coils are formed by arranging three tenths of an armature coil at equal intervals on each side, each having a fan frame shape having a width substantially equal to the width of the armature coil. This is to provide an efficient three-phase disk-type glassless e-tube 1 using three armature coils 10. Reference numeral 11 denotes a magnetoelectric conversion element such as a Hall element or a Hall IC1 magnetoresistive element used as a position detection element, and one of each is disposed at an appropriate position in the cavity within the frame of each armature coil 11. 12 is a flexible belt-shaped blade.

マグネットロータ6の周波数発電機形成用磁極6bと対
向するケーシング2の内面に固着されている。13はフ
レキシブル帯状121こ形成さ1また周波数発電機形成
くし歯状の導電パターンである。
It is fixed to the inner surface of the casing 2 facing the frequency generator forming magnetic pole 6b of the magnet rotor 6. Reference numeral 13 designates a comb-like conductive pattern formed into a flexible band 121 and a frequency generator.

13aは導電パターン16の発電に寄与する回転軸5に
平行な発電線素で、13b、13Cは導電パターン16
の出力端子である。dλ電パターン16は、その発電線
素13aのピッチが1周波数発電機形成用磁4m6bの
ピッチと等しい間隔で該磁1k 6 bと同数を有する
ような形状のリング状のものに形成されている。
13a is a power generation line element parallel to the rotation axis 5 that contributes to the power generation of the conductive pattern 16, and 13b and 13C are the power generation line elements of the conductive pattern 16.
This is the output terminal of The dλ electric pattern 16 is formed in a ring shape such that the pitch of the power generation line elements 13a is equal to the pitch of the magnets 4m6b for forming a one-frequency generator and has the same number as the magnets 1k 6 b. .

従って、マグネットロータ6の周波数発電機形成用J4
に6bが形成する空隙部8の磁束密度波形14は第3図
に示すように凹凸の波形になる。このため1周波数発電
機形成用磁他6bによって形成される磁束密度波形14
を取り出すことで、発電用周波数が得られるので、この
発電用周波数をF−V変換回路を用いて発電々圧に変換
してやれば、速度制御用の電圧か得られるつ従りて1通
電B+’制御回路に電源が没入され、磁電変換素子11
がマグネットロータ6の駆動用磁極6aのN4M又は8
41のいずれかを検出すると、所定方向の回転トルクを
得てマグネットロータが所定方向に回転するように、を
註電変換号2子11の出力に基いて通電制御回路が動作
し、電磯子コイル10には所定方向の通電が行なわれ、
マグネットロータ6は所定方向に回転する。またマグネ
ットロータ6が回転すると1周波数発電機形成用磁66
bと導電ノり一ン13とが相対的回動をなすので、導電
、X6ターン13の出力端子13b、13Cから回転速
度に応じた周波数の検出出力が得られる。すなわら。
Therefore, J4 for forming the frequency generator of the magnet rotor 6
The magnetic flux density waveform 14 of the gap 8 formed by the groove 6b has an uneven waveform as shown in FIG. Therefore, the magnetic flux density waveform 14 formed by the one-frequency generator forming magnet 6b
By taking out the power generation frequency, the power generation frequency can be converted to power generation pressure using an F-V conversion circuit, and the voltage for speed control can be obtained. A power supply is inserted into the control circuit, and the magnetoelectric conversion element 11
is N4M or 8 of the driving magnetic pole 6a of the magnet rotor 6.
41, the energization control circuit operates based on the output of the electric converter 2 11 so that the magnet rotor obtains rotational torque in a predetermined direction and rotates in a predetermined direction. 10 is energized in a predetermined direction,
The magnet rotor 6 rotates in a predetermined direction. Also, when the magnet rotor 6 rotates, the magnet 66 for forming a one-frequency generator
Since the conductive turn 13 and the conductive turn 13 rotate relative to each other, the output terminals 13b and 13C of the conductive turn 13 provide a detection output with a frequency corresponding to the rotational speed. I mean.

導電パターン16の回転軸方向の一本1δきの発電線素
13a群が1例えば1周波数発電機形成用磁h6bO)
Nlkと対向しているとき、これらの間の線素13a群
はR極に対向する。これによつて各線素13aに周波数
発電機形成用磁極6bの回転速度に応じた同方向の起電
力が発生し、導電パターン16の出力端子ISb、13
Cからロータの回転速度に応じた周波数の検出出力が得
られる。
Each power generation line element 13a group of 1 δ in the direction of the rotation axis of the conductive pattern 16 is 1, for example, a 1-frequency generator forming magnet h6bO)
When facing Nlk, the group of line elements 13a between these faces the R pole. As a result, an electromotive force is generated in each wire element 13a in the same direction according to the rotational speed of the frequency generator forming magnetic pole 6b, and the output terminal ISb of the conductive pattern 16, 13
A detection output of a frequency corresponding to the rotational speed of the rotor is obtained from C.

尚1周波数発電機形成用磁極6bによるパルス状磁束は
間欠的に現われるか、導電パターン13が第2図に示す
ように全周に形成されているので、検出出力は連続波で
得られる。また周波数発電機形成用磁極6bにピッチむ
らがあっても、複数の発電線素13a群を有する導電パ
ターン16によってピッチむらは平均化され、ロータの
回転数が一定のとき一定の周波数の検出出力か得られる
The pulsed magnetic flux generated by the single-frequency generator forming magnetic pole 6b appears intermittently, or since the conductive pattern 13 is formed around the entire circumference as shown in FIG. 2, the detection output is obtained as a continuous wave. Furthermore, even if there is pitch unevenness in the frequency generator forming magnetic poles 6b, the pitch unevenness is averaged out by the conductive pattern 16 having a plurality of groups of power generating line elements 13a, and when the rotational speed of the rotor is constant, a constant frequency detection output is generated. or can be obtained.

ロータ回転数の変動分は検出出力の周波数変調成分とし
て取り出される。
A variation in the rotor rotational speed is extracted as a frequency modulation component of the detection output.

また、その回転速度は1周波数発電機形成用磁<Ti<
 6 bと導電パターン13によって形成された周波数
発電機からの信号を回転速度制御回路にフィードバック
してやることで、マグネットロータ6を一定の回転速度
で回転させることができる。 4゜上記から明らかなよ
うに、本発明の周波数発電機を内蔵するディスク型グラ
シレスe−夕は、高価な着磁ヨークを必要とせず、また
やっかいな位置決めを必要とせず、極めて容易に精度良
く周波数発電機形成用磁極の外周に着磁形成できるため
Moreover, the rotation speed is 1-frequency generator forming magnet <Ti<
The magnet rotor 6 can be rotated at a constant rotation speed by feeding back a signal from the frequency generator formed by the conductive pattern 6b and the conductive pattern 13 to the rotation speed control circuit. 4゜As is clear from the above, the disk-type glassless e-tube with a built-in frequency generator of the present invention does not require an expensive magnetizing yoke or troublesome positioning, and can be operated very easily and accurately. Because magnetization can be formed on the outer periphery of the magnetic pole for forming a frequency generator.

極めて容易に該周波数発電機形成用磁極を形成でき該磁
極とこれに対向する周波数発電機形成用のくし歯状の導
電パターンとで、大きな振幅が得られ、この結果、高い
周波数発電々圧が得られるので・大きなスペースをとる
ことなく精度の良も)周波数発電機を安価に内蔵できる
。またマグネットロータと面対向する固定側位置に配設
したステー、 タ電機子面に1周波数発電機形成用のク
シ画状の導電パターンを形成したプリント基板を配設す
る必要がないので、エアーギャップを増長しないでI茫
5♂!ン 済むOで、大きな回転トルクを発生する周波数発電機 ることができる効果がある。
The magnetic pole for forming the frequency generator can be formed very easily, and a large amplitude can be obtained between the magnetic pole and the comb-like conductive pattern for forming the frequency generator that opposes it. As a result, high frequency power generation pressure can be obtained. Because of this, it is possible to incorporate a frequency generator at low cost (with good accuracy without taking up much space). In addition, there is no need to install a printed circuit board with a comb-shaped conductive pattern for forming a single-frequency generator on the armature surface of the stay and the armature, which are located on the fixed side facing the magnet rotor. Don't increase it, I 5♂! This has the effect of making it possible to create a frequency generator that generates a large rotational torque with just a small amount of O.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例として示す周波数発電+幾全
内J我するディスク型ブラシレスモータの縦断面図、第
2図は第1図のマグネットロータと発電機形成用のくし
歯状専市パターンとの対応関係を示す部分44祝図、第
3図はマグネットロータの周波数発電機形成用磁極の形
成する窒隙部の脩束智度波形である。 特許出願人 ブラザー工業株式会社 代表取締役 河 ;11リ 勝 二
Fig. 1 is a vertical cross-sectional view of a disc-type brushless motor that uses frequency power generation + geometrical inner J as an embodiment of the present invention, and Fig. 2 shows the magnetic rotor shown in Fig. Part 44, Figure 3, which shows the correspondence with the city pattern, is the flux waveform of the nitrogen gap formed by the magnetic poles for forming the frequency generator of the magnet rotor. Patent applicant Brother Industries, Ltd. Representative Director Katsuji Kawa;

Claims (6)

【特許請求の範囲】[Claims] (1)外周部に細かな等間隔ピッチで凹凸を有するよう
にプラスチックマグネット等のマグネットで円板状若し
くはフラットな円環状のマグネットロータを形成し、該
マグネットロータにN、5I7)磁極を周方向に交互に
有するように軸方向に着磁して2p(pは2以上の正の
整数)極の駆動用磁極を形成し、上記凹凸を有するマグ
ネットロータの外周にN極又はS極のいずれか一方の磁
極を着磁することでN色又はS極の強弱の磁極を細かな
等間隔ピッチで有する周波数発電機形成用磁極を形成し
、上記マグネットロータの駆動用磁極と面対向する固定
側位置にステータ電機子を配設し、上記マグネットロー
タの周波数発電機形成用磁(−と対向する固定側位置に
周波数発電機形成用のくし歯状の導電パターンを設けた
ことを特徴とする周波数発電機を内蔵するディスク型ブ
ラシレス〔−夕。
(1) Form a disc-shaped or flat annular magnet rotor using a magnet such as a plastic magnet so that the outer periphery has unevenness at a fine, evenly spaced pitch, and attach N, 5I7) magnetic poles to the magnet rotor in the circumferential direction. 2p (p is a positive integer of 2 or more) polar driving magnetic poles are formed by magnetizing in the axial direction so as to alternately have the above-mentioned unevenness, and either an N pole or an S pole is formed on the outer periphery of the magnet rotor having the above-mentioned unevenness. By magnetizing one of the magnetic poles, a magnetic pole for forming a frequency generator having strong and weak N-color or S-pole magnetic poles at a finely evenly spaced pitch is formed, and the fixed side position faces the driving magnetic pole of the magnet rotor. A frequency power generator characterized in that a stator armature is disposed on the magnet rotor, and a comb-like conductive pattern for forming a frequency generator is provided at a fixed side position opposite to the magnet for forming a frequency generator (-) of the magnet rotor. Disc-type brushless with built-in machine [-Yu.
(2)上記マグネットロータは、駆動用磁極と周波数発
電機形成用磁極との間Ic l1Fi性体リングを介し
てe−ルド形成されたことを特徴とする特許請求の範囲
第(1)項記載の周波数発電機を内蔵するディスク型ブ
ラシレス〔−タ。
(2) The magnet rotor is characterized in that the magnet rotor is formed by an e-rud through an Icl1Fi ring between the driving magnetic pole and the frequency generator forming magnetic pole. A disc-type brushless motor with a built-in frequency generator.
(3)上記マグネットロータは、これを〔−ルド形成す
る際に回転軸をも一体化するようにしたことを特徴とす
る特許請求の範囲第は)項又は第(2)項記載の周波数
発電機を内蔵するディスク型ブラシレス〔−タ。
(3) The frequency power generation according to claim 1 or (2), wherein the magnet rotor is characterized in that the rotating shaft is also integrated when forming the magnetic rotor. Disc type brushless [-ta] with built-in machine.
(4)上記ステータ電機子はコアレス電機子であること
を特徴とする特許請求の範りm第(1)項乃至第(3)
項いずれかに記載の周波数発電機を内蔵するディスク型
ブラシレス〔−タ。
(4) Claims m (1) to (3) characterized in that the stator armature is a coreless armature.
A disc-type brushless motor incorporating a frequency generator according to any one of paragraphs.
(5)上記コアレス電機子は、発生トルクに寄与する半
径方向の発生トルクに寄与する導体部の開角が上記g1
1動用磁(歳の磁極幅と略等しい輻fこ形成された電機
子コイル群からなることを特徴とする特許請求の範囲第
(4)項記載の周波数発電機を内蔵するディスク型ブラ
シレス6−タ。
(5) In the coreless armature, the opening angle of the conductor portion that contributes to the generated torque in the radial direction is the g1
A disk-type brushless 6-6 incorporating a frequency generator according to claim (4), characterized in that it is composed of a group of armature coils formed with a convergence f substantially equal to the magnetic pole width of a single-acting magnetic field. Ta.
(6)1導電機子コイル群は互いに重ならないように等
間隔配設されていることを特徴とする特許請求の範囲第
(5)項記載の周波数発電機r機を内蔵するディスク型
ブラシレスE−タ。
(6) A disc-type brushless E incorporating a frequency generator according to claim (5), characterized in that the first conductive armature coil group is arranged at equal intervals so as not to overlap each other. -ta.
JP3861884A 1984-03-02 1984-03-02 Disc-shaped brushless motor containing frequency generator Pending JPS60187251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3861884A JPS60187251A (en) 1984-03-02 1984-03-02 Disc-shaped brushless motor containing frequency generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3861884A JPS60187251A (en) 1984-03-02 1984-03-02 Disc-shaped brushless motor containing frequency generator

Publications (1)

Publication Number Publication Date
JPS60187251A true JPS60187251A (en) 1985-09-24

Family

ID=12530231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3861884A Pending JPS60187251A (en) 1984-03-02 1984-03-02 Disc-shaped brushless motor containing frequency generator

Country Status (1)

Country Link
JP (1) JPS60187251A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104456A (en) * 1985-10-31 1987-05-14 Sony Corp Rotor for flattened motor
JPS62202077U (en) * 1986-06-13 1987-12-23
JPS62202076U (en) * 1986-06-13 1987-12-23
JPS6364561A (en) * 1986-09-02 1988-03-23 Matsushita Electric Ind Co Ltd Brushless motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104456A (en) * 1985-10-31 1987-05-14 Sony Corp Rotor for flattened motor
JPS62202077U (en) * 1986-06-13 1987-12-23
JPS62202076U (en) * 1986-06-13 1987-12-23
JPS6364561A (en) * 1986-09-02 1988-03-23 Matsushita Electric Ind Co Ltd Brushless motor

Similar Documents

Publication Publication Date Title
US11870301B2 (en) Radial flux electrical machines
JPS60187251A (en) Disc-shaped brushless motor containing frequency generator
JPH07194081A (en) Motor
EP0200537A2 (en) Electrical motor with improved tachometer generator
JPS5855747B2 (en) Brushless rotary motor
JPS5928866A (en) Magnetizing yoke
JPS6028760A (en) Reversible brushless motor without position detector with magnetic encoder
KR900007409B1 (en) Electric motor
JPH1080104A (en) Motor
JP3044548U (en) Outer rotor type motor and rotary head drum assembly
JP2516670Y2 (en) Servostepping motor with position sensing element
JPS62166760A (en) Dc brushless motor with built-in magnetic encoder
JPS5928865A (en) Magnetizing yoke
JP2629212B2 (en) Brushless motor
KR950006652Y1 (en) Frequency generation apparatus
JPS60170456A (en) Brushless motor having frequency generator
JPS60176458A (en) Brushless motor having frequency generator
KR900008922Y1 (en) Brushless motor
KR900000662Y1 (en) Brushless motor
JPS59122344A (en) Magnetized yoke
JPS5986465A (en) Magnetized yoke
JPS59194655A (en) Disc type brushless motor
JPH0793875A (en) Rotational position detecting device
JPH08266021A (en) Index signal generator for floppy disk drive
JPH04124882U (en) small motor