JPS60186691A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS60186691A
JPS60186691A JP4133484A JP4133484A JPS60186691A JP S60186691 A JPS60186691 A JP S60186691A JP 4133484 A JP4133484 A JP 4133484A JP 4133484 A JP4133484 A JP 4133484A JP S60186691 A JPS60186691 A JP S60186691A
Authority
JP
Japan
Prior art keywords
fluid
pipe group
numbers
heat exchanger
passes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4133484A
Other languages
Japanese (ja)
Other versions
JPH0660795B2 (en
Inventor
Tadashi Ogura
小倉 忠
Masayuki Yasuda
安田 昌之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP59041334A priority Critical patent/JPH0660795B2/en
Publication of JPS60186691A publication Critical patent/JPS60186691A/en
Publication of JPH0660795B2 publication Critical patent/JPH0660795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1638Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To decrease unevenness of cooling and prevent generation of deflection of flow, by a method wherein plural concentric type passes are shaped, and changing the total cross-sectional area of heat transmitting pipes of each pass by turns wherein high viscosity fluid of which viscosity largely changes is heated or cooled. CONSTITUTION:While making the center of pipe group at the entrance 1 side as reference, to- be-cooled fluid enters only from apart of pipe group 2a of preset numbers within the whole pipes (1 pass). The fluid which run out from the pipe group 2a at the outlet side is inverted by 180 deg. and enters into a pipe group 2b (2 passes) at the outer periphery of the pipe group 2a with more numbers at a constant ratio than the numbers of the pipe group 2a from which the fluid runs out (when the fluid within pipes are heated, numbers of pipe become few by the preset ratio). The fluid returned to the entrance 1 side is again inverted by 180 deg. and enters into a pipe group 2c (3 passes) at the outer periphery of the pipe group 2b with more numbers at the preset ratio than the pipe group 2b from which the fluid runs out, and flows out from an outlet 3. In the meantime, heat medium flows into from an entrance 4 and flows out from an exit 5.

Description

【発明の詳細な説明】 本発明は温度の変化並びに剪断力の影響に伴って粘性が
大きく変化する高粘性流体を加熱又は冷却するための多
管式熱交検器又は反応器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-tubular heat exchanger or reactor for heating or cooling a highly viscous fluid whose viscosity changes significantly with changes in temperature and the influence of shear force. .

従来の多?11・入熱交換器の1例を第1図に小す。Conventional poly? 11. An example of a heat input exchanger is shown in Figure 1.

第1図において熱交換されるべき流体は人口lより流入
し、伝熱管2内で管壁からの伝熱により加熱(又は冷却
)され、出目3より流出し、一方熱媒体は人口4より流
入し出口5より流出するようになっている。
In Figure 1, the fluid to be heat exchanged flows in from population 1, is heated (or cooled) in heat transfer tube 2 by heat transfer from the tube wall, and flows out from number 3, while the heat medium flows from population 4. It flows in and flows out from the outlet 5.

多管式熱交換器では伝熱効率を増すために胴側あるいは
へ1向流体の器内を通過する回数を適当に定める必要が
あるが、この通過数を回流数(パス)と(1fぶ。第2
図に第1図の多管式熱交換器の管内流体の各パス数を得
るための管側仕切板の配列例を示す。
In a shell-and-tube heat exchanger, in order to increase heat transfer efficiency, it is necessary to appropriately determine the number of times the fluid passes through the chamber in one direction toward the shell side or toward the body, and this number of passes is called the number of circulations (passes). Second
The figure shows an example of the arrangement of the tube-side partition plates for obtaining each number of passes of the fluid in the tubes of the multi-tubular heat exchanger shown in FIG.

従来のこの多管式熱交換器では、管内流体の粘性が低く
、温度や剪断力の変化に伴って粘性が大きく変化しない
場合には、偏流の発生は無く、1ト力損失も少ないので
問題は無いが、高粘性の流体で、その粘性が温度や剪断
力の変化に伴って大きく変化する場合は以下の如く問題
が発生する。
In this conventional multi-tube heat exchanger, if the viscosity of the fluid in the tubes is low and the viscosity does not change significantly with changes in temperature or shear force, there is no problem with drifting and the loss per torque is small. However, if the fluid is highly viscous and its viscosity changes significantly with changes in temperature or shearing force, the following problems will occur.

管内流体を冷却する場合、冷却伝熱量は管内流体の滞留
時間で決定されるので、管内流体の茨速が遅い程よく冷
却される。
When cooling the fluid in the tube, the amount of cooling heat transfer is determined by the residence time of the fluid in the tube, so the slower the speed of the fluid in the tube, the better the cooling.

温度の低下とともに大きく粘性が増加する流体の場合、
冷却された管内流体は粘性の増大により、流動抵抗が増
大し流速が低下し、流速が低rすれば更に冷却されると
いう繰り返しにより、管群の圧力均衡が保てなくなり一
部の管だけしか流体が流れないという偏流を生ずる欠点
がある。
For fluids whose viscosity increases significantly as the temperature decreases,
Due to the increased viscosity of the cooled fluid in the pipes, the flow resistance increases and the flow velocity decreases, and if the flow velocity becomes low r, it is further cooled, and as a result, the pressure balance in the tube group cannot be maintained, and only some of the tubes are There is a drawback that the fluid does not flow, which causes a biased flow.

又逆に11・向流体を加熱する場合も、温1止の1−A
とともに人きく粘性が低ドする流体においては、加熱さ
れた管内流体は粘性が低ドし、かつ剪断力を受けると更
に粘性の低下が増長されるという理由で管群の圧力均衡
が保てなくなり、やはり偏流を生ずる欠点がある。
Conversely, when heating 11/counterfluid, use 1-A of 1-1 temperature.
At the same time, for fluids with low viscosity, the viscosity of the heated fluid in the pipes decreases, and when shearing force is applied, the viscosity decrease further increases, making it impossible to maintain pressure balance in the tube group. However, it still has the disadvantage of causing drift.

未発明に係る装置は温度や剪断力の変化に伴って粘性が
人きく変化する流体を多管式熱交換器により加熱または
冷却する場合、及びこの方法を反応器として重合反応の
ような反応を行なわせる場合に従来の熱交換器で発生す
るL記欠点を除去することを1j的とするものであり、
本発明に係る熱交換器は、本体内に複数の伝熱管群が配
置され、該管群は流路方向が交!fに異なる複数の同心
状バスを形成し、各バスの伝熱管の絵描断面積は順次減
少又は増加することを特徴とする。伝熱管群は人1」側
フランジと出11側フランジとの間を平行して配列され
ている。
The uninvented device is used when a fluid whose viscosity changes dramatically with changes in temperature or shear force is heated or cooled using a shell-and-tube heat exchanger, and when this method is used as a reactor to perform a reaction such as a polymerization reaction. Its purpose is to eliminate the defects listed in L that occur in conventional heat exchangers when
In the heat exchanger according to the present invention, a plurality of heat exchanger tube groups are arranged within the main body, and the flow path directions of the tube groups intersect! It is characterized in that a plurality of different concentric buses are formed in f, and the illustrated cross-sectional area of the heat exchanger tubes of each bus sequentially decreases or increases. The heat exchanger tube group is arranged in parallel between the flange on the person 1'' side and the flange on the exit 11 side.

人1−1側フランジおよび出1」側フランジでは回心状
の・溝または溝に相当するものが形成されている。内側
の管群とそのすぐ外の管群は回心状に形成された1の溝
を介して順次連通している。
A pivot-shaped groove or something equivalent to a groove is formed on the flange on the person 1-1 side and the flange on the side 1-1. The inner group of tubes and the group of tubes just outside thereof are sequentially communicated through one groove formed in a concentric shape.

緑内側の管群より流入した熱交換されるべき流体はフラ
ンジに形成された溝を介してすぐ外の?61Yへ180
6反転して流入し、対向するフランジに形成された溝を
介して外側にある管群へと移行する。
Is the fluid to be heat exchanged flowing in from the tube group inside the green tube directly outside through the groove formed in the flange? 180 to 61Y
6 inverted and flows into the outer tube group through the groove formed in the opposing flange.

他の入口より流入した熱媒体はこれら管群の間を通って
他の出口より流出する。
The heat medium flowing in from another inlet passes between these tube groups and flows out from another outlet.

以下図面を参照して本発明の実施例について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図は管内流体を冷却する場合の多管式熱交換器の実
施例を示す。
FIG. 3 shows an embodiment of a multi-tube heat exchanger for cooling fluid within the tubes.

人目l側の管群の中心を基準にして金管のうちの一部の
ある一定本数の管群2aだけから被冷却流体が入り (
lバス)、出口側の管群2aより流出した流体は180
°反転し、流体が流出した管群2aの数よりある一定の
割合で多い本a(管内流体を加熱する場合はある一定の
割合で少い本数、以下同し)の管群2aの外周の管群2
bに入り (2パス)、人1−11側に1太ってきた流
体は再び180°反転し、流体が流出した管g2bの数
よりある一定の割合で多い本数の償群2bの外周の管群
2cに入り (3パス)出[13から流出する。
The fluid to be cooled enters only from a certain number of tubes 2a in a part of the brass tubes with reference to the center of the tubes on the person 1 side (
l bus), the fluid flowing out from the outlet side tube group 2a is 180
°The outer periphery of the tube group 2a of which the number of tubes a is larger in a certain proportion than the number of tube groups 2a from which the fluid has flowed out (in the case of heating the fluid in the tube, the number is smaller in a certain proportion, the same shall apply hereinafter). Tube group 2
The fluid enters b (2 passes) and increases in size by 1 on the person 1-11 side, then reverses 180° again and enters the outer circumferential pipes of compensation group 2b, the number of which is larger at a certain rate than the number of pipes g2b from which the fluid has flowed out. Enters group 2c (3 passes) Outflows from [13].

本例では3パスを示しているが、以下4パス、5パスと
適当なパス数迄増加は可能である。
Although three passes are shown in this example, it is possible to increase the number of passes to an appropriate number such as four passes or five passes.

一方熱媒体は人口4から流入し出1」5から流出する。On the other hand, the heat medium flows in from the population 4 and flows out from the outlet 1'5.

第4図は第3図の多管式熱交換器の?6・向流体の出入
「1のイ1切方法を、I(すA及びB方向矢視図である
Figure 4 shows the shell-and-tube heat exchanger shown in Figure 3? 6. Inflow and outflow of counter-fluids ``1.1.

人目側フランジ6及び11冒1側フランジ7のシール8
の配列は同心多角形配列又は回心円配列がある。
Seal 8 of side flange 7 on side flange 6 and 11
The array may be a concentric polygon array or a concentric circle array.

シール8.9は本例ではOリングを採用しており、人1
1、出1」側番々交!LにOリングをOリング溝に嵌入
することにより仕!、IIを形成し所定のパス数を得て
いる。
Seal 8.9 uses an O-ring in this example, and
1, exit 1” side number crossing! Finish by inserting the O-ring into the O-ring groove on L! , II to obtain a predetermined number of passes.

第5図は他のイ1切方法の実施例をツバす多管式熱交換
器の断面図及びA方向矢視図である。
FIG. 5 is a sectional view and a view taken in the direction of arrow A of a shell-and-tube heat exchanger according to another embodiment of the cutting method.

本例で7+バす如く、全面力スケツバio、tiによる
ソール法も口f能である。
In this example, the sole method using full force skates io and ti is also possible, as in the case of 7+bus.

第6図は管内流体を加熱する場合の多管式熱交換器の実
施例の断面図である。
FIG. 6 is a sectional view of an embodiment of a multi-tube heat exchanger for heating fluid within the tubes.

以下木発明の作用と効果について説明する。The functions and effects of the wooden invention will be explained below.

トマトヘースや味噌のような−11ニユートン流体を冷
却する場合、助断速度および温度が低ドすると粘性が急
激に増加するので、従来の多管式熱交換器で冷却する場
合は前述した如く偏ブイ己が発生し所定の温度まで冷却
することができない。
When cooling -11 Newton fluids such as tomato hese or miso, the viscosity increases rapidly when the cutting speed and temperature are low. self is generated and cannot be cooled to a predetermined temperature.

本発明の装置によれば、高温で粘に1の低い流体はlバ
ス11の債群を通過するので流速の低ドはルなく管内で
の滞留時間の増加も少ないため冷却ムラが少なく偏流の
発生が防止される。
According to the device of the present invention, the high temperature and low viscosity fluid passes through the group of l busses 11, so the flow velocity is not reduced and the residence time in the pipe is not increased, so there is less uneven cooling and no uneven flow. Occurrence is prevented.

又剪断速度も大きくなるので粘性は更に低ドし、圧力損
失の増加も抑えることができる。
Furthermore, since the shear rate increases, the viscosity is further reduced, and an increase in pressure loss can also be suppressed.

出口側の1パス目の管群を流出した流体は1806反転
し2パス目の管群に流入する。
The fluid that has flowed out of the first pass tube group on the outlet side is reversed 1806 and flows into the second pass tube group.

1パス目の管群で冷却され温度が低ドした分だけ管内流
体は粘度がl ’ilするが、2パス1]の管群はlパ
ス[Jの管群に比して本数が一定の割合で増加している
ので、流速が遅くなり圧力損失の増加を抑制することが
できる。
The viscosity of the fluid inside the tubes decreases by the amount of cooling and lower temperature in the first pass, but the viscosity of the fluid in the tubes decreases by the amount of cooling, but the viscosity of the fluid in the tubes in the second pass 1 is lower than that in the first pass [J]. Since the ratio increases, the flow rate slows down and an increase in pressure loss can be suppressed.

また冷却ムラも少なくなり偏流の発生も防1トされる。Furthermore, uneven cooling is reduced and the occurrence of drifting is also prevented.

この様に1パス、2パス、3パス、・・・・・・と段階
的に偏流が起きない程度の範囲で冷却を行ない、それに
従って通過する各パス管群の本数すなわち横断面積も増
加するので圧力損失の増加も防ぎながら所定の温度まで
流体を冷却することができる。
In this way, cooling is performed step by step through 1st pass, 2nd pass, 3rd pass, etc. to the extent that drifting does not occur, and the number of pipes passing through each path group, that is, the cross-sectional area, increases accordingly. Therefore, the fluid can be cooled to a predetermined temperature while preventing an increase in pressure loss.

、11ニユ一トンl≦L体を加熱・する場合にも、敬パ
スにより順次管群の本数を減少させて管内流体の流速を
段階的に増加させ粘度の低下を図り偏流の発生を防11
−する。
, 11 Even when heating a body with 1 ton of l≦L, the number of tubes in the group is sequentially reduced by careful passes, the flow velocity of the fluid in the tubes is increased step by step, and the viscosity is lowered to prevent the occurrence of uneven flow.
- to do.

又従来の熱交換器をポリスチレンのようなポリマーの重
合反応用の管壁の多?K・式反応器として使用する場合
、反応が進行すると液の粘性が極端に高くなり、又反応
ムラが少しでも起きると偏流が発生し、所定の反応が行
なわれないことが多いが1本発明に係る装置では、粘性
が極端に高くなることもなく、偏流も生じ難いので、反
応は一様に進行する。
Also, conventional heat exchangers are used for polymerization reactions of polymers such as polystyrene. When used as a K-type reactor, as the reaction progresses, the viscosity of the liquid becomes extremely high, and even the slightest unevenness of reaction causes uneven flow, which often prevents the desired reaction from taking place. In the apparatus according to the above, the viscosity does not become extremely high and drifting is difficult to occur, so the reaction proceeds uniformly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の多管式熱交換器の1例の断面図、第2図
は@1図の多管式熱交換器の管側仕切板の配列例を示す
矢視図、第3図は管内流体を冷却する場合の本発明の実
施例の多管式熱交換器の断面図、第4図は第3図の多管
式熱交換器の管内流体の出入口の仕切方法を示す矢視図
、第5図は他の仕切方法の実施例を示す多管式熱交換器
の断面図及び矢視図、第6図は管内流体を加熱する場合
の本発明の実施例の多管式熱交換器の断面図である。 2a、2b、2c 、、、、 一定の割合で多いヌは少
い本数の伝熱管 8.9 .1.、、、 oリング 10、l l 、、、、、、ガスケット出願人 ノリタ
ケカンパニーリミテド 代理人 〕を理士 加藤 朝道 第1図 第21届 第3図 @4図 h′>5図 イニ 6 図
Figure 1 is a cross-sectional view of an example of a conventional shell-and-tube heat exchanger, Figure 2 is a directional view showing an example of the arrangement of the tube-side partition plates of the shell-and-tube heat exchanger shown in Figure @1, and Figure 3. 4 is a cross-sectional view of a multi-tubular heat exchanger according to an embodiment of the present invention in the case of cooling fluid in the tubes, and FIG. 4 is a view of arrows showing a method of partitioning the inlet and outlet of the fluid in the tubes of the multi-tubular heat exchanger of FIG. 3. Figure 5 is a sectional view and an arrow view of a shell-and-tube heat exchanger showing an embodiment of another partitioning method, and Figure 6 is a shell-and-tube heat exchanger according to an embodiment of the present invention when heating fluid in the pipes. FIG. 3 is a cross-sectional view of the exchanger. 2a, 2b, 2c, . . . The number of heat exchanger tubes that are larger at a certain rate is smaller. 8.9 . 1. ,,, O-ring 10, l l ,,,, Gasket applicant Noritake Company Limited agent] Asamichi Kato, Physician, Figure 1, Notification 21, Figure 3 @ Figure 4 h'> Figure 5 Ini 6 Figure

Claims (1)

【特許請求の範囲】[Claims] 熱交換器本体内に複数の伝熱管群がNdされ、jA骨管
群流路方向が交IJ゛に異なる複数の同心状パスを彫成
し、各パスの伝熱管の組構…「面積は順次減少又は増加
することを特徴とする熱交換器。
A plurality of heat exchanger tube groups are arranged in the heat exchanger body, and a plurality of concentric paths are carved with different flow directions of the bone tube group at the intersection IJ, and the assembly structure of the heat exchanger tubes in each path is... A heat exchanger characterized by a sequential decrease or increase.
JP59041334A 1984-03-06 1984-03-06 Heat exchanger Expired - Fee Related JPH0660795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59041334A JPH0660795B2 (en) 1984-03-06 1984-03-06 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59041334A JPH0660795B2 (en) 1984-03-06 1984-03-06 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS60186691A true JPS60186691A (en) 1985-09-24
JPH0660795B2 JPH0660795B2 (en) 1994-08-10

Family

ID=12605620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59041334A Expired - Fee Related JPH0660795B2 (en) 1984-03-06 1984-03-06 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH0660795B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044431A (en) * 1989-08-24 1991-09-03 Cameron Gordon M Tube layout for heat exchanger
GB2424945A (en) * 2005-03-16 2006-10-11 Detroit Diesel Corp Two pass heat exchanger
CN100416208C (en) * 2005-12-31 2008-09-03 西安华广电站锅炉有限公司 High-efficiency energy-saving modular chamber type heat exchanger
CN110914630A (en) * 2017-05-26 2020-03-24 阿法拉伐奥米有限公司 Shell and tube installation with bypass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314446A (en) * 1976-07-26 1978-02-09 Hitachi Metals Ltd Gas cooler
JPS57192790A (en) * 1981-03-09 1982-11-26 Roochi Hiito Ekusuchienjiyaasu Shell-and-tube type heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314446A (en) * 1976-07-26 1978-02-09 Hitachi Metals Ltd Gas cooler
JPS57192790A (en) * 1981-03-09 1982-11-26 Roochi Hiito Ekusuchienjiyaasu Shell-and-tube type heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5044431A (en) * 1989-08-24 1991-09-03 Cameron Gordon M Tube layout for heat exchanger
GB2424945A (en) * 2005-03-16 2006-10-11 Detroit Diesel Corp Two pass heat exchanger
CN100416208C (en) * 2005-12-31 2008-09-03 西安华广电站锅炉有限公司 High-efficiency energy-saving modular chamber type heat exchanger
CN110914630A (en) * 2017-05-26 2020-03-24 阿法拉伐奥米有限公司 Shell and tube installation with bypass
US11073347B2 (en) 2017-05-26 2021-07-27 Alfa Laval Olmi S.P.A. Shell-and-tube equipment with bypass
CN110914630B (en) * 2017-05-26 2022-03-01 阿法拉伐奥米有限公司 Shell and tube installation with bypass

Also Published As

Publication number Publication date
JPH0660795B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
CA1122202A (en) Heat exchanger having improved tube layout
US3871445A (en) Reaction apparatus for carrying out exothermic and endothermic chemical processes with radial flow of a heat exchange medium
US4314606A (en) Apparatus for a treatment of flowing media which causes heat exchange and mixing
US4127165A (en) Angular rod baffle
US3854530A (en) Heat exchanger
US5466419A (en) Split flow reactor trays for vertical staged polycondensation reactors
JP2003106795A (en) Commutation device
EA030192B1 (en) Heat exchanger
AU2016221798B2 (en) Shell and tube heat exchanger
JPS60186691A (en) Heat exchanger
JP2019105418A (en) Multitubular heat exchanger and heat exchange system
US3830292A (en) Flow distribution for heat exchangers
US4598768A (en) Multi-shell heat exchanger
US1916768A (en) Heat exchanger
JP2000227299A (en) Multitubular heat exchanger
JPH01218632A (en) Heat exchange piping mixing and reaction apparatus
US2578550A (en) Multifluid heat exchanger
US4828021A (en) Heat exchanger baffle
US20220236014A1 (en) Tube-bundle heat exchanger comprising assemblies/built-in elements formed of deflection surfaces and directing sections
KR100530268B1 (en) Shell and tube type heat exchanger
JPH0228798B2 (en)
JPH0113274Y2 (en)
JP7274737B2 (en) Fluid circulation device and piping member used therefor
JPH07190648A (en) Heat exchanger and control method thereof
JP2019105417A (en) Multitubular heat exchanger and heat exchange system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees