JPS60187085A - Distribution feedback semiconductor laser - Google Patents

Distribution feedback semiconductor laser

Info

Publication number
JPS60187085A
JPS60187085A JP4365784A JP4365784A JPS60187085A JP S60187085 A JPS60187085 A JP S60187085A JP 4365784 A JP4365784 A JP 4365784A JP 4365784 A JP4365784 A JP 4365784A JP S60187085 A JPS60187085 A JP S60187085A
Authority
JP
Japan
Prior art keywords
waveguide
layer
mode
activation
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4365784A
Other languages
Japanese (ja)
Inventor
Kenichi Kobayashi
健一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP4365784A priority Critical patent/JPS60187085A/en
Publication of JPS60187085A publication Critical patent/JPS60187085A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling

Abstract

PURPOSE:To realize a distribution feedback semiconductor laser characterized only in TE mode oscillation by a method wherein an optical waveguide constituted of a layer with its forbidden band width larger than that of an activation layer is coupled to a distribution feedback waveguide and its surface is coated with a metal layer with the intermediary of an insulating layer. CONSTITUTION:To an activation waveguide 10 including an activation layer having an uneven periodic structure 100, an optical waveguide 50 is coupled, with its forbidden band width larger than that of said activation layer. The waveguide 10 is provided with a clad layer 30 thereon. On the waveguide 50, through the intermediary of an insulating film 200, a metal layer 300 of Au or the like is provided. The end face of the activation region is so structured as to suppress the Fabry-Perot mode. Oscillation is generated by an oscillating frequency that is determined by the diffraction lattice organized by the periodic structure of the activation waveguide 10. Said light is coupled with the optical waveguide layer 50, to be reflected by its end face and return to the activation waveguide 10. Due to the metal layer 300, loss is greater in the TM mode than in the TE mode. Accordingly, a distribution feedback semiconductor laser oscillating only in the TE mode is obtained.

Description

【発明の詳細な説明】 (技術分野) 本発明は半導体レーザ、とくに分布帰還形半導体レーザ
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a semiconductor laser, and particularly to a distributed feedback semiconductor laser.

(従来技術とその問題点) 分布帰還形半導体レーザ(以下DFBレーザと略T)は
単一軸モード発振するため、光フアイバ通信用光源とし
て利用すると光ファイバーこよる波長分散の影響を受け
擾こくく大容量、長距離用光源として有望である。第1
図は従来のDFBレーザの共振器方向の断面模式図であ
る。一定の周期の凹凸の回折格子100を有し、活性層
を含む活性導波路10が、活性導波路を構成する半導体
より禁制帯幅か広いクラッド層20及び30によりはさ
み込まれている。従来のDFBレーザはTEモード発振
とTMモード発振か同時ζこ起こる事や、電流注入レベ
ルによりTEモードからTVモードへの移行等が容易に
起こり電流−光出力特性の直線性が息くL種のキングと
して観測される。また、光集積回路等へ応用する際、T
EモードとTMモードのうち発振をどちらか一方に制限
しなければならなG)。
(Prior art and its problems) Distributed feedback semiconductor lasers (hereinafter referred to as DFB lasers) oscillate in a single-axis mode, so when used as a light source for optical fiber communication, they are greatly affected by wavelength dispersion caused by the optical fiber. It is promising as a high-capacity, long-distance light source. 1st
The figure is a schematic cross-sectional view of a conventional DFB laser in the cavity direction. An active waveguide 10 having an uneven diffraction grating 100 with a constant period and including an active layer is sandwiched between cladding layers 20 and 30 whose forbidden band width is wider than that of the semiconductor constituting the active waveguide. In conventional DFB lasers, TE mode oscillation and TM mode oscillation occur simultaneously, and the transition from TE mode to TV mode occurs easily depending on the current injection level, and the L type has a linear current-optical output characteristic. observed as the king of In addition, when applied to optical integrated circuits, etc., T
Oscillation must be limited to either E mode or TM mode (G).

(発明の目的) 本発明の目的は上記の問題点を除くために、TBモード
発振とTMモード発振のしきい値電流の差を太き(シT
l1liモード発振だけTる分布帰還形半導体レーザの
構造を提供する事lこある。
(Object of the Invention) An object of the present invention is to increase the difference in threshold current between TB mode oscillation and TM mode oscillation in order to eliminate the above problems.
It is an object of the present invention to provide a structure of a distributed feedback semiconductor laser capable of oscillating only in the l1li mode.

(発明の構成) 本発明分布帰還形半導体レーザの構成は活性層を含む表
面に凹凸の周期構造を有する活性導波路が、活性層より
も禁制帯幅の大きいクラッド層で挾みこまれた構造を備
え、さらに前記活性導波路が活性層よりも禁制帯幅の大
きい層でなる光導波路に連続されている構造を有し、前
記光導波路表面に絶縁物を介して金属を有する事を特徴
とする。
(Structure of the Invention) The structure of the distributed feedback semiconductor laser of the present invention has a structure in which an active waveguide having a periodic structure with irregularities on the surface including an active layer is sandwiched between cladding layers having a larger forbidden band width than the active layer. Further, the active waveguide has a structure in which the active waveguide is continuous with an optical waveguide made of a layer having a forbidden band width larger than that of the active layer, and the optical waveguide has a metal on the surface with an insulator interposed therebetween. .

(発明の作用効果) 本構成によれば、DFBレーザの発振は活性導波路の凹
凸の周期構造で決まる発振波長で単一軸モード発振Tる
。発振は主に活性導波路がつかさどり、活性導波路から
光導波路へ結合された光は光導波路の端面で反射され、
活性導波路にもとり活性層の発振に寄与する。光導波路
の表面には絶縁物を介して近傍に金属を有するため光導
波路層におけるTE姿勢とTM姿勢の損失はTM姿勢の
方が太きい。よって活性導波路にもどり発振に寄与する
光はTE姿勢の方が大きく活性導波路の発振はTE姿勢
をこ固定される。以下図面を用いて説明する。第2図は
本発明の分布帰還形半導体レーザの共振器方向の断面模
式図である。凹凸の周期構造100を有する活性層を含
む活性導波路10が活性層より禁制帯幅が大きい光導波
路層504こ連絡されている。活性導波路10は利得を
与える導波路であり、先導波路層50は発振光の工矛ル
ギより禁制帯幅を大きくとっである。活性領域の端面に
はファブリペローモード抑圧のために通常よく用いられ
る斜めエツチング端面等の構造がある。この構造は斜め
エッチズブ端面でなくてもファブリペローモード抑圧す
る構造であればいかなるものでもよい。発振は活性導波
路に形成されている凹凸の周期構造でなる回折格子で決
まる発振波長で発振する。その光は光導波路層50iこ
結合され光導波路層端面で反射され再び活性導波路10
に帰還されるこの活性導波路から光導波路そして活性導
波路へもどる間の損失はTEモードとTMモードでは、
光導波路層表面に絶縁膜200を介して金属300があ
るためTEモードの方が小さくなる。よって、活性導波
路へ帰還Tる光はTEモードの方が太きく活性導波路は
T Eモード発振に固定される。
(Operations and Effects of the Invention) According to this configuration, the DFB laser oscillates in a single axis mode at an oscillation wavelength determined by the periodic structure of the irregularities of the active waveguide. Oscillation is mainly controlled by the active waveguide, and the light coupled from the active waveguide to the optical waveguide is reflected at the end face of the optical waveguide.
The active waveguide also contributes to the oscillation of the active layer. Since the surface of the optical waveguide has metal in the vicinity via an insulator, the loss in the TE attitude and the TM attitude in the optical waveguide layer is greater in the TM attitude. Therefore, the light that returns to the active waveguide and contributes to oscillation is larger in the TE attitude, and the oscillation of the active waveguide is fixed in the TE attitude. This will be explained below using the drawings. FIG. 2 is a schematic cross-sectional view of the distributed feedback semiconductor laser of the present invention in the cavity direction. An active waveguide 10 including an active layer having an uneven periodic structure 100 is connected to an optical waveguide layer 504 having a larger forbidden band width than the active layer. The active waveguide 10 is a waveguide that provides gain, and the leading waveguide layer 50 has a forbidden band width larger than that of the oscillation light beam. The end face of the active region has a structure such as a diagonally etched end face which is commonly used to suppress Fabry-Perot mode. This structure does not have to be an obliquely etched end face, but may be any structure as long as it suppresses the Fabry-Perot mode. The oscillation occurs at an oscillation wavelength determined by a diffraction grating made of a periodic structure of concavities and convexities formed in the active waveguide. The light is coupled to the optical waveguide layer 50i, reflected at the end face of the optical waveguide layer, and redirected to the active waveguide 10.
In the TE mode and TM mode, the loss from the active waveguide to the optical waveguide and back to the active waveguide is as follows:
Since the metal 300 is present on the surface of the optical waveguide layer via the insulating film 200, the TE mode is smaller. Therefore, the light returning to the active waveguide is thicker in the TE mode, and the active waveguide is fixed to TE mode oscillation.

(実施例) 以下実施例を用いて説明Tる。(Example) The following will be explained using examples.

第3図は本発明のレーザの製作工程を示T図でエピタキ
シャル成長とホトレジストのHe −Odレーザによる
干渉露光及びエツチング゛を用いて、1.3μm Mi
gのGa I nAs P 、0.I Jimと1.2
μm組成のGa I nAs po、i 5μmの2層
によりなる活性導波路層10を含むDHウェファを作製
した。凹凸の周期は3900Aとしたクラッド層2()
、30は共にInPであり、作製は従来のDFBレーザ
の作製とまったく同じである。第3図(a)で得られた
l)Hウェファを部分的に活性導波路10を含めその上
部にあるクラッド層30をクラッド層に対してはHe/
を主成分とするエツチング液活性導波路1(Hこ対して
は、H2SO,とH,0の混液により選択エツチングし
た(第3図(b))。欠に第3図(C)に示すように再
び液相成長で光導波路層50となる1、2μm組成のG
a 1 nAs Po、25 ttm及びInPo、2
μm成長した。クラ、ド層30の上部にも光導波路層を
形成する半導体層が積層するが問題はない。その後、熱
分解OVD法ζこより3000Aの絶縁膜200となる
sio、膜を表面全体に形成し活性導波路上部のエツチ
ングにより活性導波路端部の蒸着金属の除去及び斜めエ
ツチング面形成を行った。さらに裏面電&を作製し第3
図<d)に示TようなりFBレーザとした(電極は図示
していない)。発振はTEモード発振でTMモードは発
振は観測されなかった。
FIG. 3 shows the manufacturing process of the laser of the present invention, and is a 1.3 μm Mi
g of Ga I nAs P , 0. I Jim and 1.2
A DH wafer including an active waveguide layer 10 consisting of two layers of Ga I nAs po and i 5 μm having a μm composition was fabricated. Cladding layer 2 () with an uneven period of 3900A
, 30 are both InP, and the fabrication is exactly the same as that of a conventional DFB laser. The cladding layer 30 on top of the l)H wafer obtained in FIG.
The active waveguide 1 (H) was selectively etched with a mixed solution of H2SO and H,0 (Fig. 3(b)).As shown in Fig. 3(C), Then, G with a composition of 1 to 2 μm is grown again by liquid phase growth to become the optical waveguide layer 50.
a 1 nAs Po, 25 ttm and InPo, 2
It grew by μm. A semiconductor layer forming an optical waveguide layer is also laminated on top of the C and C layers 30, but there is no problem. Thereafter, a 3000A insulating film 200 was formed on the entire surface using the pyrolysis OVD method, and the upper part of the active waveguide was etched to remove the deposited metal at the end of the active waveguide and form an obliquely etched surface. Furthermore, the back side electrode & was made and the third
An FB laser was used as shown in Figure <d) (the electrodes are not shown). The oscillation was in the TE mode, and no oscillation in the TM mode was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のDFBレーザの断面図、第2図は本発明
のD F Bレーザの断面図、第3図(a)、(bl、
(C八(d)は本発明の1)FBレーザの製作工程図で
ある。図中10は活性導波路、20,30はクラッド層
、50は光導波路層、100は凹凸の周期構造、200
は絶縁膜、300は金属、400はエツチングマスクで
ある。 爾 心 づ e ミ Q
FIG. 1 is a sectional view of a conventional DFB laser, FIG. 2 is a sectional view of a DFB laser of the present invention, and FIGS. 3(a), (bl,
(C8(d) is a manufacturing process diagram of 1) FB laser of the present invention. In the figure, 10 is an active waveguide, 20 and 30 are cladding layers, 50 is an optical waveguide layer, 100 is an uneven periodic structure, and 200 is an active waveguide.
3 is an insulating film, 300 is a metal, and 400 is an etching mask.爾心ズ e MiQ

Claims (1)

【特許請求の範囲】[Claims] 活性層を含む表面に凹凸の周期構造を有する活性導波路
を、活性層よりも禁制帯幅の大きいクラッド層で挾みこ
んだ構造を備え、ざらに、前記活性導波数か、活性層よ
り禁制帯幅の大きい層でなる先導波路に連結されている
構造を有し、前記光導波路表面憂こ絶縁物を介して金属
を有する事を特徴とする分布帰還形半導体レーザ。
It has a structure in which an active waveguide having a periodic structure with irregularities on the surface including an active layer is sandwiched between cladding layers having a forbidden band width larger than that of the active layer. 1. A distributed feedback semiconductor laser having a structure in which the optical waveguide is connected to a leading waveguide made of a wide layer, and has metal interposed on the surface of the optical waveguide through an insulating material.
JP4365784A 1984-03-07 1984-03-07 Distribution feedback semiconductor laser Pending JPS60187085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4365784A JPS60187085A (en) 1984-03-07 1984-03-07 Distribution feedback semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4365784A JPS60187085A (en) 1984-03-07 1984-03-07 Distribution feedback semiconductor laser

Publications (1)

Publication Number Publication Date
JPS60187085A true JPS60187085A (en) 1985-09-24

Family

ID=12669926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4365784A Pending JPS60187085A (en) 1984-03-07 1984-03-07 Distribution feedback semiconductor laser

Country Status (1)

Country Link
JP (1) JPS60187085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198921A (en) * 1991-11-20 1993-03-30 Hamamatsu Photonics K.K. Light amplifying polarizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198921A (en) * 1991-11-20 1993-03-30 Hamamatsu Photonics K.K. Light amplifying polarizer

Similar Documents

Publication Publication Date Title
KR100519922B1 (en) self-mode locked multisection semiconductor laser diode
JP2982422B2 (en) Semiconductor laser and method of manufacturing the same
US4644552A (en) Semiconductor laser
JP2000261093A (en) Distribution feedback type semiconductor laser
JPH10178232A (en) Semiconductor laser and its manufacture
JP2950302B2 (en) Semiconductor laser
JPS63166281A (en) Distributed feedback semiconductor laser
JPS60187085A (en) Distribution feedback semiconductor laser
JP2804502B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6362917B2 (en)
JPH0470794B2 (en)
JP2950297B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JPS59165481A (en) Distributed feedback type semiconductor laser
JPH06196798A (en) Distributed-feedback semiconductor laser and manufacture thereof
KR100368323B1 (en) Fabrication method of gain coupled single-mode semiconductor laser
JPS60152086A (en) Semiconductor laser device
JPS61220389A (en) Integrated type semiconductor laser
JPH0673388B2 (en) Single-axis mode semiconductor laser
JPS63137496A (en) Semiconductor laser device
JPH0537088A (en) Distribution feedback type semiconductor laser device and its manufacture
JPH10270789A (en) Semiconductor optical device used for optical communication and its manufacturing method
JPS63117481A (en) Semiconductor laser
JPH0467355B2 (en)
JPS60165782A (en) Semiconductor laser
JPH03235390A (en) Semiconductor laser