JPS60187029A - Heat treatment furnace - Google Patents

Heat treatment furnace

Info

Publication number
JPS60187029A
JPS60187029A JP4337784A JP4337784A JPS60187029A JP S60187029 A JPS60187029 A JP S60187029A JP 4337784 A JP4337784 A JP 4337784A JP 4337784 A JP4337784 A JP 4337784A JP S60187029 A JPS60187029 A JP S60187029A
Authority
JP
Japan
Prior art keywords
wafers
heat treatment
temperature
wafer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4337784A
Other languages
Japanese (ja)
Inventor
Masanobu Ogino
荻野 正信
Hachiro Hiratsuka
平塚 八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4337784A priority Critical patent/JPS60187029A/en
Publication of JPS60187029A publication Critical patent/JPS60187029A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Abstract

PURPOSE:To avoid the plastic deformation of a semiconductor wafer by previously forming a large number of gas jets near a wafer take-in-and-out section for a core pipe when a boat on which a large number of the semiconductor wafers are erected at intervals is housed in the furnace core tube and the wafers are oxidized or diffused in a desired manner. CONSTITUTION:A furnace core tube 5 is surrounded by a soaking pipe 1, a heater 2 is wound on the outer circumference of the soaking pipe 1, and a boat 7 with an extruded bar 8 is housed in the furnace core tube 5. A large number of semiconductor wafers 61-63, etc. are erected on the boat 7, and a large number of gas jets 11 are bored previously near a taking-in-and-out section for the wafers 61-63 while being positioned at the pipe wall of the furnace core tube 5. A gas 3 is blown against the wafers 61-63 in the vertical direction from the jets 11, the ambient temperatures of the wafers are lowered up to 78-97% of a heat treatment temperature for the wafers, and temperature difference among the central sections and peripheral sections of the wafers is reduced. Accordingly, the plastic deformation of the wafers is prevented, yield is improved while the tolerance of the speed of carrying of the wafers is spread, and the lowering of a through-put is avoided.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、特に半導体基板の酸化、拡散に用いられる熱
処理炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a heat treatment furnace used particularly for oxidizing and diffusing semiconductor substrates.

〔発明の技術的背′景とその問題虚〕[Technical background of the invention and its problems]

従来、半導体製造プロセスの際、半導体基板(pエバ)
の酸化、拡散に用いられる熱処理炉としては、第1図に
示すものが知られている。
Conventionally, during the semiconductor manufacturing process, semiconductor substrates (p-eva)
The one shown in FIG. 1 is known as a heat treatment furnace used for oxidation and diffusion of.

図中の1は、外周に螺旋状のヒータ2全巻装した均熱管
である。この均熱管1内には、一端に葬囲気ガス3の導
入口4を肩した炉芯管5が設けられている。この炉芯ち
5の底部には、複数のウェハ6・・・を植設すべきポー
ト7が設けられ、該ポート7の端部にはポート7の出し
入れを行なう押し棒8が係止されている。
1 in the figure is a heat equalizing tube with a spiral heater 2 completely wrapped around its outer periphery. Inside the soaking tube 1, a furnace core tube 5 having an inlet 4 for the surrounding air gas 3 at one end is provided. A port 7 into which a plurality of wafers 6 are to be implanted is provided at the bottom of the furnace core 5, and a push rod 8 for inserting and removing the port 7 is locked at the end of the port 7. There is.

前述した構造の熱処理炉の温度分布は第2図に示す曲線
となる。同図において、温度分布曲線は領域A、B、C
の3つに区分され、このうち領域Bは均熱領域となって
おりウェハ6の酸化、拡散が行なわれる、即ち、ウニノ
ー6は酸化、拡散時には室温の領域から領域Aを通って
領域Bに搬送され、とこで所定の時間酸化、拡散が行な
われる〇 しかしながら、前述した熱処理によれば、つエバ6が室
温の領域から領域Aを経て領域Bに搬送されるとき、あ
るいはこの逆の場合、領域Aで急派な温度勾配があるた
め、ウェハ6内に温度差が生じ、大きな応力が発生する
。そして、この応力が一定の値以上に達すると、ウェハ
6が塑性変形し、歩留りが低下する。このため、ウェハ
6の搬送スピードは、通常、ウェハ6をボート7上に並
べる間隔、及びウェハの直径によシ決まるある許容範囲
内のスピードが選はれている。ここで、ウェハ6の搬送
スピードとウェハ6の間隔との関係の一例を示すと、第
3図に示すようになる。ただし、ウェハ6としては直径
は100闘、厚さは525μmのシリコン基板を用い、
領域Bの温度は1000℃とする。
The temperature distribution of the heat treatment furnace having the structure described above becomes a curve shown in FIG. In the same figure, the temperature distribution curves are in areas A, B, and C.
Of these, area B is a soaking area where the wafer 6 is oxidized and diffused. In other words, during oxidation and diffusion, the UniNo 6 is heated from the room temperature area through area A to area B. However, according to the heat treatment described above, when the Eva 6 is transported from a room temperature region to region A via region B, or vice versa, Since there is a steep temperature gradient in region A, a temperature difference occurs within the wafer 6, and a large stress is generated. When this stress reaches a certain value or more, the wafer 6 is plastically deformed and the yield decreases. For this reason, the transport speed of the wafers 6 is normally selected within a certain allowable range determined by the interval at which the wafers 6 are lined up on the boat 7 and the diameter of the wafers. Here, an example of the relationship between the transport speed of the wafers 6 and the interval between the wafers 6 is as shown in FIG. However, as the wafer 6, a silicon substrate with a diameter of 100 μm and a thickness of 525 μm was used.
The temperature of region B is 1000°C.

同図において、曲線(イ)は塑性変形の有無の境界線で
あり、曲線(イ)よシ上部ではウエノ・6に塑性変形が
起こり、下部では塑性変形が起こらない。
In the figure, the curve (a) is the boundary line between the presence and absence of plastic deformation, and plastic deformation occurs in Ueno 6 at the upper part of the curve (a), and no plastic deformation occurs at the lower part.

しかるに、最近ウェハの直径が大きくなってきており、
これに伴って第3図に示した曲線(イ)は下の方に下り
、許容される搬送スピードが非非常に小さくなってスル
ープットの低下を招く一例を示せば、ウェハの直径が1
25龍となった場合、許容される搬送スピードは直径1
00龍の場合のそれと比べ約1/2に低下する。また、
ウェハの直径を100111から125顛に変えた時の
面積比は(125/100)” =:=1.56であり
、酸化と拡散の搬送工程では大口径化のメリットが無く
なってしまう。
However, recently the diameter of wafers has become larger,
Correspondingly, the curve (a) shown in Figure 3 goes downwards, and to give an example of this, the permissible transport speed becomes very small, leading to a decrease in throughput.
In the case of 25 dragons, the allowable conveyance speed is 1 diameter
It is reduced to about 1/2 compared to that of 00 Dragon. Also,
When the diameter of the wafer is changed from 100111 to 125, the area ratio is (125/100)''=:=1.56, and the advantage of increasing the diameter is lost in the oxidation and diffusion transport process.

〔発明の目的〕[Purpose of the invention]

本発明は上記事惟に鑑みてなされたもので、ウェハの塑
性変形を防止して歩留りの低下を阻止するとともに、ウ
ェハが大口径化した際のウェハの搬送スピードの許容範
囲を広げてスループットの低下を阻止し得る熱処理炉を
提供することを目的とする、 〔発明の概要〕 本発明は、半導体基板周辺部の温度が熱処理温度の78
〜98%のとき基板中央部と周辺部の温度差を減少させ
る手段、具体的には半導体基板の主面にガスを平行に吹
きつけることによって、塑性変形に起因する歩留りの低
下とスループットの低下を阻止しようとするものである
The present invention has been made in view of the above-mentioned problems, and it prevents plastic deformation of wafers to prevent a decrease in yield, and widens the allowable range of wafer transport speed when wafer diameters increase, thereby increasing throughput. [Summary of the Invention] The present invention aims to provide a heat treatment furnace that can prevent the temperature from decreasing at around 78% of the heat treatment temperature.
When the temperature difference is ~98%, a method of reducing the temperature difference between the center and peripheral parts of the substrate, specifically by blowing gas parallel to the main surface of the semiconductor substrate, reduces yield and throughput due to plastic deformation. It is an attempt to prevent this.

以下、第4図及び第5図を参照して詳述する。A detailed description will be given below with reference to FIGS. 4 and 5.

第4図は、縦軸に半導体基板を熱処理炉の炉芯管に入れ
る際に発生する基板の周辺部(周辺よシ例えば5關〕と
中央部の温度差(ΔT)を、横軸にその時の基板周辺部
温度をプロットしたものである。ただし、熱処理温度1
000℃、基板の直径100gg、基板の搬送スピード
IFcIIL/mi n基板の間隔6關である。同図に
より、基板周辺部温度が750℃前後で温度差△Tが最
大になることが明らかである。なお、このことは基板の
直径が100闘の場合に限らず、他の直径の場合も同様
であった。ここで、前述した塑性変形の有無が単に応力
の大小で決まるならば、同図より750℃前後で塑性変
形が一番起き易いが、現実には温度により塑性変形のし
易さが異なるため違う、ところで、半導体基板としてシ
リコン基板を例にとった場合、上降伏応力は塑性変形の
し易さの一つの目安となり、上降伏応力は高温になるは
ど小さく基板が塑性変形し易い。従って、第3図の温度
差△Tを各温度における上降伏応力で割ったものは塑性
変形のし易さを表すパラメータとなる、第5図は、縦軸
に温度差ΔTを上降伏応力で割ったものを、横軸に基板
周辺温度をプロットしたものである。ここで、熱処理温
度は1000°CとするC第5図により、△T/上降伏
応力は基板周辺温間が780〜970℃の間にピークを
持ち、この範囲の温度において最も塑性変形し易いこと
が明らかになった、また、本発明者等は熱処理温度が1
000℃のみならず、柿々の場合についても検討したと
ころ、第5図に示されるピークは、基板周辺温度が設定
した熱処理温度の78〜97%の時発生することを確認
するに至った。このようなことから、本発明者等は、基
板周辺温度が熱処理温度の78〜97%のとき基板中央
部と周辺部の温y差を減少させる手段を具備させて歩留
りの低下やスループットの低下を阻止しようとした。な
お、78%未満の場合及び97%を越えた場合は基板に
加わる応力をほとんど無視できるため、かかる手段を具
備する必要がないC〔発明の実施例〕 以下、本発明の一実施例を第6図を参照して説明する。
In Figure 4, the vertical axis shows the temperature difference (ΔT) between the periphery (for example, 5 degrees) and the center of the substrate, which occurs when the semiconductor substrate is put into the core tube of the heat treatment furnace, and the horizontal axis shows the temperature difference (ΔT) at that time. This is a plot of the temperature around the substrate.However, the heat treatment temperature 1
000° C., substrate diameter 100 gg, substrate transport speed IFcIIL/min, and substrate spacing 6 degrees. It is clear from the figure that the temperature difference ΔT becomes maximum when the temperature around the substrate is around 750°C. Note that this was not limited to the case where the substrate diameter was 100mm, but was the same in cases of other diameters. Here, if the presence or absence of plastic deformation mentioned above was determined simply by the magnitude of stress, the figure shows that plastic deformation is most likely to occur at around 750°C, but in reality, this is not the case because the ease of plastic deformation differs depending on the temperature. By the way, when a silicon substrate is taken as an example of a semiconductor substrate, the upper yield stress is a measure of the ease of plastic deformation, and the higher the temperature, the smaller the upper yield stress, the more likely the substrate will be plastically deformed. Therefore, the temperature difference ΔT in Figure 3 divided by the upper yield stress at each temperature is a parameter that represents the ease of plastic deformation. In Figure 5, the vertical axis shows the temperature difference ΔT divided by the upper yield stress. The temperature around the substrate is plotted on the horizontal axis. Here, the heat treatment temperature is 1000°C. According to Figure 5, △T/upper yield stress has a peak between 780 and 970°C around the substrate, and plastic deformation is most likely to occur in this temperature range. In addition, the present inventors have found that the heat treatment temperature is 1
As a result of examining not only the case of 000°C but also the persimmon case, it was confirmed that the peak shown in FIG. 5 occurs when the temperature around the substrate is 78 to 97% of the set heat treatment temperature. For this reason, the inventors of the present invention have provided a means for reducing the temperature difference between the center and the periphery of the substrate when the temperature around the substrate is 78% to 97% of the heat treatment temperature, thereby reducing yield and throughput. tried to prevent it. In addition, when it is less than 78% and when it exceeds 97%, the stress applied to the substrate can be almost ignored, so there is no need to provide such a means. This will be explained with reference to FIG.

なお、第1図と同部材のものは同符号を付して説明を省
略するC 図中の11・・・は、p芯管50半導体基板(ウェハ)
6・・・の用人付近に設けられ、ウェハ中央部と周辺部
(外周から例えば5禦禦)の温度差を減少させる手段と
しての複数のガス噴出口であるC@出ガス3・・・は、
これらガス噴出口からウェハ周辺部の温度が熱処理温度
の78〜97%のとき、ウェハ6・・・主面に平行に吹
きつけられるO しかして、本発明によれば、炉芯管5のウェハ6・・・
の用人付近に、ウェハ周辺部の温度が熱処理温度の78
〜98%のとき―重ガス3・・・を吹きつけるガス質出
口11・・・が設けられているため、ウェハ6の表面を
従来と比べ均一に熱処理することができる。従って、酸
化、拡散時にウェハ6・・・を炉芯I#5に出入する際
の応力を低下させ、もってウェハ6・・・の搬送スピー
ドの許容範囲を広げ、スループットを向上できる。
The same members as in FIG. 1 are given the same reference numerals and their explanations are omitted.
C@Output gas 3..., which is a plurality of gas ejection ports, is provided near the wafer central part and the peripheral part (e.g., from the outer periphery) as a means of reducing the temperature difference between the wafer center and the peripheral part (for example, from the outer periphery). ,
When the temperature around the wafer is 78 to 97% of the heat treatment temperature from these gas jet ports, O is blown parallel to the main surface of the wafer 6. 6...
The temperature around the wafer was around 78°C, which was the heat treatment temperature.
~98% - Since the gaseous outlet 11 for blowing the heavy gas 3 is provided, the surface of the wafer 6 can be heat-treated more uniformly than in the past. Therefore, the stress when moving the wafers 6 in and out of the furnace core I#5 during oxidation and diffusion can be reduced, thereby widening the allowable range of the transport speed of the wafers 6 and improving throughput.

事実、直径IQQl!IK、厚さ525 ttmのウェ
ハ6・・・の塑性変形の有無を調べたととる、8F!7
図に示す結果が得られた。同図において、縦軸はウェハ
6・・・の搬送スゼードを、横軸はウェハ6・・・の間
隔をあられし、曲線(イ)、(ロ)は夫々本発明、従来
装置に係るウェハ6・・・の塑性変形の有無の境界線で
ある。この境界線よシ上部でけウェハ6・・・に塑性変
形が起こり、下部で/Ii塑性変形が起こらない。同図
により、曲線(イ)の場合は曲線(ロ)の場合と比較し
て搬送スピードの許容上限値が1゜2〜1.5倍大きい
ことが明らかであるCまた、温度差(△T)/上降伏応
力とウェハ周辺部温度との関係を調べたところ、第8図
に示す結果が得られたにこで、(イ)は本発明の場合、
(→は従来の場合を夫々示す曲線であり、ウエノ・間隔
は4gm、搬送スピードは35儂/minであるC同図
により、△T/上降伏応力を第5図の場合と比べ著しく
小さくでき、大ピークをなくすとができることを確認で
きる。従って、第5図の場合と比べ塑性変形がしにくい
ことが明らかである。以上より、本発明に係る熱処理炉
が従来のそれと比べ覆れていることを仰藺できるC〔発
明の効果〕 以上詳述した如く本発明によれは、ウェハの塑性変形を
防止して歩留シの低下を阻止し、かつウェハの搬送スピ
ードの許容範囲を広げてスループットの低下を阻止し得
る信頼性の高い熱処理炉を提供できるものであるC
In fact, the diameter is IQQl! IK, the presence or absence of plastic deformation of wafer 6 with a thickness of 525 ttm was investigated, 8F! 7
The results shown in the figure were obtained. In the figure, the vertical axis shows the conveyance speed of the wafers 6, the horizontal axis shows the interval between the wafers 6, and the curves (a) and (b) show the wafers 6 according to the present invention and the conventional apparatus, respectively. ...is the boundary line between the presence and absence of plastic deformation. Plastic deformation occurs in the wafer 6 above this boundary line, and plastic deformation does not occur in the lower part /Ii. From the same figure, it is clear that in the case of curve (a), the allowable upper limit value of the conveyance speed is 1°2 to 1.5 times larger than that in the case of curve (b). ) / When the relationship between the upper yield stress and the wafer peripheral temperature was investigated, the results shown in FIG. 8 were obtained.
(→ are the curves showing the conventional case, where the wafer spacing is 4 gm and the conveyance speed is 35 f/min.) According to the same figure, △T/upper yield stress can be made significantly smaller than in the case of Fig. 5. , it can be confirmed that large peaks can be eliminated.Therefore, it is clear that plastic deformation is less likely to occur compared to the case shown in Fig. 5.From the above, it is clear that the heat treatment furnace according to the present invention has a higher surface area than the conventional one. [Effects of the Invention] As detailed above, the present invention prevents plastic deformation of wafers, prevents a decrease in yield, and widens the allowable range of wafer transport speed. C that can provide a highly reliable heat treatment furnace that can prevent a decrease in throughput.

【図面の簡単な説明】 第1図は従来の熱処理炉の断面図、@2図は第1図の熱
処理炉の温度分布図、身番3図?−i第1図の熱処理炉
によるウェハの搬送スピードをウェハ間隔との関係を示
す特性図、第4図は温度差とウェハ周辺温度との関係を
示す特性図、第5図は第1図の熱処理炉による△T/上
降伏応力とウェハ周辺温度との関係を示す特性図、第6
図は本発明の一実施例に係る熱処理炉の断面図、第7図
は第6図の熱処理炉によるウエノ1のHaミスピードウ
ェハ間隔との関係を示す特性図、第8図は同熱処理炉に
よる△T/上降伏応力とウェハ周辺温度との関係金示す
特性図であるC 1・・・均熱管、2・・・ヒータ、3・・・雰囲気ガス
、4・・・導入口、5・・・炉芯管、6・・・半導体基
板(ウェハ〕、7・・・ボート、8・・・押し棒、11
・・・ガス噴出口。 出願人代理人 弁理土鈴 江 武 彦 第1じ) l 第2f”” イ立り 第3L′3 ウェハ開隔 第 41゛1 ウェハ卯り帥島産 第50 第6図 00000 o′ Oo 1 3Nノーノ 第7図 158 図
[Brief explanation of the drawings] Figure 1 is a cross-sectional view of a conventional heat treatment furnace, Figure 2 is a temperature distribution diagram of the heat treatment furnace shown in Figure 1, and figure 3? -i Figure 1 is a characteristic diagram showing the relationship between the wafer transfer speed in the heat treatment furnace and the wafer spacing, Figure 4 is a characteristic diagram showing the relationship between the temperature difference and the wafer surrounding temperature, and Figure 5 is the same as in Figure 1. Characteristic diagram showing the relationship between ΔT/upper yield stress due to heat treatment furnace and wafer ambient temperature, No. 6
The figure is a sectional view of a heat treatment furnace according to an embodiment of the present invention, FIG. 7 is a characteristic diagram showing the relationship between the wafer speed and the wafer spacing of wafer 1 in the heat treatment furnace of FIG. 6, and FIG. 8 is a characteristic diagram of the heat treatment furnace of the same heat treatment furnace. C is a characteristic diagram showing the relationship between △T/upper yield stress and wafer surrounding temperature. 1. Soaking tube, 2. Heater, 3. Atmosphere gas, 4. ...Furnace core tube, 6...Semiconductor substrate (wafer), 7...Boat, 8...Push rod, 11
...Gas outlet. Applicant's attorney Takehiko E Takehiko No. 1) l No. 2f"" I Stand No. 3L'3 Wafer spacing No. 41゛1 Wafer No. 50 from Urijima Fig. 6 00000 o' Oo 1 3N NONO Figure 7 158

Claims (2)

【特許請求の範囲】[Claims] (1)外周にヒータを巻装した均熱管と、この均熱管内
に設けられ、ボードに植設した半導体基板を該基板の主
面が均熱管の長手方向と直交するように出し入れする炉
芯管と、前記基板周辺部の温度が熱処理温度の78〜9
7%のとき基板中央部と周辺部の温度差を減少させる手
段とを具備することを特徴とする熱処理炉C
(1) A heat soaking tube with a heater wrapped around its outer periphery, and a furnace core provided within the heat soaking tube and into which a semiconductor substrate embedded in a board is taken in and taken out so that the main surface of the substrate is perpendicular to the longitudinal direction of the heat soaking tube. The temperature of the tube and the surrounding area of the substrate is 78 to 9 of the heat treatment temperature.
A heat treatment furnace C characterized in that it is equipped with means for reducing the temperature difference between the center part and the peripheral part of the substrate when the temperature is 7%.
(2)基板中央部と周辺部の温度差を減少させる手段が
半導体基板の主面にガスを平行に吹きつけることである
ことを特徴とする特許請求の範囲第1項記載の熱処理炉
(2) The heat treatment furnace according to claim 1, wherein the means for reducing the temperature difference between the central portion and the peripheral portion of the substrate is to blow gas parallel to the main surface of the semiconductor substrate.
JP4337784A 1984-03-07 1984-03-07 Heat treatment furnace Pending JPS60187029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4337784A JPS60187029A (en) 1984-03-07 1984-03-07 Heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4337784A JPS60187029A (en) 1984-03-07 1984-03-07 Heat treatment furnace

Publications (1)

Publication Number Publication Date
JPS60187029A true JPS60187029A (en) 1985-09-24

Family

ID=12662130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4337784A Pending JPS60187029A (en) 1984-03-07 1984-03-07 Heat treatment furnace

Country Status (1)

Country Link
JP (1) JPS60187029A (en)

Similar Documents

Publication Publication Date Title
JP2714577B2 (en) Heat treatment apparatus and heat treatment method
US5618349A (en) Thermal treatment with enhanced intra-wafer, intra-and inter-batch uniformity
JPH08264521A (en) Reaction furnace for producing semiconductor
KR100328326B1 (en) Semiconductor device manufacturing apparatus and semiconductor device manaufacturing method
US4203387A (en) Cage for low pressure silicon dioxide deposition reactors
JPS63102225A (en) Wafer boat for vertical type semiconductor thermal treatment equipment
JPS60187029A (en) Heat treatment furnace
JPH11260744A (en) Heat treating furnace
JP3108134B2 (en) Vertical electric furnace
JPH06216056A (en) Vertical furnace
WO2021193567A1 (en) Optical fiber wiredrawing furnace and method for producing optical fiber
JP3450033B2 (en) Heat treatment equipment
JP2992576B2 (en) Vertical heat treatment equipment
JP2001250786A (en) Device for producing semiconductor
JPH09260363A (en) Manufacturing apparatus for semiconductor
JPH06196428A (en) Treating device for semiconductor substrate
JP2688653B2 (en) Semiconductor pressure oxidation method
JPH07326579A (en) Vertical reaction furnace
JPH09219375A (en) Semiconductor processing equipment
JPH0783000B2 (en) Processor
JPH0547685A (en) Method of diffusing impurity to semiconductor wafer
JP2693465B2 (en) Semiconductor wafer processing equipment
JP2024010835A (en) Apparatus and method for manufacturing optical fiber
JPS62185329A (en) Oxidizing device for silicon
JPH08130192A (en) Thermal treatment equipment