JPS60185119A - Heat sensitive flow-rate detector - Google Patents

Heat sensitive flow-rate detector

Info

Publication number
JPS60185119A
JPS60185119A JP59040801A JP4080184A JPS60185119A JP S60185119 A JPS60185119 A JP S60185119A JP 59040801 A JP59040801 A JP 59040801A JP 4080184 A JP4080184 A JP 4080184A JP S60185119 A JPS60185119 A JP S60185119A
Authority
JP
Japan
Prior art keywords
temperature
resistor
fluid
resistance
bridge circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59040801A
Other languages
Japanese (ja)
Inventor
Koji Tanimoto
考司 谷本
Hiroshi Sato
博 佐藤
Mikio Bessho
別所 三樹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59040801A priority Critical patent/JPS60185119A/en
Publication of JPS60185119A publication Critical patent/JPS60185119A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Abstract

PURPOSE:To make it possible to measure the flow rate of fluid highly accurately without relation to the temperature of the fluid to be measured, by setting the difference in temperatures of a heating resistor and a temperature compensating resistor so that the temperature difference has the proportional relationship with the temperature of the fluid. CONSTITUTION:A resistor 6 is made to be a heat sensitive resistor having the same temperature coefficient as those of a heating resistor 2 and a temperature compensating resistor 5. The resistors are provided in a flow path of fluid so that the temperatures of the resistors 2 and 6 become the same value. Based on the balancing conditions of a bridge circuit, the difference in temperatures of the resistors 2 and 5 has the proportional relationship with the temperature of the resistor 2. The current flowing resistor 2 does not depend on the temperature of the fluid. As a result, a voltage V11 at an output terminal 11 does not depend on the temperature of the fluid, and it is expressed as a function of the fluid. Therefore, the exact flow speed can be obtained by measuring the voltage V11.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は感熱形流11検出装置1%に流動流体の流動
量を9発熱体と流動流体間の熱伝達を利用して検出する
よう(・てした流量検出装置6に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention uses a heat-sensitive flow detection device 11 to detect the flow rate of a flowing fluid by utilizing heat transfer between a heating element and a flowing fluid. The present invention relates to a flow rate detection device 6.

〔従来技術〕[Prior art]

従来のこの種装置の構成を第1図に示す、)この図にお
いて、(1)は直流IL1.源、 (211:j−被+
II!I定ン’IC体である流動流体の流路内に配設さ
れた発熱抵抗で、後述する如< r9(定の制御電流が
供給さルろことにより加熱されるようfcなさ〕した温
1j〔依存性の抵抗体である。+31は上記発熱抵抗と
直列接続された固定抵抗、(4)け上記発熱抵抗と直列
1月係fC扱、光されたトランジスタで、上記発熱抵抗
+21に電流を供給するためのものである。
The configuration of a conventional device of this type is shown in FIG. 1.) In this figure, (1) is a DC IL1. source, (211:j-subject+
II! A heating resistor disposed in a flow path of a flowing fluid, which is a constant IC body, is used to maintain a temperature of [This is a dependent resistor. +31 is a fixed resistor connected in series with the above heat generating resistor, (4) is a transistor connected in series with the above heat generating resistor, treated as fC, and passing current to the above heat generating resistor +21. It is for supplying.

又、(51は上dピ兄熱抵抗と同僚に、流動流体の流路
内に配設されたYl−6度補償用抵抗で、上記発熱量l
;2)と同じ抵抗温度係数を有するようにされている0 t(il +71は夫々固定抵抗である。な2.上述し
た発熱抵抗(21,温度補償用抵抗(51及び固定抵抗
131 +61 (71ij−、これらによってブリッ
ジ回路を構成するように、なされている。
In addition, (51 is a Yl-6 degree compensation resistor arranged in the flow path of the flowing fluid, which corresponds to the upper d pi brother thermal resistor)
;2) 0 t(il +71 are fixed resistors, respectively.2) The above-mentioned heating resistor (21, temperature compensation resistor (51, and fixed resistor 131 +61 (71ij) -, these are configured to form a bridge circuit.

(8)は増巾器で、その非反転入力端子(8A)は上「
七発熱抵抗(21と固定抵抗(3)との接続点(9]に
接続され9反転入カー瑞子(8B)は同定抵抗(6)と
(7)との接、l光点t11vc :I&続されている
。又、上記増巾器(8)の出力V1M子(scull:
上記トランジスタ(4)のベースに接、洸されている。
(8) is an amplifier, and its non-inverting input terminal (8A) is
7 heating resistor (21) is connected to the connection point (9) of the fixed resistor (3), 9 inverted input car Mizuko (8B) is connected to the identification resistor (6) and (7), l light point t11vc: I & connection In addition, the output V1M child (scull:
It is connected to the base of the transistor (4).

(lυは出力信号1“r1M子で、上記ブリッジ回路1
tこおける「往圧時下を検出するものである。
(lυ is the output signal 1"r1M terminal, and the bridge circuit 1
This is to detect the "lower forward pressure" state at t.

今、ブリッジ回路を構成する抵抗121131 +01
 +61 +71の夫々J) (J−1;抗1)1j−
をR2,R,、’R5,R6,R,としり白熱抵抗(2
)と、゛1渭及補11を用抵抗15)の抵抗温1庭係数
をαとすると)れ熱抵抗(2)とζ^A度flli ・
lit用抵抗(5)は次のようになる。
Now, the resistor 121131 +01 that constitutes the bridge circuit
+61 +71 each J) (J-1; anti-1) 1j-
Let R2,R,, 'R5,R6,R, and incandescent resistance (2
), and if the resistance temperature coefficient of resistance 15) using α1 and 11 is α), the thermal resistance (2) and ζ^A degrees fli ・
The lit resistance (5) is as follows.

■(2−R2o(1+αT2) −−il+R5=R5
o(1+αT5) −=−= +2まただし R2o;
0℃における抵抗(2)の抵抗値R5o;0℃における
抵抗(51の抵抗値T2;抵抗(2)の温度 T5;抵抗(5)の温度 である〇 又、上記のブリッジ回路の子側条件は R2・R,= R3(R5中長、) ・・・・・・・・
・(3)であるからil+−U式より次式がめられる。
■(2-R2o(1+αT2) −-il+R5=R5
o(1+αT5) −=−= +2 square R2o;
Resistance value R5o of resistor (2) at 0°C; Resistance value T2 of resistor (51) at 0°C; Temperature T5 of resistor (2); Temperature of resistor (5) 〇Also, the slave side conditions of the above bridge circuit is R2・R, = R3 (R5 medium length,) ・・・・・・・・・
- Since (3), the following equation can be obtained from the il+-U equation.

)・・・ ・・ (4) こ\でムT=T2−T5 である。)... (4) Here, T=T2-T5.

又、(41式において RA ”’5O−R7”20と
なるように各抵抗を選択すればT5の係数は0となり9
発熱抵抗(21と温度補償用抵抗(5)との711A 
Ii差△Tは。
Also, if each resistor is selected so that RA ``'5O-R7'' is 20 in formula 41, the coefficient of T5 becomes 0 and becomes 9.
711A of heating resistor (21) and temperature compensation resistor (5)
Ii difference △T is.

ところで流体中の発熱体の発熱量Pと流速Uとの間には
次の関係が成立することが一般的に知られている。
By the way, it is generally known that the following relationship holds between the calorific value P of the heating element in the fluid and the flow velocity U.

P−工2R2−(a+1) 、/i)△T ・・・・・
・・・・(51こ\で 工 ;発熱抵抗(2)を流れる
電流a l b;流体の物理的性質によって決定される
定数 である。
P-work2R2-(a+1), /i)△T...
・ ・ ・ ・ (51 \ \, engine, current A L B; (2) is a constant determined by the physical properties of fluids.

従ってΔTが上述の如く一定であれば発熱量Pは流速の
平方根の一次関数となる。
Therefore, if ΔT is constant as described above, the calorific value P becomes a linear function of the square root of the flow velocity.

第1図における出力端子11110′颯圧v11はで与
えられるため、このvl、を測定することによりcAt
動体のML速を検出するようにしていた。
Since the pressure v11 at the output terminal 11110' in FIG. 1 is given by, by measuring this vl, cAt
It was designed to detect the ML speed of a moving object.

し7J)シこジノような従来の定温度差測定法によれば
、v、1に宮=目りるR2がI?4度依イI性を有する
ため広いl′1′、IX度・t1α囲にわたって温度補
償された高・清廉の測定で行なうことが出来なかった。
7J) According to the conventional constant temperature difference measurement method such as Shikojino, v, 1 = Miyaru R2 is I? Because it has a 4 degree dependence, it has not been possible to perform temperature-compensated, high-resolution measurements over a wide range of l'1', IX degrees and t1α.

〔開明の41え堤] この超可はこのような欠点を除去するためになされたも
ので1発熱抵抗と温度補1バ用抵抗とり温度差が流体温
度と比例関係になるように構成することにより高梢度の
流源測定r可能にする装置を提供しようとするものであ
る0 〔発明の実施例〕 以下、第2図に示すこの発明の一実施例について説明す
る。
[Kaimei no 41 Etsumi] This supercapacitor was made in order to eliminate such drawbacks, and is configured so that the temperature difference between the heating resistor (1) and the temperature compensator (1) is proportional to the fluid temperature. [Embodiment of the Invention] Hereinafter, an embodiment of the present invention shown in FIG. 2 will be described.

この図からも明らかな辿り、従来の装[dに訃ける抵抗
+61 t−発熱抵抗+21及び温度補償用抵抗鳳51
と同じ抵抗温度係数を有する感温抵抗に置き換えろと共
に接続点(9)を出力端子(lυとしたものであり、そ
の他の構成は第1図に示す従来装置と同様である。
It is clear from this figure that the conventional equipment [d resistor +61 t-heating resistor +21 and temperature compensation resistor 51]
In addition, the connection point (9) is replaced with a temperature-sensitive resistor having the same resistance temperature coefficient as the output terminal (lυ), and the other configurations are the same as the conventional device shown in FIG.

このような構成における動作について説明する。The operation in such a configuration will be explained.

先ず、感温抵抗(6)は次のように表わされる。First, the temperature sensitive resistance (6) is expressed as follows.

R=RN+αT) ・・・・・・ 16)6 60 に \でR6o;0℃における抵抗(61の抵抗値T6;抵
抗16)の温度 である。
R=RN+αT) 16) 6 60 \ and R6o is the temperature of the resistance (resistance value T6 of 61; resistance 16) at 0°C.

なお1発熱抵抗(21の抵抗値へはR5とR6のネlに
比して十分小さいものとする。
Note that the resistance value of 1 heating resistor (21) is sufficiently smaller than that of R5 and R6.

今1発熱抵抗(2)の温度と感温抵抗(61のl関度が
常に等しくなるように、夫々を流動体の流路中に設1薩
するものとする。
Each of them shall be installed in the flow path of the fluid so that the temperature of the heat generating resistor (2) and the l function of the temperature sensitive resistor (61) are always equal.

ブリッジ回路の乎陶条注は131式で示されているため
ill 12111i1式及びT2= T6の条1/4
’を夫々(3)式で代入すると RA”’50ΔT=T2(R3・R5o+R3・R6o
−R7・R2o)−−y(R,−R2o−R,−R6o
−R,・Fl、。)−=−171となる。 ただし△T
=T2−T5 である。
Since the bridge circuit is shown in formula 131, ill 12111i1 formula and T2 = 1/4 of T6.
By substituting each of ' in equation (3), RA'''50ΔT=T2(R3・R5o+R3・R6o
-R7・R2o)--y(R, -R2o-R, -R6o
-R,・Fl,. )-=-171. However, △T
=T2-T5.

+1)式に棧いてRA”50 = R7”20 となる
ようVこ谷体抗を選択するとT5とT2の温度差ΔTは
次のよう・・Cなる。
+1) If the V valley body resistance is selected so that RA"50 = R7"20, the temperature difference ΔT between T5 and T2 will be as follows...C.

18)式から明らかなようl!こるら緒抵抗(21と瀧
度f+i償用抵抗15)の錨IJ支差ΔTは発熱抵抗I
の’liA度T2と比例関保全有することに、なる。
18) As is clear from the formula, l! The anchor IJ difference ΔT of the Korurao resistance (21 and Takido f+i compensating resistance 15) is the heating resistance I
'liA has a proportional relationship with T2.

(8)戊及び(5)式から発熱抵抗+z+ +c =す
れるトに流工は次のよう(tこ流体温度に依存しない形
で表わされるっ又、第2図における出力端子0υの心圧
v、1をめると次のようになる0 ただし C1,C2は定数である。
(8) From Equation (8) and (5), heating resistance +z+ +c = flow rate is expressed as follows (tThis is expressed in a form that does not depend on the fluid temperature). Subtracting v and 1 gives the following 0 However, C1 and C2 are constants.

即ちvl、は流体温度に依存せず、しかも流速の関数と
して表わされるためとのvllを測定することにより正
確な流速をめることが出来るも(1)であるO 〔発明の効果〕 この発明は以上のようiC構成されているため。
In other words, vl does not depend on the fluid temperature and is expressed as a function of flow velocity, so by measuring vll, an accurate flow velocity can be determined. (1) [Effects of the Invention] This invention Because the iC is configured as above.

被測定流体の温度に関係なく流体の流酸を尚精度に計測
し得るものである0
0, which allows accurate measurement of fluid flow regardless of the temperature of the fluid being measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置の十M成を示す概略図、第2図はこ
の発明の一実施例を示す概略南である。 図中、(21は発熱抵抗、(4)はトランジスタ、15
)は温度補償用抵抗、(61は感温抵抗、(8)は増[
1〕“器、 (Illは出力端子である。 なお、同一符号は夫々相当部分を示す。 代理人 大岩増畑(ほか2名)
FIG. 1 is a schematic diagram showing a 10M configuration of a conventional device, and FIG. 2 is a schematic diagram showing an embodiment of the present invention. In the figure, (21 is a heating resistor, (4) is a transistor, 15
) is the temperature compensation resistor, (61 is the temperature sensitive resistor, (8) is the increase [
1] “Instrument, (Ill is the output terminal. The same symbols indicate the corresponding parts. Agent: Masuhata Oiwa (and 2 others)

Claims (1)

【特許請求の範囲】 il+ 流体の流路中に設置され、制仰覗流によって加
熱される温度依存性の発熱抵抗と、上記流体の温度Vこ
応じて抵抗が変化する温度補償用抵抗とを含むブリッジ
回路を構成し、上記ブリッジ回路q月1圧I・手下を計
I+llして上記流体の流量を計測するようVこしたも
のに分いて、上記発熱抵抗と上記諷1現抽11X用抵抗
とり温度差が上記流体の温度と比例1)j係になるよう
にしたことを特徴とする感熱形流!7t fl出−’&
 ’1m: 0 (2) 発熱抵抗と1!1A度補償用抵抗とは、同じ抵
抗温度係収とされたことを特徴とする特許請求の範囲5
44141’t N自戒の感熱形流鼠検出装置。 t:31 ブリッジ回路は1発熱抵抗ケー辺((、温度
曲III用抵抗と感温抵抗との直列接、νに体を他の一
辺に含むこと?j: ′P:j政とする勅許請求の1・
氾1711第1填又tA第2 、IQ−記載感熱形流量
検出装置1ffi 。 (4)感温抵抗は、流体の流路中に設置されたことを%
徴とする%計d青求の範囲第3ノ貝菩己載ゾ)感ゴ棲形
流駄検出装置
[Claims] il+ A temperature-dependent heating resistor installed in a fluid flow path and heated by a suppressed peeking flow, and a temperature-compensating resistor whose resistance changes depending on the temperature V of the fluid. Construct a bridge circuit including the above bridge circuit q month 1 pressure I + ll to measure the flow rate of the fluid V divided into the above heating resistor and the above 1 current resistance 11X resistor A heat-sensitive flow characterized in that the temperature difference is proportional to the temperature of the fluid. 7t fl out-'&
'1m: 0 (2) Claim 5, characterized in that the heating resistor and the 1!1A degree compensating resistor have the same resistance temperature coefficient.
44141't N self-discipline thermal type mouse detection device. t: 31 The bridge circuit consists of one heat-generating resistor ((, the series connection of the resistance for temperature curve III and the temperature-sensitive resistor, ν including the body on the other side?j: 'P:j Royal request for a government 1.
Flood 1711 first filler tA second, IQ-described heat-sensitive flow rate detection device 1ffi. (4) The temperature-sensitive resistor is installed in the fluid flow path.
3rd Nogai Bodhisattva included in the range of % d as a sign) Kango-shaped waste detection device
JP59040801A 1984-03-02 1984-03-02 Heat sensitive flow-rate detector Pending JPS60185119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59040801A JPS60185119A (en) 1984-03-02 1984-03-02 Heat sensitive flow-rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59040801A JPS60185119A (en) 1984-03-02 1984-03-02 Heat sensitive flow-rate detector

Publications (1)

Publication Number Publication Date
JPS60185119A true JPS60185119A (en) 1985-09-20

Family

ID=12590731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59040801A Pending JPS60185119A (en) 1984-03-02 1984-03-02 Heat sensitive flow-rate detector

Country Status (1)

Country Link
JP (1) JPS60185119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0737848A1 (en) * 1995-04-10 1996-10-16 Robert Bosch Gmbh Evaluation circuit for a mass flow sensor
WO2005050143A1 (en) * 2003-11-20 2005-06-02 Hitachi, Ltd. Thermal flowmeter of fluid
CN102353806A (en) * 2011-06-24 2012-02-15 清华大学 Temperature compensation circuit and method thereof for heat-sensitive flow rate sensor, and automatic adjusting method for power of heat-sensitive flow rate sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0737848A1 (en) * 1995-04-10 1996-10-16 Robert Bosch Gmbh Evaluation circuit for a mass flow sensor
WO2005050143A1 (en) * 2003-11-20 2005-06-02 Hitachi, Ltd. Thermal flowmeter of fluid
JPWO2005050143A1 (en) * 2003-11-20 2007-06-14 株式会社日立製作所 Thermal fluid flow meter
CN100408981C (en) * 2003-11-20 2008-08-06 株式会社日立制作所 Thermal flowmeter of fluid
US7631555B2 (en) 2003-11-20 2009-12-15 Hitachi, Ltd. Thermal flowmeter for measuring a flow rate of fluid
JP4558647B2 (en) * 2003-11-20 2010-10-06 日立オートモティブシステムズ株式会社 Thermal fluid flow meter
CN102353806A (en) * 2011-06-24 2012-02-15 清华大学 Temperature compensation circuit and method thereof for heat-sensitive flow rate sensor, and automatic adjusting method for power of heat-sensitive flow rate sensor

Similar Documents

Publication Publication Date Title
US3942378A (en) Fluid flow measuring system
US2573596A (en) Temperature responsive system
US5189362A (en) High frequency signal measurement circuits utilizing temperature-sensitive devices
JPS60185119A (en) Heat sensitive flow-rate detector
US4475387A (en) High temperature mass flowmeter
US2745283A (en) Temperature change compensated thermal measuring device
US4596140A (en) Constant overheat anemometer with sensor lead wire impedance compensation
Huijsing et al. Thermal mass-flow meter
SU1204934A1 (en) Heat flow meter
JP3410562B2 (en) Temperature / wind speed measurement device
Eklund et al. Application of the hot wire anemometer to temperature measurement in transient gas flows
SU390366A1 (en) E ^ SGSOYUZ id M. A. Musievsk and V. A. Kochan 1 "^ '' * - ^ '-' ^ ^ - Ш1Е; ^? 4f
SU970113A1 (en) Thermal flowmeter
JP2879256B2 (en) Thermal flow meter
SU1157356A1 (en) Heat flowmeter
SU1278726A1 (en) Indicator of velocity of gas flow
RU2034248C1 (en) Device for measuring temperature
SU1012101A1 (en) Composition thermal gas-dynamic analyzer
KR100262225B1 (en) A measurement circuit of flow rate
JPS5827015A (en) Airflow measuring device for automobile
SU1140044A1 (en) Device for measuring speed of non-isothermal flows
SU870978A1 (en) Device for measuring temperature
SU777586A1 (en) Method of graduating thermoanemometer
JP2616150B2 (en) Thermal air flow meter
SU447579A1 (en) Temperature measuring device