JPS60184597A - Purification of crude glyceride oil composition - Google Patents
Purification of crude glyceride oil compositionInfo
- Publication number
- JPS60184597A JPS60184597A JP4062384A JP4062384A JPS60184597A JP S60184597 A JPS60184597 A JP S60184597A JP 4062384 A JP4062384 A JP 4062384A JP 4062384 A JP4062384 A JP 4062384A JP S60184597 A JPS60184597 A JP S60184597A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- glyceride oil
- stage
- semipermeable membrane
- oil composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Fats And Perfumes (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は半透膜を用いる粗製グリセリド油組成物の精製
方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying crude glyceride oil compositions using semipermeable membranes.
通常、食用油として用いられる植物油には大豆油、ナタ
ネ油、ヒマワリ油、サフラワー油等がある。これらの植
物油を製造するには、先ず、その原料中の含油量に応し
て、原料を圧搾したり、又は原料をヘキサノのような有
機溶剤で抽出してミセラとし、このミセラから溶剤を蒸
発除去して粗製グリセリド油組成物を得る。この粗製グ
リセリド油組成物には、レシチン等のリン脂質を主成分
とする不純物、所謂ガム質が通常、1.5〜3%程度含
まれており、このガム質は油の加熱時に分解して、油を
着色させたり、異臭を生じさせ、或いはその味を損なう
ため、粗製グリセリド油組成物中のガム質をできる限り
除去することが必要である。Vegetable oils commonly used as edible oils include soybean oil, rapeseed oil, sunflower oil, and safflower oil. To produce these vegetable oils, first, depending on the oil content in the raw materials, the raw materials are either compressed or extracted with an organic solvent such as hexano to form miscella, and the solvent is evaporated from the miscella. removal to obtain a crude glyceride oil composition. This crude glyceride oil composition usually contains about 1.5 to 3% of impurities mainly composed of phospholipids such as lecithin, so-called gum, and this gum breaks down when the oil is heated. It is necessary to remove as much gummy matter as possible from the crude glyceride oil composition, since it may color the oil, give off an off-flavor, or impair its taste.
従来は、粗製グリセリド油組成物に水を加え、ガム質を
水和し、膨潤、凝固させた後、遠心分離によって脱ガム
しているが、この脱ガム油にもガム質が尚0.1〜1重
量%程度含まれており、通常は薬剤を用いて脱ガムを繰
返した後、脱酸脱色脱臭してガム質をloOppm以下
として製品グリセリド油を得ている。しかしながら、こ
のように従来から行なわれている精製方法は煩雑な脱ガ
ム操作を繰返して行なう必要があると共に、脱ガム操作
によって相当量の油の損失を余儀なくされている。Conventionally, water is added to a crude glyceride oil composition to hydrate, swell, and solidify the gum, and then degum is performed by centrifugation. It contains about 1% by weight, and usually after repeated degumming using chemicals, the product is obtained by deoxidizing, decolorizing, deodorizing, and reducing the gum quality to loOppm or less. However, such conventional refining methods require repeated and complicated degumming operations, and the degumming operations inevitably result in the loss of a considerable amount of oil.
このような不利益を除くため、粗製グリセリド油組成物
の新しい精製方法が特開昭50−153010号公報に
提案されている。この方法は、粗製グリセリド油組成物
をヘキサン等の有機溶剤で希釈したミセラを合成有機重
合体からなる半透膜に加圧下に接触させ、濃縮された膜
不透過液からヘキサンとグリセリド油を膜透過液として
分離し、膜透過液から有機溶剤を除去して精製油を得る
一方、濃縮された膜不透過液から必要に応じてレシチン
等のリン脂質を回収するものである。In order to eliminate such disadvantages, a new method for purifying crude glyceride oil compositions has been proposed in JP-A-50-153010. In this method, a crude glyceride oil composition diluted with an organic solvent such as hexane is brought into contact with a semipermeable membrane made of a synthetic organic polymer under pressure, and hexane and glyceride oil are extracted from the concentrated membrane retentate through the membrane. The membrane permeate is separated as a permeate, and the organic solvent is removed from the membrane permeate to obtain a purified oil, while phospholipids such as lecithin are recovered from the concentrated membrane non-permeate as necessary.
しかしながら、現実に粗製グリセリド油組成物を工業的
規模で膜処理して精製グリセリド油を得るには種々の問
題が存在する。これらのうち最大の問題は、精製グリセ
リド油を高い回収率で膜透過液として得るには、通常、
ミセラを20〜60倍程度に濃縮しなければならないが
、ミセラが濃縮されてミセラ中のリン脂質濃度が上昇す
るにつれて、その粘度が上昇し、膜透過液量が著しく減
少することである。従って、単一の膜処理操作にてミセ
ラを10倍又はそれ以上のvf2縮倍率にまで連続して
濃縮するには、非常に大型の装置を必要とするのみなら
ず、エネルギー効率も悪化するため、膜処理による利点
が失われ、工業上、好ましくない。However, there are various problems in actually obtaining purified glyceride oil by membrane processing a crude glyceride oil composition on an industrial scale. The biggest problem among these is that in order to obtain purified glyceride oil as a membrane permeate with a high recovery rate, it is usually necessary to
The micella must be concentrated approximately 20 to 60 times, but as the micella is concentrated and the phospholipid concentration in the micella increases, its viscosity increases and the amount of liquid permeating through the membrane decreases significantly. Therefore, in order to continuously concentrate micella to a vf2 reduction factor of 10 times or more in a single membrane treatment operation, not only a very large equipment is required, but also energy efficiency deteriorates. , the advantages of membrane treatment are lost, which is industrially unfavorable.
本発明者らは、粗製グリセリド油組成物の半透膜による
精製における上記した問題を解決するために鋭意研究し
た結果、粗製グリセリド油組成物のミセラを半透膜にて
順次に多段に処理し、且つ、各段における濃縮倍率を所
定の範囲に保って膜処理することによって、ミセラの高
?7f4縮に要する時間を最短として、高回収率で連続
的に精製グリセリド油を得ることができることを見出し
、本発明に至ったものである。As a result of intensive research to solve the above-mentioned problems in refining crude glyceride oil compositions using semipermeable membranes, the present inventors have found that the micella of crude glyceride oil compositions are sequentially treated in multiple stages using semipermeable membranes. , and by performing membrane treatment while maintaining the concentration ratio in each stage within a predetermined range, the concentration ratio of micella can be increased. It was discovered that purified glyceride oil can be obtained continuously at a high recovery rate by minimizing the time required for 7f4 contraction, and the present invention was developed based on this finding.
本発明による粗製グリセリド油組成物の精製方法は、グ
リセリド油とリン脂質とを含有する粗製グリセリド油組
成物を有機溶剤で希釈してミセラとし、このミセラを半
透膜に加圧下に接触させて半透膜透過液と半透膜不透過
液とに分離し、半透膜透過液と半透膜不透過液の少なく
とも一方から有機溶剤を除去して、粗製グリセIJ ト
油及び/又は精製リン脂質を得る方法において、半透%
をn段(但し、nは2以上の整数を示す。)に設置し、
半透膜不透過液を各段の半透膜により順次に処理して、
最終濃縮倍率Xまで濃縮するに際して、第i段の半透膜
による濃縮率Xi
(但し、iは1≦i≦nなる整数を示す。)をXiミK
(’v/Y)ス
(但し、Kは0.7〜1.3の数を示す。)とすること
を特徴とする。A method for purifying a crude glyceride oil composition according to the present invention involves diluting a crude glyceride oil composition containing glyceride oil and phospholipids with an organic solvent to form miscella, and bringing the miscella into contact with a semipermeable membrane under pressure. The semipermeable membrane permeate liquid and the semipermeable membrane non-permeate liquid are separated, and the organic solvent is removed from at least one of the semipermeable membrane permeate liquid and the semipermeable membrane non-permeate liquid to produce crude glycerin oil and/or purified phosphorus. In the method of obtaining lipids, the semipermeability %
are installed in n stages (where n indicates an integer of 2 or more),
Semipermeable membrane The unpermeated liquid is sequentially treated with each stage of semipermeable membrane,
When concentrating to the final concentration factor
('v/Y) (where K represents a number from 0.7 to 1.3).
即ち、本発明の方法においては、ミセラの膜不透過液の
流れ方向にn段(但し、nは2以上の整数を示す。)の
膜モジュールを直列に接続して設置し、膜不透過液を各
段の半透膜モジュールにて順次に濃縮し、このようにし
て最終段の半透膜モジュールにて所定の濃縮倍率Xまで
濃縮するに際して、第i段(但し、iは1≦i≦nなる
整数を示す。)
における濃縮倍率Xiを
X1=K(’□)1
(但し、Kは0.7〜1.3の数を示す。)とすること
により、全膜モジュール、即ち、n段の半透膜モジュー
ルからの透過液量を最大とする、換言すれば、所定の濃
縮倍率まで濃縮するに要する時間を最短とすることがで
きる。但し、第i段における濃縮倍率Xiとは、(第1
段から第i段までの膜透過液の合計量子第i段での膜不
透過液量)/(第i段での膜不透過液量)で定義される
。That is, in the method of the present invention, n stages (n is an integer of 2 or more) of membrane modules are connected in series and installed in the flow direction of the membrane non-permeate liquid of Micella. is sequentially concentrated in the semipermeable membrane module of each stage, and in this way, when concentrated to a predetermined concentration factor X in the semipermeable membrane module of the final stage, the i-th stage (where i By setting the concentration ratio Xi at The amount of permeated liquid from the semipermeable membrane module in the stage can be maximized, in other words, the time required to concentrate to a predetermined concentration ratio can be minimized. However, the concentration factor Xi in the i-th stage is (the first
The total quantum of the membrane permeable liquid from stage to i-th stage is defined as (the amount of membrane non-permeable liquid in the i-th stage)/(the amount of membrane non-permeable liquid in the i-th stage).
上記式において、Kの値が0.7よりも小さいときは、
第i段でのミセラの膜透過速度は大きいが、濃縮倍率が
小さいために、当該第1段以降第n段までの膜モジュー
ルにて処理すべきミセラが多量に残り、このため第1段
以降第n段までの濃縮に長時間を要することになる。一
方、Kの値が1.3よりも大きいとき、第i段での濃縮
倍率が大きすぎるために、膜透過速度が著しく低下し、
第i段の濃縮に長時間を要する。このように、Kの値が
小さずぎても、大きすぎても、全体としてミセラ濃縮に
長時間を要することになる。In the above formula, when the value of K is smaller than 0.7,
Although the membrane permeation rate of micella in the i-th stage is high, since the concentration ratio is small, a large amount of micella remains to be treated in the membrane modules from the 1st stage to the nth stage, and therefore Concentration up to the nth stage will take a long time. On the other hand, when the value of K is larger than 1.3, the membrane permeation rate decreases significantly because the concentration ratio in the i-th stage is too large.
The i-th stage concentration takes a long time. In this way, whether the value of K is too small or too large, it will take a long time to concentrate the micella as a whole.
本発明の方法においては、n段の膜モジュールによりミ
セラを当初の3〜80倍、好ましくは5〜70倍、特に
好ましくは20〜60倍に連続濃縮するに際して、各段
における濃縮イB率を上記のように最終濃縮倍率X及び
に値とによって規定される所定の値とすることによって
、n段の膜モジュールからなる装置全体において、ミセ
ラは最大の透過液速度にて濃縮され、かくして、装置全
体が最小化され、且つ、最短時間でミセラを処理するこ
とができる。In the method of the present invention, when concentrating miscella continuously by 3 to 80 times, preferably 5 to 70 times, particularly preferably 20 to 60 times the original amount using n-stage membrane modules, the concentration rate in each stage is adjusted. As mentioned above, by setting the final concentration ratio to a predetermined value defined by the value of The overall process is minimized and micella can be processed in the shortest possible time.
第1図は本発明の方法を実施するための装置構成の一例
を示し、半透膜を2段に接続したものである。この装置
において、ミセラば貯槽1から第1段の半透膜2に循環
供給されて膜透過液3と濃縮された膜下透過液4に分離
され、膜下透過液4の一部′は再び貯槽1に戻される。FIG. 1 shows an example of an apparatus configuration for carrying out the method of the present invention, in which semipermeable membranes are connected in two stages. In this device, micella is circulated and supplied from a storage tank 1 to a semipermeable membrane 2 in the first stage, where it is separated into a membrane permeate 3 and a concentrated submembrane permeate 4, and a portion of the submembrane permeate 4 is recycled again. It is returned to storage tank 1.
IFJ不透過液4の一部又は全部は別の貯槽5を経て第
2段の半透膜6に循環供給され、再び膜透過液3゛と膜
下透過液4゛とに分離されて、膜下透過液4゛の一部は
再び貯槽5に戻される。このようにして、ミセラは定常
状態において最終的な濃縮倍率まで濃縮されて、その一
部又は全部が濃縮液7として装置から連続して取出され
る。Part or all of the IFJ non-permeate liquid 4 is circulated and supplied to the second-stage semipermeable membrane 6 via another storage tank 5, and is again separated into a membrane permeate liquid 3' and a submembrane permeate liquid 4'. A portion of the lower permeate 4' is returned to the storage tank 5 again. In this way, the miscella is concentrated to the final concentration factor in a steady state, and part or all of it is continuously removed from the apparatus as the concentrate 7.
本発明において用いる半透膜は、管状、キャピラリー状
、平板状、スパイラル状等のいずれの形態のモジュール
も使用できる。これらの111モジユールへのミセラの
供給圧力は特に制限されない。The semipermeable membrane used in the present invention can be a module in any form such as a tubular shape, a capillary shape, a flat plate shape, or a spiral shape. The pressure at which micella is supplied to these 111 modules is not particularly limited.
普通、膜形前により異なるが、1〜50kg/cJ程度
である。Usually, it is about 1 to 50 kg/cJ, although it varies depending on the membrane shape.
本発明においてこれら半透膜は、通常、1000〜10
0000、好ましくば10000〜50000の分子量
分画性を有し、通常、限外濾過膜といわれている半透膜
がよい。分子量分画性の値が小さすぎると、透過液量が
小さくなる傾向があり、一方、大きすぎるとガム質の分
離能に劣る傾向が、あるからである。In the present invention, these semipermeable membranes usually have a molecular weight of 1,000 to 10
A semipermeable membrane having a molecular weight fractionation of 0,000, preferably 10,000 to 50,000 and is usually called an ultrafiltration membrane is preferred. This is because if the molecular weight fractionation value is too small, the amount of permeate tends to be small, while if it is too large, the ability to separate gummy substances tends to be poor.
ここに、分子量分画性は、分子量が既知の溶質に対する
半透膜の排除率を測定することによって知ることができ
る。実際には、例えば平均分子量が既知であり、分子量
分布が単分散性のポリエチレングリコールを溶質(濃度
5000 ppm )とするトルエン溶液を用いて膜の
排除率を測定するのがよい。従って、ここにおいても、
25℃の温度で3kg/ cJの圧力下に平均分子量が
種々異なるポリエチレングリコールのトルエン溶液を用
いて排除率を測定し、排除率が少なくとも95%である
ポリエチレングリコールの最小の分子量をその膜の分子
量分画性とする。Here, molecular weight fractionation can be determined by measuring the exclusion rate of a semipermeable membrane for a solute of known molecular weight. In practice, for example, it is preferable to measure the rejection rate of a membrane using a toluene solution containing polyethylene glycol as a solute (concentration 5000 ppm), whose average molecular weight is known and whose molecular weight distribution is monodisperse. Therefore, here too,
The rejection rate was measured using toluene solutions of polyethylene glycol with different average molecular weights under a pressure of 3 kg/cJ at a temperature of 25 °C, and the lowest molecular weight of polyethylene glycol with an rejection rate of at least 95% was determined as the molecular weight of the membrane. It is fractionated.
リン脂質の代表的成分であるレシチンはトリグリセリド
とほぼ同じ程度の分子量を有するが、本発明による膜処
理条件下においては、数十分子乃至数百分子が相互に会
合してミセルを形成しており、従って、上記範囲の分子
量分画性を有する半透膜に接触させることにより、リン
脂質はほぼ完全に膜により除去され、かくして、精製グ
リセリド油を得ることができるのである。Lecithin, a typical component of phospholipids, has a molecular weight almost the same as triglyceride, but under the membrane treatment conditions of the present invention, tens of molecules to hundreds of molecules associate with each other to form micelles. Therefore, by bringing it into contact with a semipermeable membrane having a molecular weight fractionation in the above range, the phospholipids are almost completely removed by the membrane, and thus purified glyceride oil can be obtained.
本発明においては、粗製グリセリド油組成物を希釈し、
ミセラを調整するための有機溶剤は、上記した半透膜を
溶解しないことを要し、分子量はグリセリド油より小さ
いのがよく、通常、50〜200、好ましくは60〜1
50である。具体的にはペンタン、ヘキサン、ヘプタン
、オクタン等の脂肪族炭化水素、シクロプロパン、シク
ロペンクン、シクロヘキサン、シクロへブタン等の脂肪
族炭化水素、ベンゼン、トルエン、ギシレン等の芳香族
炭化水素、アセトン、メチルエチルケトン等の脂肪族ケ
トン類、酢酸エチル、酢酸ブチル等の低級脂肪酸エステ
ル等の1種又は2種以上の混合物が用いられるが、好ま
しくはヘキサノのような脂肪族炭化水素が用いられる。In the present invention, the crude glyceride oil composition is diluted,
The organic solvent for preparing micellar must not dissolve the semipermeable membrane described above, and its molecular weight should be smaller than that of glyceride oil, usually 50 to 200, preferably 60 to 1.
It is 50. Specifically, aliphatic hydrocarbons such as pentane, hexane, heptane, and octane, aliphatic hydrocarbons such as cyclopropane, cyclopenkune, cyclohexane, and cyclohebutane, aromatic hydrocarbons such as benzene, toluene, and cylene, acetone, and methyl ethyl ketone. One type or a mixture of two or more types of aliphatic ketones such as ethyl acetate, lower fatty acid esters such as butyl acetate, etc. are used, but aliphatic hydrocarbons such as hexano are preferably used.
粗製グリセリド油組成物をこれら有機溶剤で希釈したミ
セラは、通常、グリセリド油をlO〜80重四%、好ま
しくは20〜50重量%含有するのがよいが、しかし、
これに限定されるものではない。Micella obtained by diluting a crude glyceride oil composition with these organic solvents usually contains 10 to 80% by weight of glyceride oil, preferably 20 to 50% by weight, but,
It is not limited to this.
前記したように、原料によっては粗製グリセリド油組成
物は原料から直接有機溶剤により抽出されるが、本発明
においてはこのような抽出液をそのまま膜処理してもよ
く、この「抽出」も有機溶剤による希釈と同義に解釈さ
れる。また、従来の精製方法において、溶剤抽出後に溶
剤を留去した所謂脱ガム油も本発明において粗製グリセ
リド油組成物として用いることができ、勿論、原料から
圧搾された組成物も粗製グリセリド油として用いること
ができる。更に、所望ならば、従来の精製工程の任意の
段階で得られるガム質含有グリセリド油も粗製グリセリ
ド油として用いることができる。本発明においては、ミ
セラは粗製グリセリド油組成物の上記意味における有機
溶剤溶液をいう。As mentioned above, depending on the raw material, the crude glyceride oil composition is extracted directly from the raw material with an organic solvent, but in the present invention, such an extract may be subjected to membrane treatment as it is, and this "extraction" can also be performed using an organic solvent. It is interpreted as synonymous with dilution. In addition, so-called degummed oil obtained by distilling off the solvent after solvent extraction in conventional refining methods can also be used as the crude glyceride oil composition in the present invention, and of course, a composition squeezed from raw materials can also be used as the crude glyceride oil. be able to. Furthermore, if desired, gummy glyceride oils obtained at any stage of conventional refining processes can also be used as crude glyceride oils. In the present invention, micellar refers to a solution of a crude glyceride oil composition in an organic solvent in the above sense.
次に、本発明においては、1■製グリセリド油組成物の
ミセラ、即ち有a溶剤の溶液は一般的には5℃以上10
0℃以下であって、用いる有6溶剤の蒸発が著しくない
範囲の温度で半透膜に加圧下に接触されるが、好ましく
は10℃〜60℃の範囲である。一般に処理温度が高い
程、大きい透過液量を得ることができる。Next, in the present invention, the miscella of the glyceride oil composition manufactured by 1.
The semipermeable membrane is contacted under pressure at a temperature of 0° C. or lower, at which the solvent used does not significantly evaporate, preferably in the range of 10° C. to 60° C. Generally, the higher the treatment temperature, the greater the amount of permeate that can be obtained.
本発明の方法は、レシチン等のリン脂質を多量に含む植
物性粗製グリセリド油組成物の精製に好適であるが、動
物性粗製グリセリド油組成物の精製にも適用することが
でき、また、レシチン等は有用な有価成分であるから、
必要に応じて膜下透過液から適宜に回収することもでき
る。通常ば膜下透過液を再びヘキサノ等の有機溶剤で希
釈し、膜処理した後、膜下透過液から有機溶剤を除去す
ることにより高純度のリン脂質を得ることができる。Although the method of the present invention is suitable for purifying vegetable crude glyceride oil compositions containing a large amount of phospholipids such as lecithin, it can also be applied to purifying animal crude glyceride oil compositions. etc. are useful valuable ingredients,
If necessary, it can also be appropriately recovered from the submembrane permeate. Usually, highly purified phospholipids can be obtained by diluting the submembrane permeate again with an organic solvent such as hexanoate, treating it with a membrane, and then removing the organic solvent from the submembrane permeate.
本発明の方法によれば、以上のように、ミセラを膜処理
するに当り、多段の半透膜を膜下透過液について直列に
接続してなる装置によって連続濃縮し、且つ、各段の濃
縮倍率を所定値にすることによって、装置全体からの膜
透過速度を最大として、装置を最小化し、このようにし
てミセラを最短時間で処理することができる。According to the method of the present invention, as described above, when performing membrane treatment on micella, continuous concentration is carried out using an apparatus formed by connecting multiple stages of semipermeable membranes in series for the submembrane permeate, and the concentration at each stage is By setting the magnification to a predetermined value, it is possible to maximize the rate of membrane permeation through the entire device, minimizing the device and thus treating the micelles in the shortest possible time.
以下に実施例を挙げて本発明を説明する。The present invention will be explained below with reference to Examples.
実施例1
内径12mmの内圧式管状限外濾過膜(分子量分画性2
0000) 18本を外径107mmの金属製管内に直
列に接続して収容して、膜長さ770龍、有効膜面積0
.48 %の管状膜モジュールを製作した。Example 1 Internal pressure type tubular ultrafiltration membrane with an inner diameter of 12 mm (molecular weight fractionation 2
0000) 18 tubes were connected in series and housed in a metal tube with an outer diameter of 107 mm, and the membrane length was 770 mm and the effective membrane area was 0.
.. A 48% tubular membrane module was fabricated.
この膜モジユール2基を第1図に示すように配管接続し
、第1段及び第2段の膜モジュールからなる2段の装置
を構成した。These two membrane modules were connected by piping as shown in FIG. 1 to constitute a two-stage apparatus consisting of a first-stage and a second-stage membrane module.
この装置において、第1段及び第2段の膜モジユール共
に、処理圧力平均3.2 kg / cA、温度40°
C1各段におけるミセラ流量171/分にて、2゜28
重量%のリン脂質を含有する粗製大豆油組成物22重量
部とヘキサン78重量部とからなる大豆油ミセラ(ミセ
ラ中の大豆油21.5重量%、リン脂質0.5重量%)
100#を最終濃縮倍率が40倍となるように連続濃縮
を行なった。In this device, both the first and second stage membrane modules have an average processing pressure of 3.2 kg/cA and a temperature of 40°.
2°28 at a miscella flow rate of 171/min in each stage of C1.
Soybean oil micella consisting of 22 parts by weight of a crude soybean oil composition containing % by weight of phospholipids and 78 parts by weight of hexane (21.5% by weight of soybean oil, 0.5% by weight of phospholipids in micella)
100# was continuously concentrated so that the final concentration ratio was 40 times.
但し、各段における処理時間を測定するために、先ず初
めに第1段及び第2段の各膜モジュールを。However, in order to measure the processing time in each stage, we first tested each membrane module in the first and second stages.
含む貯槽及び配管系に第1表に示した所定の濃縮倍率の
ミセラを満たした後、第1段の膜モジュールにミセラを
連続的に供給しながら、膜透過液と膜下透過液とを連続
的に抜き出し、膜下透過液を別に用意した貯槽に蓄えな
がら、ミセラ100j2の処理に要する時間を測定した
。次に、この貯槽からこの膜下透過液を第2段の膜モジ
ュールに連続的に供給し、第2段における所要時間を測
定し、このようにしてめた各段における所要時間の和を
総所要時間とした。After filling the storage tank and piping system containing micella at the predetermined concentration ratio shown in Table 1, the membrane permeate and sub-membrane permeate are continuously supplied while continuously supplying micella to the first stage membrane module. The time required for the treatment of Micella 100j2 was measured while the submembrane permeate was stored in a separately prepared storage tank. Next, this submembrane permeate is continuously supplied from this storage tank to the second stage membrane module, the time required for the second stage is measured, and the total time required for each stage determined in this way is calculated. The required time was taken as the time required.
第1表に各段における濃縮倍率及びに値を種々に変えた
ときの各段における処理時間及び総所要時間を示す。本
発明の方法によれば、総所要時間を最小にして所定量の
ミセラを所定の最終Na縮倍率まで濃縮することができ
る。前記式のK(iiIが0゜7よりも小さい比較例や
、1.3よりも大きい比較例によれば、総所要時間が著
しく長い。Table 1 shows the processing time and total time required in each stage when the concentration ratio and value in each stage were varied. According to the method of the present invention, a predetermined amount of micella can be concentrated to a predetermined final Na reduction factor while minimizing the total time required. According to the comparative examples in which K(iiiI in the above formula is smaller than 0°7 or larger than 1.3), the total time required is significantly long.
尚、上記の濃縮処理において、透過液中のリン脂質流度
はすべて4oppm以下であった。In addition, in the above concentration treatment, the phospholipid fluxes in the permeate were all 4 oppm or less.
実施例2
内径1.5虹、管壁厚さ0.4鰭の内圧式キャピラリー
型限外濾過膜(分子量分画性10000) 1400本
を外径107順の金属製管内に並列に接続して収容して
、膜長さ770龍、有効膜面積3 rdの膜モジュール
を製作した。この膜モジユール4基を直列に配管接続し
、4段の膜モジュールからなる装置を構成した。Example 2 1400 internal pressure capillary type ultrafiltration membranes (molecular weight fractionation 10000) with an inner diameter of 1.5 mm and a tube wall thickness of 0.4 fins were connected in parallel in a metal tube with an outer diameter of 107 mm. A membrane module with a membrane length of 770mm and an effective membrane area of 3rd was fabricated. Four of these membrane modules were connected in series via piping to construct an apparatus consisting of four stages of membrane modules.
この装置において、各段共に処理圧力平均1.5kg
/ cれ温度30°C1各段におけるミセラ流量150
!/分の条件にて、2.28重量%のリン脂質を含有す
る粗製ナタネ油組成物30重量部とヘキサ2フ0重量部
とからなるナクネ油ミセラ(ミセラ中のナタネ油29.
3重量%、リン脂質0.7重量%)100nを最P、濃
縮倍率が40倍となるように連続濃縮を行なった。In this equipment, the average processing pressure for each stage is 1.5 kg.
/Creating temperature 30°C Micellar flow rate at each stage 150
! / minute condition, rapeseed oil micella (rapeseed oil in micella) consisting of 30 parts by weight of a crude rapeseed oil composition containing 2.28% by weight of phospholipids and 0 parts by weight of Hexa2F was prepared.
3% by weight, phospholipid (0.7% by weight)) 100n was kept at maximum P, and continuous concentration was performed so that the concentration ratio was 40 times.
実施例1と同様にして、各段の濃縮倍率と、そのときの
前記式におけるに値、各段での濃縮処理に要した時間、
及び総研要時間をめた。結果を第2表に示す。In the same manner as in Example 1, the concentration ratio of each stage, the value of in the above formula at that time, the time required for the concentration process at each stage,
and the required time for the Research Institute. The results are shown in Table 2.
明らかに各段における濃縮倍率が本発明によって規定さ
れる範囲にあるとき、総研要時間を最小とすることがで
きる。一方、前記式のに値が本発明で規定する範囲外に
ある比較例によれば、総研要時間が長い。Obviously, when the concentration factor in each stage is within the range defined by the present invention, the time required for research can be minimized. On the other hand, according to a comparative example in which the value of the above formula is outside the range specified by the present invention, the time required for the research institute is long.
尚、上記の濃縮処理において、透過液中のリン脂質濃度
はすべて1100pp以下であった。In addition, in the above concentration treatment, the phospholipid concentration in the permeate was all below 1100 pp.
図面は本発明の方法を実施するだめの装置構成を示す。
1・・・貯槽、2・・・第1段の膜モジュール、5・・
・貯槽、6・・・第2段の膜モジュール。
特許出願人 リノール油脂株式会社
第1頁の続き
■発明者 埋板 不二彦
@発明者住吉 康男
@発明者 円板 謙太部
@発明者岩間 昭男
@発明者西1)祐二
@発明者今村 猶興
0発 明 者 磯 岡 豊
名古屋市港区潮見町37番地15リノール油脂株式会社
名古屋工場1
名古屋1
屋工場I
茨木市
茨木市
茨木市
茨木市The drawing shows a device configuration for carrying out the method of the invention. 1... Storage tank, 2... First stage membrane module, 5...
- Storage tank, 6... second stage membrane module. Patent Applicant Linol Oil Co., Ltd. Continuation of page 1 ■ Inventor Buita Fujihiko @ Inventor Yasuo Sumiyoshi @ Inventor Disc Kentabe @ Inventor Akio Iwama @ Inventor Nishi 1) Yuji @ Inventor Imamura Yuko 0 shots Akira Toyoshi Isooka 37-15 Shiomi-cho, Minato-ku, Nagoya-shi Nagoya Factory 1 Nagoya Factory I Ibaraki City, Ibaraki City, Ibaraki City, Ibaraki City
Claims (3)
セリド油組成物をを機溶剤で希釈してミセラとし、この
ミセラを半透膜に加圧下に接触させて半透膜透過液と半
透膜不透過液とに分離し、半透膜透過液と半透膜不透過
液の少なくとも一方から有機溶剤を除去して、粗製グリ
セリド油及び/又は精製リン脂質を得る方法において、
半透膜をn段(但し、nは2以上の整数を示す。)に設
置し、半透膜不透過液を各段の半透膜により順次に処理
して、最終濃縮倍率Xまで濃縮するに際して、第1段の
半透膜による濃縮倍率Xi(但し、iは1≦i≦nなる
整数を示す。)をX1=K(qX)’ (但し、Kは0.7〜1.3の数を示す。)とすること
を特徴とする粗製グリセリド油組成物の製造方法。(1) A crude glyceride oil composition containing glyceride oil and phospholipids is diluted with a solvent to form micella, and the micella is brought into contact with a semipermeable membrane under pressure to form a semipermeable membrane permeate and a semipermeable membrane. A method for obtaining crude glyceride oil and/or purified phospholipid by separating the liquid into a non-permeable liquid and removing the organic solvent from at least one of the semipermeable membrane permeable liquid and the semipermeable membrane non-permeable liquid,
Semipermeable membranes are installed in n stages (where n is an integer of 2 or more), and the semipermeable membrane non-permeable liquid is sequentially processed through each stage of semipermeable membranes to concentrate to a final concentration factor of X. In this case, the concentration factor Xi (where i is an integer such as 1≦i≦n) by the first stage semipermeable membrane is defined as X1=K(qX)' (however, K is 0.7 to 1.3 A method for producing a crude glyceride oil composition, characterized in that:
%とすることを特徴とする特許請求の範囲第1項記載の
粗製グリセリド油組成物の精製方法。(2) A method for refining a crude glyceride oil composition according to claim 1, characterized in that the glyceride oil content in the miscella is 10 to 80% by weight.
であることを特徴とする特許請求の範囲第1項記載の粗
製グリセリド油組成物の精製方法。(3) The molecular weight fractionation of the semipermeable membrane is 1000 to 100000
A method for refining a crude glyceride oil composition according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4062384A JPS60184597A (en) | 1984-03-02 | 1984-03-02 | Purification of crude glyceride oil composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4062384A JPS60184597A (en) | 1984-03-02 | 1984-03-02 | Purification of crude glyceride oil composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60184597A true JPS60184597A (en) | 1985-09-20 |
Family
ID=12585660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4062384A Pending JPS60184597A (en) | 1984-03-02 | 1984-03-02 | Purification of crude glyceride oil composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60184597A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6207209B1 (en) | 1999-01-14 | 2001-03-27 | Cargill, Incorporated | Method for removing phospholipids from vegetable oil miscella, method for conditioning a polymeric microfiltration membrane, and membrane |
US6207224B1 (en) | 1999-10-06 | 2001-03-27 | E. I. Du Pont De Nemours And Company | Process for coating thermoplastic substrates with a coating composition containing a non-aggressive solvent |
US6833149B2 (en) | 1999-01-14 | 2004-12-21 | Cargill, Incorporated | Method and apparatus for processing vegetable oil miscella, method for conditioning a polymeric microfiltration membrane, membrane, and lecithin product |
GB2441132A (en) * | 2006-06-28 | 2008-02-27 | Pronova Biocare As | Process for reducing the free fatty acid content of natural oils using a selectively permeable membrane |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50153010A (en) * | 1974-05-16 | 1975-12-09 | ||
JPS5763398A (en) * | 1980-10-03 | 1982-04-16 | Nisshin Oil Mills Ltd | Treatment of oil and fat |
JPS58198597A (en) * | 1982-05-16 | 1983-11-18 | 日東電工株式会社 | Purification of crude glyceride oil composition |
-
1984
- 1984-03-02 JP JP4062384A patent/JPS60184597A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50153010A (en) * | 1974-05-16 | 1975-12-09 | ||
JPS5763398A (en) * | 1980-10-03 | 1982-04-16 | Nisshin Oil Mills Ltd | Treatment of oil and fat |
JPS58198597A (en) * | 1982-05-16 | 1983-11-18 | 日東電工株式会社 | Purification of crude glyceride oil composition |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6207209B1 (en) | 1999-01-14 | 2001-03-27 | Cargill, Incorporated | Method for removing phospholipids from vegetable oil miscella, method for conditioning a polymeric microfiltration membrane, and membrane |
US6833149B2 (en) | 1999-01-14 | 2004-12-21 | Cargill, Incorporated | Method and apparatus for processing vegetable oil miscella, method for conditioning a polymeric microfiltration membrane, membrane, and lecithin product |
US7494679B2 (en) | 1999-01-14 | 2009-02-24 | Cargill Incorporated | Method and apparatus for processing vegetable oil miscella, method for conditioning a polymeric microfiltration membrane, membrane, and lecithin product |
US7923052B2 (en) | 1999-01-14 | 2011-04-12 | Cargill, Incorporated | Method and apparatus for processing vegetable oil miscella, method for conditioning a polymeric microfiltration membrane, membrane, and lecithin product |
US6207224B1 (en) | 1999-10-06 | 2001-03-27 | E. I. Du Pont De Nemours And Company | Process for coating thermoplastic substrates with a coating composition containing a non-aggressive solvent |
US6436478B2 (en) | 1999-10-06 | 2002-08-20 | E. I. De Pont De Nemours & Company | Process for coating thermoplastic substrates with a coating composition containing a non-aggressive solvent |
GB2441132A (en) * | 2006-06-28 | 2008-02-27 | Pronova Biocare As | Process for reducing the free fatty acid content of natural oils using a selectively permeable membrane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4414157A (en) | Process for the purification of crude glyceride oil compositions | |
EP0094252B1 (en) | Purification of crude glyceride oil compositions | |
Raman et al. | Deacidification of soybean oil by membrane technology | |
US4062882A (en) | Process for refining crude glyceride oils by membrane filtration | |
DE3610011C2 (en) | ||
US5545329A (en) | Method of refining oil | |
JPH04132796A (en) | Production of vegetable oil | |
US8598376B2 (en) | Deacidification method | |
DE2250088C2 (en) | Continuous process for separating cyclohexanone from the water-containing reaction product obtained in the dehydrogenation of cyclohexanol | |
JP2001509187A (en) | Purification of polyunsaturated fatty acid glyceride | |
JPS5840396A (en) | Extraction of oils and fats | |
US5077441A (en) | Selective gossypol abatement process from oil extraction of cottonseed | |
DD293130A5 (en) | METHOD OF REFINING FATTOEL USING SILPHONE HYDROGEL | |
JPS60184597A (en) | Purification of crude glyceride oil composition | |
EP0095850B1 (en) | Process for purification of crude glyceride oil compositions | |
WO2015053609A1 (en) | A membrane pre-treatment system and process for producing refined oils and fats | |
DE4401405A1 (en) | Process for dehydration of acrylic acid | |
JPS61136597A (en) | Treatment of triglyceride oil | |
JPS5945834A (en) | Production of lecithin | |
JPS60184596A (en) | Purification of crude glyceride oil composition | |
EP1160000B1 (en) | Method and apparatus for the recuperation of nitrogen and/or propylene during the polypropylene production | |
US3892789A (en) | Process for the extraction of glyceride oils by selective solvents | |
JPH02155989A (en) | Technique for degumming of oil or fat | |
JP2726828B2 (en) | Apparatus and method for concentration and separation of polyunsaturated fatty acids or their esters | |
EP0300071B1 (en) | Process for the separation and purification of organic substances from impurities |