JPS60185611A - Car height and orientation mode setting method - Google Patents

Car height and orientation mode setting method

Info

Publication number
JPS60185611A
JPS60185611A JP59040873A JP4087384A JPS60185611A JP S60185611 A JPS60185611 A JP S60185611A JP 59040873 A JP59040873 A JP 59040873A JP 4087384 A JP4087384 A JP 4087384A JP S60185611 A JPS60185611 A JP S60185611A
Authority
JP
Japan
Prior art keywords
control
vehicle height
threshold
attitude control
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59040873A
Other languages
Japanese (ja)
Inventor
Maki Iwano
岩野 真樹
Naoto Shima
直人 島
Yukimi Kitsukawa
橘川 幸美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP59040873A priority Critical patent/JPS60185611A/en
Publication of JPS60185611A publication Critical patent/JPS60185611A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To enable arbitrary setting of orientation and car height control and enables two controls to be compatible to each other, by a method wherein an orientation control signal is adopted as the starting condition of car height control, and a threshold equivalent to a starting condition is set separately from a threshold for orientation control and is varied. CONSTITUTION:A longitudinal direction accelerating speed G, serving as the deciding signal of scort control, is inputted to input the speed to a third comparator 62. A second threshold V2, being variable to a first threshold V1 being the reference set value of a second comparator 54, is inputted as a reference set value to a comparator 62, and the second threshold V2 is variable to the V1. A car height sensor 64, an A/D converter 66, and an RAM68 are provided, and a processing amount is regulated through detection of car height. The processed signal is outputted as a control instruction to each corresponding device through an input output device 70 from a processing unit 60. the starting region of orientation control can be freely regulated according to the setting way of the first and second thresholds V1 and V2.

Description

【発明の詳細な説明】 〔発明の利用分野〕一 本発明は車高・姿勢制御モード設定方法に係り、特に車
両の制御範囲を増して乗シ心地を任意に設定できるよう
に車高・姿勢制御のモードを変えられるような設定方法
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for setting a vehicle height/attitude control mode, and particularly to a vehicle height/attitude control mode setting method that increases the control range of a vehicle and allows the ride comfort to be arbitrarily set. It relates to a setting method that allows changing the control mode.

〔発明の背景〕[Background of the invention]

一般に、自動車にはスラローム走行時のローリングや急
発進、急停止時のスコート、ノーズダイブなどを防止す
るために姿勢制御機構を設けたものがある。また、走行
条件に応じて車高を調整する機構を有するものも知られ
ている。
Generally, some automobiles are equipped with an attitude control mechanism to prevent rolling, sudden starts, skorts, nose dives, etc. during slalom running, and sudden stops. Furthermore, vehicles having a mechanism for adjusting the vehicle height according to driving conditions are also known.

従来の上記姿勢制御機能と車高制御機能を併せ持つ車両
に適用されているエアショックシステムを第1図に示す
。このシステムは自動車の各輪に対応してエアショック
1と空圧ソレノイドパルプ2を設け(フロントの一方の
み図示)、フロントのエアショック相互およびリア側の
相互をアキュムレータ3F、3Rを介して接続している
。そしてアキュムレータ3F、3几を通じてエアの給排
を行わせるようにしている。エア供給はコンプレッサ4
によシデイシケータ5を介して一旦リザーブタンク6に
溜め、給気バルブ7を開動作させることで各アキュムレ
ータ3F、3几に供給するようにしている。なお給気バ
ルブ7からアキュムレータ3F、3Hに至る分岐路には
フロントソレノイドバルブ8F、 リアソレノイドバル
ブ8几を設けて、前後を区別して供給可能としている。
FIG. 1 shows a conventional air shock system applied to a vehicle that has both the above attitude control function and vehicle height control function. This system is equipped with an air shock 1 and a pneumatic solenoid pulp 2 corresponding to each wheel of a car (only one of the front wheels is shown), and the front air shocks and the rear air shocks are connected via accumulators 3F and 3R. ing. Air is supplied and discharged through the accumulators 3F and 3. Air supply is compressor 4
The air is temporarily stored in a reserve tank 6 via a desiccator 5, and is supplied to each of the accumulators 3F and 3 by opening an air supply valve 7. Note that a front solenoid valve 8F and eight rear solenoid valves are provided in the branch path from the air supply valve 7 to the accumulators 3F and 3H, so that the front and rear solenoid valves can be separately supplied.

一方、エア排気のために、フロントおよびリアソレノイ
ドパルプ8F、8Rには、給気パルプ7およびリザーブ
タンク6のバイパス路9を設け、ディジケータ5を介し
た排気路に排気パルプ10を設けている。
On the other hand, for air exhaust, the front and rear solenoid pulps 8F and 8R are provided with a bypass path 9 for the air supply pulp 7 and the reserve tank 6, and an exhaust pulp 10 is provided in the exhaust path via the indicator 5.

このシステムでは、姿勢制御信号を検知したとき、エア
ショック本体の空圧ソレノイドバルプ2を選択して作動
させ、はね定数を高くする。例えばローリング信号を検
知したときには左右いずれかが沈み込むこととなるので
、該沈み込み側の空圧ソレノイドパルプ2に閉動作信号
金与え、スコート信号を検知した場合にはリア側の両空
圧ソレノイドパルプ2を、ノーズダイブ信号検知の際は
フロント側の両空圧ソレノイドパルプ2をそれぞれ閉止
させるようにしている。また、車高調整信号に基づき、
エアショック1に対する給排気を行うが、車高上昇指示
によシ給気パルプ7、フロント・リアソレノイドパルプ
8F、8几を開動作させれば上昇される。また、車高下
降指示によシ排気バルブ10、フロント争リアソレノイ
ドパルプ8F、8Rを開動作させれば下降される。なお
、フロント・リアソレノイドパルプ8F、8)Lを選択
的に動作させることで前後部側々に車高調整できる。
In this system, when an attitude control signal is detected, the pneumatic solenoid valve 2 of the air shock body is selected and activated to increase the bounce constant. For example, when a rolling signal is detected, either the left or right side will sink, so a closing operation signal is given to the pneumatic solenoid pulp 2 on the sinking side, and when a skort signal is detected, both rear pneumatic solenoids When detecting a nose dive signal, both front side pneumatic solenoid pulps 2 are respectively closed. Also, based on the vehicle height adjustment signal,
Air supply and exhaust are performed for the air shock 1, and the air shock 1 is raised by opening the air supply pulp 7, front and rear solenoid pulps 8F, and 8 in response to an instruction to raise the vehicle height. Further, the vehicle height is lowered by opening the exhaust valve 10, front and rear solenoid pulps 8F and 8R in response to an instruction to lower the vehicle height. By selectively operating the front and rear solenoid pulps 8F and 8)L, the vehicle height can be adjusted to the front and rear sides.

ところが、上記姿勢と車高の両制御が可能とされる機構
で、従来では姿勢制御と車高制御とが両立できないとい
う問題があった。すなわち、姿勢制御信号に基づく操作
対象は空圧ソレノイドパルプ2でアシ、エアショック1
とアキュムレータ3F、3Rとを遮断してはね定数を調
整するいわゆるボリュームカット方式が採られているた
め、エアショック1に対する給排気による車高制御が不
可能となシ、姿勢制御と車高制御とは回路上両立できな
い。したがって、姿勢制御中に車高調整指令が入力され
る場合、姿勢制御を優先させるため、車高制御回路中に
時間遅れ回路を設け、また車高調整中に姿勢制御信号が
入力される場合に姿勢制御を優先させるようにしている
。例えば、スコート制御と車高制御との関係を例にとっ
て第2図に制御ブロック図を示す。スコート制御の判定
信号として車速Vと前後方向加速度Gを取シ込み、車速
VをF/V変換器11、第1比較器12に入力させて、
加速度Gを第2比較器13に入力させて、加速度Gを第
2比較器13に入力させて、それぞれ設定値と比較させ
ている。したがって、検出車速Vが設定速度より低く、
かつ加速度Gが設定値より大々る場合をスコート制御と
判定し、AND回路13から信号を出力させるのである
。一方、車高制御のだめの車高調整指令回路には時間遅
れ回路14が設けられ、姿勢制御中の車高調整指令に対
して姿勢制御の優先を図っている。また、車高上げ信号
回路と車高下げ信号回路にはAND回路15U、15P
を設け、これらの入力端子にはインバータ16を介し前
記姿勢制御の出力信号を入力させるようにし、車高制御
中の姿勢制御入力に対して車高指令をカットするように
している。
However, with the above-mentioned mechanism capable of controlling both attitude and vehicle height, there has been a problem in the past in that attitude control and vehicle height control cannot be performed at the same time. In other words, the objects to be operated based on the attitude control signal are pneumatic solenoid pulp 2 and air shock 1.
Since the so-called volume cut method is adopted in which the splash constant is adjusted by cutting off the air shock 1 and accumulators 3F and 3R, it is impossible to control the vehicle height by supplying and exhausting air shock 1. Attitude control and vehicle height control This is incompatible with the circuit. Therefore, when a vehicle height adjustment command is input during attitude control, a time delay circuit is provided in the vehicle height control circuit to give priority to attitude control, and when an attitude control signal is input during vehicle height adjustment, I try to prioritize posture control. For example, FIG. 2 shows a control block diagram illustrating the relationship between skort control and vehicle height control. The vehicle speed V and the longitudinal acceleration G are input as judgment signals for the skort control, and the vehicle speed V is inputted to the F/V converter 11 and the first comparator 12,
The acceleration G is inputted to the second comparator 13, and the acceleration G is inputted to the second comparator 13 and compared with respective set values. Therefore, the detected vehicle speed V is lower than the set speed,
If the acceleration G is greater than the set value, it is determined that squawt control is being performed, and a signal is output from the AND circuit 13. On the other hand, a time delay circuit 14 is provided in the vehicle height adjustment command circuit for controlling the vehicle height, so that attitude control is given priority over the vehicle height adjustment command during attitude control. In addition, AND circuits 15U and 15P are used for the vehicle height raising signal circuit and vehicle height lowering signal circuit.
are provided, and the output signals of the attitude control are inputted to these input terminals via the inverter 16, so that the vehicle height command is cut in response to the attitude control input during vehicle height control.

このように、従来では姿勢制御と車高制御とは同時に行
うことができない問題があった。加えて従来では本来車
高調整が必要な場合にも時間遅れ回路14を経由するた
め、車高制御の応答性が悪いという欠点もあった。
As described above, conventionally there has been a problem that attitude control and vehicle height control cannot be performed simultaneously. In addition, in the past, even when vehicle height adjustment was originally required, the time delay circuit 14 was used, so there was a drawback that the responsiveness of vehicle height control was poor.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来の問題点に着目し、姿勢制御と車高
制御の関係を任意に設定でき、両立させることができる
車高・姿勢制御のモード設定方法を提供することを目的
とする。
The present invention has focused on the above-mentioned conventional problems, and an object of the present invention is to provide a mode setting method for vehicle height/attitude control that can arbitrarily set the relationship between attitude control and vehicle height control and achieve both.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明に係る車高・姿勢制
御モード設定方法は、車高前後方向加速度等の姿勢制御
判定信号に第1の閾値を設けて姿勢制御開始条件とする
とともに、前記判定信号を取り込み第2の閾値を設けて
車高制御開始条件とし、両閾値の相反する区分領域を各
制御モードとなし、少なくとも前記第2の閾値が可変と
され車高および姿勢制御の重複モードを設定可能としだ
ものである。
In order to achieve the above object, a vehicle height/attitude control mode setting method according to the present invention provides a first threshold value for an attitude control determination signal such as vehicle height longitudinal acceleration, etc. as an attitude control start condition, and The determination signal is taken in and a second threshold is set as a condition for starting vehicle height control, and each control mode is defined as a segmented area where both thresholds conflict with each other, and at least the second threshold is variable and an overlapping mode of vehicle height and attitude control is provided. can be set.

上記構成によシ姿勢制御判定信号を利用してこれを車高
制御の開始条件に取シ入れ、開始条件に相当する閾値を
姿勢制御のだめの閾値と別に設けて可変としているため
、可変閾値の取シ方により姿勢制御モード、車高制御モ
ード、重複モードを任意に設定できる。したがって、車
高・姿勢制御の両立も可能となるのである。
The above configuration utilizes the attitude control determination signal and incorporates it into the start condition for vehicle height control, and the threshold corresponding to the start condition is set separately from the threshold for attitude control and is variable. Attitude control mode, vehicle height control mode, and duplication mode can be set as desired depending on how you choose. Therefore, it is possible to achieve both vehicle height and attitude control.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明に係る車高・姿勢制御モード設定方法の実
施例を図面を参照して詳細に説明する。
Embodiments of the vehicle height/attitude control mode setting method according to the present invention will be described in detail below with reference to the drawings.

まず、実施例に通用される車両のザスベンショ構成を第
3図に示す。このサスペンションは油空圧方式のもので
あり、車体と車輪との間に介在されるピストンシリング
機構20を有し、その油圧室22内に接続された減衰力
発生部24を含んでいる。減衰力発生部24はiiI+
 1減衰力バルプ26Aと第2減衰力バルプ26Bを有
し、これらには各々アキュムレータ28A、28Bを接
続している。そして、両減衰カバルブ26A、26Bの
入口側通路相互と出口側通路相互は4ボ一ト3位置切換
弁30r介して接続され、かつ第1減衰力パルプ26A
の入口側通路が油圧室22に直接接続されている。した
がって、切換弁30の操作により油圧室22と第1減衰
力バルプ26Aおよび第1アキュムレータ28A間を接
続しくモード1)、両減衰力バルプ26A、2613お
よび両アキュムレータ28A、28B間を接続しくモー
ド2)、あるいは第1減衰力パルブ26Aおよび両アキ
ュムレータ28A、28B間を接続(モード3)するこ
とを可能としている。
First, FIG. 3 shows the construction of the vehicle used in the embodiment. This suspension is of a hydropneumatic type, and has a piston sillage mechanism 20 interposed between the vehicle body and the wheels, and includes a damping force generating section 24 connected to a hydraulic chamber 22 of the piston silling mechanism 20 . The damping force generating section 24 is iii+
It has a first damping force valve 26A and a second damping force valve 26B, which are connected to accumulators 28A and 28B, respectively. The inlet side passages and the outlet side passages of both damping force valves 26A and 26B are connected to each other via a 4-point 3-position switching valve 30r, and the first damping force pulp 26A
The inlet side passage is directly connected to the hydraulic chamber 22. Therefore, by operating the switching valve 30, the hydraulic chamber 22 and the first damping force valve 26A and the first accumulator 28A are connected (Mode 1), and both the damping force valves 26A, 2613 and both the accumulators 28A, 28B are connected (Mode 2). ), or it is possible to connect the first damping force pulse 26A and both accumulators 28A and 28B (mode 3).

このようなサスペンションの回路における減衰力発生部
24の一次側、すなわち油圧室22に直接的に連通ずる
オイル給排通路32を設けている。
An oil supply/discharge passage 32 is provided that directly communicates with the primary side of the damping force generating section 24 in such a suspension circuit, that is, with the hydraulic chamber 22 .

この給排通路32はオイルポンプ34からの供給路36
と、タンク38に至る排出路40を有し、供給路36に
は比例電磁減圧弁42を、排出路40には比例電磁リリ
ーフ弁44を取付けている。斯かる機構は車両全輪に対
応して設けられ、ポンプ34を共通にした油圧回路で接
続されている(図示せず)。なお、ポンプ34への接続
路途中には油圧源側アキュムレータ46およびアキュム
レータηット弁48を設けている。
This supply/discharge passage 32 is a supply passage 36 from an oil pump 34.
A proportional electromagnetic pressure reducing valve 42 is attached to the supply channel 36, and a proportional electromagnetic relief valve 44 is attached to the discharge channel 40. Such a mechanism is provided corresponding to all wheels of the vehicle, and is connected by a hydraulic circuit having a common pump 34 (not shown). Note that a hydraulic pressure source side accumulator 46 and an accumulator η cut valve 48 are provided in the middle of the connection path to the pump 34.

したがって、上記油圧回路中で、車高の調整は減圧弁4
2あるいはリリーフ弁44の操作によ9行われ、姿勢制
御は各輪に対応する切換弁30を操作することで行われ
る。
Therefore, in the hydraulic circuit, the vehicle height is adjusted by the pressure reducing valve 4.
2 or 9 by operating the relief valve 44, and attitude control is performed by operating the switching valve 30 corresponding to each wheel.

次に、上記した油圧回路を対象として行われる車高−姿
勢制御モードの設定方法を実施するだめの制御ブロック
図を第4図に示す。この例は姿勢制御としてスコート制
御をと9、車高制御との間でモード設定を行うようにし
たものである。
Next, FIG. 4 shows a control block diagram for implementing the vehicle height-attitude control mode setting method performed for the above-mentioned hydraulic circuit. In this example, mode setting is performed between skort control as attitude control, and vehicle height control.

まず、スコート制御の判定信号として車速■と前後方向
加速度Gを採用しており、これを各センサによシ検出さ
せて取シ込むようにしている。車速VはF/V変換器5
0を経て第1比較器52に入力させ、ここで閾値として
の基準設定値VOと比較させている。基準設定値v6と
しては、スコート発生が発進時であるため、例えば10
b/hに相当する値とし、該設定値以下のときに比較器
52から信号を出力するものとしている。一方、前記加
速度Gは第2比較器54に入力させ、やはシ閾値として
の基準設定値■lと比較させている。
First, vehicle speed (2) and longitudinal acceleration (G) are used as judgment signals for skort control, which are detected and input by each sensor. Vehicle speed V is F/V converter 5
0 to the first comparator 52, where it is compared with a reference set value VO as a threshold value. The reference setting value v6 is set to 10, for example, since the squirt occurs at the time of departure.
b/h, and a signal is output from the comparator 52 when the value is less than the set value. On the other hand, the acceleration G is input to a second comparator 54, and is compared with a reference set value 1 as a threshold value.

この場合の基準設定値Vl としては例えば0.52に
相当する値とし、該設定値以上のとき比較器54から信
号を出力するものとしている。そして、第1、第2比較
器52.54の出力信号を第I A、ND回路56に入
力させ、第IAND回路56からの出力信号を姿勢制御
開始信号として入出力装置(Ilo)58に入力させ、
処理装置1(CPU)60を起動させるようにしている
In this case, the reference set value Vl is set to a value corresponding to, for example, 0.52, and a signal is output from the comparator 54 when it is equal to or greater than the set value. Then, the output signals of the first and second comparators 52 and 54 are input to the IA and ND circuits 56, and the output signals from the IAND circuit 56 are input to the input/output device (Ilo) 58 as attitude control start signals. let me,
The processing device 1 (CPU) 60 is started.

このような姿勢制御判定回路に対し、車高制御判定回路
を前記加速度信号経路に設けている。すなわち、スコー
ト制御の判定信号としての前後方向加速度Gを取シ込み
、これを第3比較器62に入力させている。この第3比
較器62には前記第2比較器54の基準設定値である第
1閾値v1に対して可変とされている第2閾値v2が基
準設定値として入力されており、該第2閾値v2を第1
閾値に対して可変としている。そしてこの第3比較器6
2では第2比較器54での判定領域と相反する領域を判
定領域とし、この実施例では加速度が第1閾値以上のと
きを姿勢制御判定領域としているので、加速度が第2閾
値以下のときを車高制御判定領域とするようにしている
。したがって、第2閾値v2が第1閾値vIを越えた場
合、等I7い場合、小さい場合により車高制御モードが
姿勢制御モードと重複し、連続化、あるいは背反関係と
なるように設定できるのである。次に、第3比較器62
は第2AN’D回路64に接続され、該第2AND回路
64の他の入力端子には第IAND回路56と同様に車
速信号経路の第1比較器52を接続している。第2AN
D回路64の出力信号は車高制御開始信号として入出力
装置58に入力させ、処理装置60を起動させるように
している。
In contrast to such an attitude control determination circuit, a vehicle height control determination circuit is provided in the acceleration signal path. That is, the longitudinal acceleration G is input as a determination signal for the skort control, and this is input to the third comparator 62. A second threshold v2, which is variable with respect to a first threshold v1, which is a reference setting value of the second comparator 54, is input to the third comparator 62 as a reference setting value. v2 first
It is variable with respect to the threshold value. And this third comparator 6
2, the determination area is the area opposite to the determination area of the second comparator 54, and in this embodiment, the attitude control determination area is the area when the acceleration is greater than or equal to the first threshold. This is set as a vehicle height control determination area. Therefore, when the second threshold value v2 exceeds the first threshold value vI, when the second threshold value v2 is small, or when the second threshold value v2 is small, the vehicle height control mode can be set to overlap with the attitude control mode, and can be set so that they are continuous or have a contradictory relationship. . Next, the third comparator 62
is connected to a second AND'D circuit 64, and the other input terminal of the second AND circuit 64 is connected to the first comparator 52 of the vehicle speed signal path, similarly to the IAND circuit 56. 2nd AN
The output signal of the D circuit 64 is inputted to the input/output device 58 as a vehicle height control start signal to start the processing device 60.

次に処理装置60ではスコート制御開始信号に基づき、
対象のサスペンションたる後部両サスペンションあるい
は全輪のサスペンションに対し、切換バルブ30をモー
ド1にし、かつ減圧弁42を低圧セットにし、リリーフ
弁44を高圧セットにするような制御をROM62から
読み取って行わせる。また、車高制御開始信号により車
高制御が可能となるが、別の制御系統からの上昇、下降
指令によシ、対象サスペンションの選択、調整値の演算
を処理装置60で行わせる。例えば上昇指令によシ、ア
キュムレータカット弁48を閉動作させ、減圧弁42お
よびリリーフ弁44を高圧セットさせる。反対に、下降
指令により、アキュムレータカット弁48を開動作させ
、減圧、リリーフ弁42.44を低圧セットにするので
ある。この際、周辺機器として車高センサ64、A、/
Dr換器66、RAM6sケ設け、車高検知てよる処理
景調整を行わせている。この処理された信号は処理装置
60から入出力装置70を経て、各対象機器に制御指令
として与えられるのである。
Next, in the processing device 60, based on the skort control start signal,
Control is read from the ROM 62 and executed for the target suspension, which is the rear double suspension or all-wheel suspension, by setting the switching valve 30 to mode 1, setting the pressure reducing valve 42 to the low pressure setting, and setting the relief valve 44 to the high pressure setting. . Although vehicle height control is enabled by the vehicle height control start signal, the processing device 60 selects the target suspension and calculates the adjustment value in accordance with the raising and lowering commands from another control system. For example, in response to a rise command, the accumulator cut valve 48 is closed, and the pressure reducing valve 42 and the relief valve 44 are set to high pressure. On the other hand, in response to the lowering command, the accumulator cut valve 48 is opened, and the pressure reduction and relief valves 42 and 44 are set to low pressure. At this time, the vehicle height sensor 64, A, /
It is equipped with DR converter 66 and RAM 6s, and the processing scenery is adjusted by detecting the vehicle height. This processed signal is sent from the processing device 60 via the input/output device 70 to each target device as a control command.

このような実施例によれば、小高・姿勢制御の開始領域
を第1、第2閾値v1+ v2の設定の仕方により自由
にできる。まず、両閾値V1.V2が異なり、vl:)
v2の場合には車高調整モードと姿勢制御モードとの間
に非制御モードが存在し、姿勢制御以前に車高調整を禁
止することができる。
According to such an embodiment, the start region of the height/posture control can be set freely depending on how the first and second threshold values v1+v2 are set. First, both threshold values V1. V2 is different, vl:)
In the case of v2, a non-control mode exists between the vehicle height adjustment mode and the attitude control mode, and vehicle height adjustment can be prohibited before attitude control.

また、両閾値vI+ v2が同一値の場合、姿勢制御と
車高調整を背反させて姿勢制御を優先させることができ
る。更に、両閾値vI+ v2が異なシvl(v2の場
合、両制御モードの電像区間が存在し、姿勢制御中の車
高調整を行わせることができるのである。
In addition, when both threshold values vI+v2 are the same value, attitude control and vehicle height adjustment can be made to conflict with each other and attitude control can be prioritized. Furthermore, when both threshold values vI+v2 are different from vl (v2), there is an electric image section for both control modes, and the vehicle height can be adjusted during attitude control.

この結果、車高・姿勢の重複モードを選択させることが
でき、姿勢制御中の車高調整をどの領域まで実施させる
かで、自動車の乗り味を大きく変化させることができ、
いわゆるパッシブサスペンンヨンからアクティブサスペ
ンションまでの選択が任意にできることとなる。
As a result, it is possible to select an overlapping mode of vehicle height and posture, and the ride quality of the vehicle can be greatly changed depending on the range in which the vehicle height is adjusted during posture control.
This means that you can freely choose from so-called passive suspension to active suspension.

なお、上記実施例ではスコート制御の加速匪信号を車高
制御開始条件に収り入れたが、これは車速信号としても
’iJ能である。また姿勢制御としてはローリング制御
、ノーズダイブ制御も対象とでき、これらの姿勢制御判
定信号である車速、横方向加速度等のいずれかを取シ込
み車高開始条件に取り込むことも可能である。更には姿
勢制御判定信号を1種類の信号罠依るものであれば、こ
の信号のみを取p込むこともできる。
In the above embodiment, the acceleration signal of the skort control is included in the vehicle height control start condition, but this also applies as a vehicle speed signal. Further, the attitude control can include rolling control and nose dive control, and it is also possible to incorporate any of these attitude control determination signals such as vehicle speed and lateral acceleration into the vehicle height start condition. Furthermore, if the attitude control determination signal is based on one type of signal trap, only this signal can be taken in.

〔発明の効果) 以上の如く、本発明によれば、車高・姿勢制御の独立モ
ードのみではなく、重複モードを設定できるというすぐ
れた効果が発揮される。
[Effects of the Invention] As described above, according to the present invention, an excellent effect is exhibited in that not only an independent mode of vehicle height and attitude control but also an overlapping mode can be set.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のエアショックシステム構成図、第2図は
従来の車高・姿勢制御ブロック図、第3図は油空圧サス
ペンション油圧回路図、第4図は実施例の単筒・姿勢制
御ブロック図である。 20・・・ビストンシリンダ機中+1¥、24・・・減
衰力発生部、30・・・切換弁、42・・・比例電磁減
圧弁、44・・・比例電磁リリーフ弁、52,54.6
2・・・比較器、56.64・・・AND回路、60・
・・処理装置(CPU)。 代理人 鵜 沼 辰 之
Figure 1 is a conventional air shock system configuration diagram, Figure 2 is a conventional vehicle height/attitude control block diagram, Figure 3 is a hydraulic pneumatic suspension hydraulic circuit diagram, and Figure 4 is an example monocylinder/attitude control. It is a block diagram. 20...Viston cylinder machine +1 yen, 24...Damping force generation part, 30...Switching valve, 42...Proportional electromagnetic pressure reducing valve, 44...Proportional electromagnetic relief valve, 52, 54.6
2...Comparator, 56.64...AND circuit, 60.
...Processing unit (CPU). Agent Tatsuyuki Unuma

Claims (1)

【特許請求の範囲】[Claims] (1)車両前後方向加速度等の姿勢制御判定信号に第1
の閾値を設けて姿勢制御判定信号とするとともに、前記
判定信号を取シ込み第2の閾値を設けて車高制御開始φ
件とし、両閾値の相反する区分領域を各制御モードとな
し、少なくとも前記第2の閾値が可変とされ車高および
姿勢制御の重複モードを設定可能としたことを特徴とす
る車高・姿勢制御モード設定方法。
(1) The first control signal is used for attitude control determination signals such as vehicle longitudinal acceleration, etc.
A threshold value is set for the attitude control determination signal, and a second threshold value is set for inputting the determination signal to start vehicle height control φ.
Vehicle height/attitude control characterized in that each control mode is defined as a segmented area in which both threshold values conflict with each other, and at least the second threshold value is variable so that overlapping modes of vehicle height and attitude control can be set. How to set the mode.
JP59040873A 1984-03-02 1984-03-02 Car height and orientation mode setting method Pending JPS60185611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59040873A JPS60185611A (en) 1984-03-02 1984-03-02 Car height and orientation mode setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59040873A JPS60185611A (en) 1984-03-02 1984-03-02 Car height and orientation mode setting method

Publications (1)

Publication Number Publication Date
JPS60185611A true JPS60185611A (en) 1985-09-21

Family

ID=12592628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59040873A Pending JPS60185611A (en) 1984-03-02 1984-03-02 Car height and orientation mode setting method

Country Status (1)

Country Link
JP (1) JPS60185611A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183304A (en) * 1982-04-19 1983-10-26 Honda Motor Co Ltd Car height adjusting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183304A (en) * 1982-04-19 1983-10-26 Honda Motor Co Ltd Car height adjusting device

Similar Documents

Publication Publication Date Title
KR100210217B1 (en) Apparatus and method for controlling damping force characteristic of vehicular shock absorber
JPH01297316A (en) Suspension controlling device for vehicle
JPS62198509A (en) Ground clearance regulating type roll control device for vehicle
JPS63106133A (en) Vehicle suspension device
JPS60185611A (en) Car height and orientation mode setting method
JPH0649449Y2 (en) Active suspension
JPH11147411A (en) Vehicle suspension unit
JP3334547B2 (en) Active suspension device
JPS58180310A (en) Automatic car height adjuster
JPS6346910A (en) Active suspension control device
JPH03109119A (en) Suspension controller
EP0791492B1 (en) Suspension control apparatus and method of controlling suspension
JPS60185613A (en) Hydropneumatic suspension
JP4281450B2 (en) Vehicle motion control device
EP0803385B1 (en) Suspension Apparatus
JPS611518A (en) Suspension control device
JP2623815B2 (en) Working fluid supply device for hydraulic suspension
JPH11217017A (en) Suspension control device for vehicle mounted with behavior control device
JP2598932Y2 (en) Vehicle height adjustment device with variable damping force shock absorber
JP2521276B2 (en) Vehicle suspension control device
JP3071221B2 (en) Hydraulic active suspension
JP2507078Y2 (en) Suspension device
JPH02162107A (en) Car height control device
JP2798282B2 (en) Height adjustment device
JPH01229710A (en) Integrated control device for suspension and steering