JPS60185349A - Fluorescent x-ray multiplier tube - Google Patents
Fluorescent x-ray multiplier tubeInfo
- Publication number
- JPS60185349A JPS60185349A JP18685A JP18685A JPS60185349A JP S60185349 A JPS60185349 A JP S60185349A JP 18685 A JP18685 A JP 18685A JP 18685 A JP18685 A JP 18685A JP S60185349 A JPS60185349 A JP S60185349A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- phosphor
- cesium
- face
- photoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/02—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
- H01J29/10—Screens on or from which an image or pattern is formed, picked up, converted or stored
- H01J29/36—Photoelectric screens; Charge-storage screens
- H01J29/38—Photoelectric screens; Charge-storage screens not using charge storage, e.g. photo-emissive screen, extended cathode
- H01J29/385—Photocathodes comprising a layer which modified the wave length of impinging radiation
Landscapes
- Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の技術分野〕 この発明はX線蛍光増倍管の改良に関する。[Detailed description of the invention] [Technical field of invention] This invention relates to improvements in X-ray fluorescence multipliers.
イメージ管のうち、X線蛍光増倍管は、医療用を主に工
業用被破壊検査などX線工業テレビをイク(用して広範
囲に応用されている。Among image tubes, X-ray fluorescence intensifier tubes are widely used for medical purposes, including industrial destructive inspections and other X-ray industrial televisions.
この種のX線蛍光増信管は、第1図に示すように構成さ
れ、真空容器である主としてガラスよりなる外囲器(1
)の入力側内部に入力蛍光面(2)および光電陰極(3
)が近接配置されている。This type of X-ray fluorescence intensifier tube is constructed as shown in Fig. 1, and has an envelope (1
) has an input phosphor screen (2) and a photocathode (3) inside the input side.
) are placed close together.
一方、外囲器(1)の出力側内部には陽極(4)が配置
されるとどもに出力蛍光面(5)が形成され、更に外囲
器(1)の内部の側面壁に沿って集束電極(6)が形成
されている。そして入射X線のを入力蛍光面(2)で一
旦、光に変換したのち、その光により光重陰極(3)か
ら光電子(8)を放出させ、この光電子(8)を陽極(
4)、集束電極(6)により加速集束して出力蛍光面(
5)に衝突させ、蛍光体を励起、発光させて輝度増強さ
れた光学像(9)を観察している。On the other hand, an anode (4) is placed inside the output side of the envelope (1), and an output fluorescent screen (5) is formed along the inner side wall of the envelope (1). A focusing electrode (6) is formed. After the incident X-rays are converted into light at the input phosphor screen (2), the light causes the light cathode (3) to emit photoelectrons (8), and these photoelectrons (8) are transferred to the anode (
4) Accelerate and focus with the focusing electrode (6) and output the phosphor screen (
5), the fluorescent material is excited and emitted, and an optical image (9) with enhanced brightness is observed.
ところで上記のようなX線蛍光増倍管において人力面は
従来第2図に示すように構成されている。By the way, the above-mentioned X-ray fluorescence intensifier tube has conventionally been constructed as shown in FIG. 2 in terms of human power.
すなわち主としてアルミニウムからなる一定の曲率を有
する基板(10)の凹面側に沃化セシウムを母体として
、これに付活剤どしてすl−リウム、りリウム等を加え
た蛍光体層(11)が真空蒸着法/L:どにより形成さ
れ、この蛍光体層(11)トにはアンチモンとセシウム
からなる光電面12がこれも真空蒸着法などにより形成
されている。しか]ノ沃化セシウムからなる蛍光体層(
11)は光電面を形成する基体としてはセシウムに対し
て十分安定でないため、前記蛍光体層(11)に形成さ
れたアンチモンとセシウムからなる光電面(12)は光
電感度が最高でも10マイクロアンペア/ルーメン程度
しか(qられイZい。また、通常の使用状態において、
基体が不安定ゆえに光電感度が徐々に低下していく現象
が見られる。その結果、蛍光体層(11)で発光した光
が十分に光電子(8)(第1図参照)に変換されないの
で輝度が低く、しかも使用時間の増加と共にさらに輝度
が低下していくという欠点を右づる。 もう1つの欠点
としてアンチモンとセシウムからなる光電面は多聞のセ
シウムを管内に導入してアンチモンと反応させないと形
成されないことに起因するものがある。すなわち、出力
面に使用されている蛍光体(5)(第1図参照)が光電
面形成時に導入された高il1度のセシウム蒸気の一部
にJ5かされて輝度の低下を1r1<ことと、更に進行
すると出力面の蛍光体ネマ1子が黒変して出力画商品(
Qを全く不良にすることである。That is, on the concave side of a substrate (10) mainly made of aluminum and having a certain curvature, there is a phosphor layer (11) made of cesium iodide as a matrix and to which activators such as sulium, lyrium, etc. are added. is formed by a vacuum evaporation method, and a photocathode 12 made of antimony and cesium is formed on this phosphor layer (11) also by a vacuum evaporation method. ] Phosphor layer made of cesium iodide (
11) is not sufficiently stable with respect to cesium as a substrate for forming a photocathode, so the photocathode (12) made of antimony and cesium formed on the phosphor layer (11) has a photoelectric sensitivity of 10 microamperes at most. / lumen. Also, under normal usage conditions,
A phenomenon in which the photoelectric sensitivity gradually decreases due to the instability of the substrate is observed. As a result, the light emitted by the phosphor layer (11) is not sufficiently converted into photoelectrons (8) (see Figure 1), resulting in low brightness, and the brightness further decreases as the usage time increases. Right side. Another drawback is that a photocathode made of antimony and cesium cannot be formed unless a large amount of cesium is introduced into the tube and reacted with antimony. In other words, the phosphor (5) used on the output surface (see Figure 1) is exposed to some of the high-il 1 degree cesium vapor introduced during the formation of the photocathode, causing a decrease in brightness. As the process progresses further, the phosphor material on the output surface turns black and the output image product (
It is to make Q completely defective.
この発明は上記欠点を改良するためなされたものであり
、光電感度を向上1ノて輝度を明るくし、さらに寿命特
性を向上ざ4Jるど共に、光電面形成時に出力画面品位
を劣化ざ1!ないのできれいな画質のX線蛍光増倍管を
提供することを目的とする。This invention was made to improve the above-mentioned drawbacks, and it not only improves the photoelectric sensitivity, brightens the brightness, and further improves the life characteristics, but also reduces the quality of the output screen when forming the photocathode. The purpose of this invention is to provide an X-ray fluorescence intensifier tube with high image quality.
(発明の概要)
本発明は曲率を有Jる基板と、この基板の凹面上に形成
された沃化セシウムを母体どじた蛍光体層と、この蛍光
体層上に形成され1=光電面とを備えたX線蛍光増倍管
において、前記蛍光体層上に形成された酸化物層とこの
層の表面に形成された導電層とからなる中間層と、この
中間層は蛍光体層からの発光に対しほぼ透明となるJ、
うに制御された状態で形成され、さらにこの中間層上に
アンチモンどカリウムと【?シウムとからなる光電面を
3−
具備することを特徴とするX線蛍光増倍管にあり、入力
面の構成として蛍光体層と光電面の間に酸化物層及び導
電層をからなる中間層を順次形成づることにより、中間
層で蛍光体層と光電面とを隔離し互いの反応を防止する
とともに不導電性を>jl電層でカバーし、光電感度の
向上をもたらず。(Summary of the Invention) The present invention includes a substrate having a curvature, a phosphor layer formed on the concave surface of the substrate and having a matrix of cesium iodide, and a photocathode formed on the phosphor layer. An J, which is almost transparent to luminescence;
Furthermore, antimony, potassium, and [?] are formed in a controlled manner on this intermediate layer. 3- An X-ray fluorescence multiplier tube characterized in that it is equipped with a photocathode made of Si, and an intermediate layer made of an oxide layer and a conductive layer between the phosphor layer and the photocathode as the structure of the input surface. By sequentially forming the phosphor layer and the photocathode, the intermediate layer isolates the phosphor layer and the photocathode to prevent their reaction with each other, and the non-conductivity is covered by the >jl electric layer, which does not result in an improvement in photoelectric sensitivity.
以下第3図を参照して本発明の一実施例について説明す
る。An embodiment of the present invention will be described below with reference to FIG.
Jなわち、本発明によるX線蛍光増倍管の入力面は蛍光
体層(11)と光電面(14)どの間に酸化物層(13
1>及び導電層(132)よりなる中間層が介在配置さ
れ、光電面14は従来のアンチモンとセシウムに代って
アンチモンとカリウムとセシウムとからなるものが用い
られる。In other words, the input surface of the X-ray fluorescence multiplier according to the present invention has an oxide layer (13) between the phosphor layer (11) and the photocathode (14).
1> and a conductive layer (132), and the photocathode 14 is made of antimony, potassium, and cesium instead of the conventional antimony and cesium.
酸化物層(13+)および導電層(13,、)よりなる
中間層は蛍光体層(11)と光電面(14)との間の主
としてセシウムの授受に起因する化学反応を防止しかつ
光電面の面方向の導電率を上げる作用をするものである
。The intermediate layer consisting of the oxide layer (13+) and the conductive layer (13,,) prevents a chemical reaction between the phosphor layer (11) and the photocathode (14) mainly due to transfer of cesium, and This has the effect of increasing the conductivity in the plane direction.
4−
すなわち、アルミニウム等からなる一定の曲率を有する
基板(1)の凹面上に沃化セシウムを母体としてこれに
付活剤どじです1〜リウムまたはタリウム等を加えた蛍
光体層(11)が形成され、この蛍光体層(11)十に
は酸化物層(131>例えば酸化アルミニウムを蛍光体
層(11)からの発光に対しほぼ透明どなるように制御
された状態C形成され、さらにこの酸化物層(13+
>の表面に導電層(132)例えばアルミニウムが蛍光
体層(11)からの発光に対しほぼ透明どなるように制
御された状態C形成されでいる。さらにこの導電層(1
32)上にはアンチモンとカリウムとシウムからなる光
電面(14〉が形成されている。4- That is, on the concave surface of a substrate (1) made of aluminum or the like and having a certain curvature, a phosphor layer (11) containing cesium iodide as a matrix and an activator added thereto (1-1) lium or thallium, etc. is formed. On this phosphor layer (11), an oxide layer (131), for example, aluminum oxide, is formed in a controlled state so that it is almost transparent to the light emitted from the phosphor layer (11), and furthermore, this oxide layer (11) is Material layer (13+
A conductive layer (132) such as aluminum is formed on the surface of the phosphor layer (132) in a controlled state so that it is almost transparent to light emitted from the phosphor layer (11). Furthermore, this conductive layer (1
32) A photocathode (14) made of antimony, potassium, and sium is formed on top.
なお、入力面以外は第1図と同様構成ゆえ詳細な説明を
省略する。Note that since the configuration other than the input surface is the same as that in FIG. 1, detailed explanation will be omitted.
このような入力蛍光面の製造方法について以下に説明す
る。A method of manufacturing such an input phosphor screen will be described below.
第1の方法は一定の曲率を右する清浄なアルミニウム基
板10にす1ヘリウムを付活剤として加えた沃化セシウ
ム(11)を真空蒸着により100〜150ミクロンの
厚さよCJfffj?4リ−る。その後で200・〜・
400°Cの温度で活性化処理を行なう。この時点で蛍
光体層(11)の表面は基板10から重直に成長【ノ、
直径が約20ミク[−1ンの結晶同志が竹る粒界のため
、きわめて凹凸に富む形状を♀している。このトに既知
の方法により酸化アルミニウムを蒸着し−C酸化物層(
131)を形成ηる。次にこの表面に既知の方法により
真空中τ・・例えばアルミニウムを×透過率で制御しな
がら導電層(13,、’)を形成する。The first method is to vacuum deposit cesium iodide (11) with helium added as an activator onto a clean aluminum substrate 10 with a certain curvature to a thickness of 100 to 150 microns. 4 Lee. After that 200...
The activation treatment is carried out at a temperature of 400°C. At this point, the surface of the phosphor layer (11) grows vertically from the substrate 10.
Because of the grain boundaries between crystals with a diameter of approximately 20 μm [-1 μm], the shape is extremely uneven. Aluminum oxide is deposited on this layer by a known method to form a -C oxide layer (
131) is formed. Next, a conductive layer (13,,') is formed on this surface by a known method while controlling the transmittance of τ...for example, aluminum in vacuum.
この時50%位に下がるまで蒸着して膜厚数1000人
のアルミニウム導電層(13□)を(qる。こう(〕て
酸化物層(13+)及び導電層N32)より<Zる中間
層の抵抗値はテスターの11が感じる、つまりMΩ以下
Cある。この入力面を管内にとりつ()でから、排気台
にとりつけ所定のベーキングを終rりる。次にアンチモ
ンを光の透過率で制御しながら最初の80%に低下り−
るまで蒸着する。その後カリウムとアンチモンを光電感
度が最高になるまで交互に加えて反応させる。次いでセ
シウムとアンチモンを交互に加えて反応させると光電感
度はさらに向上し、最高感度に至るまで行なってアンチ
モンとカリウムとセシウム光電面(14)の反応を完了
づる。At this time, the aluminum conductive layer (13□) is deposited until the thickness decreases to about 50%, and the thickness of the aluminum conductive layer (13□) is reduced to about 50%. The resistance value is felt by the tester 11, that is, it is C less than MΩ.This input surface is mounted inside the tube (), and then it is mounted on an exhaust stand and the prescribed baking is completed.Next, the antimony is measured by the light transmittance. Controlled drop to 80% of the initial level -
evaporate until After that, potassium and antimony are added alternately and reacted until the photoelectric sensitivity reaches its maximum. Next, when cesium and antimony are added alternately and reacted, the photoelectric sensitivity is further improved, and the reaction is continued until the maximum sensitivity is reached, and the reaction between antimony, potassium, and cesium photocathode (14) is completed.
上記方法で形成()たX線蛍光増イH’z、管の輝度は
従来のものに比べて40%明るく、先に述べた方法によ
る府命試験でvft度の低■は0〜5%であった。The brightness of the X-ray fluorescence increased H'z tube formed by the above method is 40% brighter than the conventional one, and the low Vft degree was 0 to 5% in the prefectural test using the method described above. Met.
出力蛍光面(5)(第1図参照)の画質ば鼾明でアルカ
リ金属によって殆ど被mされなかった。The image quality of the output phosphor screen (5) (see Figure 1) was clear and hardly covered with alkali metal.
ところで一層よりなる中間層例えば酸化アルミニウム、
酸化イツ[・リウム、酸化珪素等を数1000オンゲス
トロームの厚さに形成してから上記と同じようにアンチ
モンとカリウムどセシウムからなる光電面(14)を形
成した場合、光電面自身の抵抗が大きいため電荷の供給
がスムーズにいかないことがわかった。By the way, an intermediate layer consisting of one layer, for example aluminum oxide,
When a photocathode (14) made of antimony, potassium, and cesium is formed in the same manner as above after forming a layer of oxide, silicon oxide, etc. to a thickness of several thousand angstroms, the resistance of the photocathode itself is It was found that the supply of charge was not smooth because of the large value.
この発明のX線蛍光増倍管は上記説明及び図示のように
構成され、蛍光体層(11)と光電面14との間に低抵
抗の中間層、すなわら酸化物層(13+) ’及び導電
層(132)が形成されているのでアンチモンとカリウ
ムとセシウムとからなる光電面(14)の7−
使用が可能となった。リ−すわち、従来アンチモンとカ
リウムとセシウムとからなる光電面は光電面自身の抵抗
値がアンチモンとセシウムとからなる光電面の抵抗値よ
り高いのでX線蛍光増倍管の入力面のように大きい面積
の所へ適用するど電荷の供給が不充分となり特に明るい
画像すなわち入射X線の多い場合で光電流を多く必要と
するとき電荷供給源に近い周辺部しか画が瑛れないとい
うX線蛍光増倍管どして致命的な欠点を有した1、特に
沃化セシウム蛍光体のにうに表面の凹凸が激しい基体−
Fで前記欠点が顕著に現れた。The X-ray fluorescence multiplier of the present invention is constructed as described above and shown in the drawings, and includes a low-resistance intermediate layer, ie, an oxide layer (13+)', between the phosphor layer (11) and the photocathode 14. Since a conductive layer (132) and a conductive layer (132) are formed, it is possible to use a photocathode (14) made of antimony, potassium, and cesium. In other words, the resistance of the conventional photocathode made of antimony, potassium, and cesium is higher than that of the photocathode made of antimony and cesium, so it is used like the input surface of an X-ray fluorescence multiplier tube. When applied to a large area, the supply of charge becomes insufficient, resulting in a particularly bright image, i.e., when there are many incident X-rays and a large amount of photocurrent is required, only the peripheral area near the charge supply source can be imaged. Fluorescence multiplier tubes and other devices have fatal drawbacks, especially cesium iodide phosphors, which have extremely uneven surfaces.
The above-mentioned defects were noticeable in F.
一方、アンチモンどカリウムとセシウムかになる光電面
は沃化セシウム蛍光体によく適合しイの発光スペクトル
のピーク波長と、7ンヂモンとカリウムとセシウムとか
らなる光電面の最人感頂波艮とはよく一致し、発光スペ
クlヘルのピーク波長である400nlllではアンチ
モンどセシウムからなる従来の光電面に比べて約2倍の
感度を有するので分光感電の点ではアンチモンどカリウ
ムとセシウムからなる光電面が蛍光体層との組み合せに
おい8−
て最適である。On the other hand, the photocathode made of antimony, potassium, and cesium is well suited to the cesium iodide phosphor, and the peak wavelength of the emission spectrum of A is the most sensitive peak wavelength of the photocathode made of antimony, potassium, and cesium. are in good agreement, and at 400nllll, which is the peak wavelength of the emission spectrum, it has about twice the sensitivity compared to the conventional photocathode made of antimony and cesium, so in terms of spectral electric shock, the photocathode made of antimony and potassium and cesium is better. is optimal in combination with a phosphor layer.
そこで本発明の構成によってつくられたX線蛍光増倍管
は酸化物層及び導電層よりなる中間層の働きにより、蛍
光体層と光電面との間の化学的隔絶が達せられるどとも
に光電面の両方向の導電率も向上したので従来のものよ
り輝度が60〜100%向上し、使用中における輝度の
劣化は通常の使用状態で1年間に相当する強制試験の結
果、従来のものが約20%の低下に対()、本発明のも
のは5%で明らかにIt命時特性上でも改善された。Therefore, in the X-ray fluorescence multiplier made according to the structure of the present invention, chemical separation between the phosphor layer and the photocathode is achieved by the function of the intermediate layer consisting of the oxide layer and the conductive layer, and the photocathode The electrical conductivity in both directions has also been improved, resulting in a 60-100% improvement in brightness compared to the conventional one, and as a result of a forced test for one year under normal usage conditions, the brightness deterioration during use was approximately 20% lower than the conventional one. % decrease (), the one of the present invention clearly improved by 5% in terms of It life characteristics.
また入射xmmの多い場合でも画面全面にわたってほぼ
均一な特性の画像が得られるようになった。Furthermore, even when the incident x mm is large, an image with substantially uniform characteristics can be obtained over the entire screen.
さらにアンチモンとカリウムとセシウムからなる光電面
を使用した他の長所として光電面形成時に管内に導入し
たアルカリ金属の量が従来の半分以下に減少したため出
力蛍光面がセシウムにおかされないので画質が向上()
、1明な画像が得られるようになった。Furthermore, another advantage of using a photocathode made of antimony, potassium, and cesium is that the amount of alkali metal introduced into the tube during the formation of the photocathode has been reduced to less than half of the conventional amount, so the output phosphor screen is not exposed to cesium, resulting in improved image quality ( )
, it became possible to obtain clear images.
以上説明したΔ:うにこの発明によれば輝1α及び寿命
特性が向−トし、実用的価値大なるX線蛍光増倍管を提
供することができる。According to the present invention, the luminance 1α and the lifetime characteristics are improved compared to the Δ:uniform described above, and an X-ray fluorescence multiplier tube of great practical value can be provided.
、第1図は従来及びこの発明の一実施例を説明するため
に用いるX線蛍光増倍管を示す概略構成図、第2図は従
来のX線蛍光増倍管におりる入力面を拡大して示す断面
図、第3図はこの発明の一実施例に係るX線蛍光増倍管
の入力面を拡大して示づ一断面図である。
10・・・・・・基板、11・・・・・・蛍光体層、1
3.・・・・・・中間層、13□・・・・・・導電体層
、14・・・・・・光電而代理人 弁理士 則 近 憲
佑
11−
第1図, Fig. 1 is a schematic configuration diagram showing a conventional X-ray fluorescence multiplier used to explain an embodiment of the present invention, and Fig. 2 is an enlarged view of the input surface of the conventional X-ray fluorescence multiplier. FIG. 3 is a sectional view showing an enlarged input surface of an X-ray fluorescence intensifier tube according to an embodiment of the present invention. 10... Substrate, 11... Phosphor layer, 1
3. ......Intermediate layer, 13□...Conductor layer, 14...Photoelectric agent Patent attorney Noriyuki Chika 11- Figure 1
Claims (1)
た沃化セシウムを母体とした蛍光体層と、この蛍光体層
上に形成された光電面とを備えたX線蛍光増倍管におい
°C1前記蛍光体層上に形成された酸化物層とこの層の
表面に形成された導電層とからなる中間層と、この中間
層は蛍光体層からの発光に対しほぼ透明となるように制
御された状態で形成され、さらにこの中間層上にアンチ
モンとカリウムとセシウムとからなる光電面を具備する
ことを特徴とするX線蛍光増倍管。1. In an X-ray fluorescence multiplier tube comprising a substrate having a curvature, a phosphor layer made of cesium iodide as a matrix formed on the concave surface of this substrate, and a photocathode formed on this phosphor layer. °C1 An intermediate layer consisting of an oxide layer formed on the phosphor layer and a conductive layer formed on the surface of this layer, and this intermediate layer is almost transparent to light emitted from the phosphor layer. An X-ray fluorescence multiplier tube formed in a controlled manner and further comprising a photocathode made of antimony, potassium, and cesium on the intermediate layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18685A JPS60185349A (en) | 1976-08-23 | 1985-01-07 | Fluorescent x-ray multiplier tube |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9973476A JPS5916700B2 (en) | 1976-08-23 | 1976-08-23 | X-ray fluorescence multiplier tube |
JP18685A JPS60185349A (en) | 1976-08-23 | 1985-01-07 | Fluorescent x-ray multiplier tube |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9973476A Division JPS5916700B2 (en) | 1976-08-23 | 1976-08-23 | X-ray fluorescence multiplier tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60185349A true JPS60185349A (en) | 1985-09-20 |
Family
ID=26333108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18685A Pending JPS60185349A (en) | 1976-08-23 | 1985-01-07 | Fluorescent x-ray multiplier tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60185349A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0283020A2 (en) * | 1987-03-18 | 1988-09-21 | Kabushiki Kaisha Toshiba | Photocathode and method of manufacturing the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1204188A (en) * | 1966-12-27 | 1970-09-03 | Varian Associates | Method for making image pick-up screens for x-ray image intensifier tubes |
JPS5073556A (en) * | 1973-10-31 | 1975-06-17 |
-
1985
- 1985-01-07 JP JP18685A patent/JPS60185349A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1204188A (en) * | 1966-12-27 | 1970-09-03 | Varian Associates | Method for making image pick-up screens for x-ray image intensifier tubes |
JPS5073556A (en) * | 1973-10-31 | 1975-06-17 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0283020A2 (en) * | 1987-03-18 | 1988-09-21 | Kabushiki Kaisha Toshiba | Photocathode and method of manufacturing the same |
US4950952A (en) * | 1987-03-18 | 1990-08-21 | Kabushiki Kaisha Toshiba | Photocathode and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3693018A (en) | X-ray image intensifier tubes having the photo-cathode formed directly on the pick-up screen | |
US4100445A (en) | Image output screen comprising juxtaposed doped alkali-halide crystalline rods | |
JP2009301905A (en) | Photocathode | |
EP0731488B1 (en) | Microchannel plate and photomultiplier tube | |
JP2003249164A (en) | Transparent photocathode and electron tube | |
JPH0766758B2 (en) | Radiation Image Intensifier | |
US2689189A (en) | X-ray fluorescent screen | |
JPH07209495A (en) | X-ray image amplifier | |
US5256870A (en) | Input screen of a radiographic image intensifying tube having a radially variable thickness intermediary layer | |
JPS60185349A (en) | Fluorescent x-ray multiplier tube | |
JP2514952B2 (en) | X-ray image tube | |
JPS5916700B2 (en) | X-ray fluorescence multiplier tube | |
JPS5871536A (en) | Input surface of x-ray-image amplifier tube and its manufacture | |
JPH07260940A (en) | Luminance multiplier tube | |
JP3054032B2 (en) | Electron tube | |
US3961182A (en) | Pick up screens for X-ray image intensifier tubes employing evaporated activated scintillator layer | |
Millar et al. | An experimental X-ray image intensifier incorporating a channel electron multiplier plate | |
US4362933A (en) | Multistage vacuum x-ray image intensifier | |
US4568567A (en) | Method of removing trace quantities of alkali metal impurities from a bialkali-antimonide photoemissive cathode | |
JP3768658B2 (en) | Secondary electron emission device, manufacturing method, and electron tube using the same | |
JPH10223163A (en) | Radioactive image tube and manufacture thereof | |
JPH0139620B2 (en) | ||
JP2809689B2 (en) | Method of manufacturing input surface for X-ray image intensifier | |
Schagen | Image converters and intensifiers | |
JPS635853B2 (en) |