JPS60184029A - Purification of unsaturated hydrocarbon - Google Patents

Purification of unsaturated hydrocarbon

Info

Publication number
JPS60184029A
JPS60184029A JP4101684A JP4101684A JPS60184029A JP S60184029 A JPS60184029 A JP S60184029A JP 4101684 A JP4101684 A JP 4101684A JP 4101684 A JP4101684 A JP 4101684A JP S60184029 A JPS60184029 A JP S60184029A
Authority
JP
Japan
Prior art keywords
absorption
solvent
hydrocarbons
reaction mixture
absorption solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4101684A
Other languages
Japanese (ja)
Other versions
JPH0348890B2 (en
Inventor
Kinichi Okumura
奥村 欽一
Akihisa Yamamoto
陽久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP4101684A priority Critical patent/JPS60184029A/en
Publication of JPS60184029A publication Critical patent/JPS60184029A/en
Publication of JPH0348890B2 publication Critical patent/JPH0348890B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To purify the titled compound produced by the oxidative dehydrogenation process, economically, by using the absorption step to remove the by-produced carbonyl compound using an aqueous solution of an organic acid as the absorption solvent, the recovering and recycling step of the accompanied hydrocarbons, and the recovering and recycling step of said solvent. CONSTITUTION:In the production of the titled compound by the oxidative dehydrogenation of stock hydrocarbons, the obtained reaction mixture gas 1 is made to contact with the absorption solvent 8 composed of an aqueous solution of an organic acid to absorb (A) the by-produced carbonyl compound in said solvent and separate the non-condensing components containing the objective compound as the gaseous component 2. The non-condensing components containing the objective compound is recovered (B) from the absorption solvent 3 delivered from the step A, and is circulated 6 to the reaction mixture gas 1. The by- product 7 is evaporated (C) from the absorption solvent 5 delivered from the step B, the absorption solvent is recovered, and at least a part 8 of the solvent is recycled to the step A. The loss of the hydrocarbon can be minimized, the by- product can be removed selectively, and the operation can be continued stably for a long period.

Description

【発明の詳細な説明】 本発明は反応生成ガス中のカルボニル化合物の除去方法
に関し、さらに詳しくは、酸化脱水素法によシネ飽和炭
化水素を製造する際に反応生成ガスを特定なプロセスで
精製することにより副生ずるカルボニル化合物を除去す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing carbonyl compounds from a reaction product gas, and more specifically, the present invention relates to a method for purifying a reaction product gas by a specific process when producing cine-saturated hydrocarbons by an oxidative dehydrogenation method. This invention relates to a method for removing by-product carbonyl compounds.

スチレン、1,3−ブタジェン、イソプレンなどのごと
き工業的に有用な不飽和炭化水素がよシネ飽和度の低い
炭化水素の酸化脱水素により製造されることは公知であ
る。この反応は原料の大化水素を酸素と触媒の共存下に
高温で接触酸化することによって行われるが、この場合
に目的とする不飽和炭化水素以外にアルデヒド、ケトン
、カルボン酸などのカルボニル化合物の副生が避けられ
ない。
It is known that industrially useful unsaturated hydrocarbons, such as styrene, 1,3-butadiene, isoprene, etc., can be produced by oxidative dehydrogenation of less saturated hydrocarbons. This reaction is carried out by catalytically oxidizing raw material large hydrogen at high temperature in the coexistence of oxygen and a catalyst.In this case, in addition to the target unsaturated hydrocarbon, carbonyl compounds such as aldehydes, ketones, and carboxylic acids are By-products are inevitable.

そこでかかる副生物を除去する方法が従来から検討され
ておシ、その−例としてハロゲン化物を含む吸収溶剤で
反応生成ガスを処理する方法(米国特許第3,327,
001号)やアルカリ性吸収溶剤で反応生成ガスを処理
する方法(特公昭45−17646号)などが開発され
ている。
Therefore, methods for removing such by-products have been studied for some time, such as a method of treating the reaction product gas with an absorption solvent containing a halide (U.S. Pat. No. 3,327,
001) and a method of treating the reaction product gas with an alkaline absorption solvent (Japanese Patent Publication No. 17646/1983).

しかし、前者の方法ようにノ・ロゲン化物を含む吸収溶
剤を用いる場合には、装置材料に対する腐食を起こしや
すく、長期の使用に耐えるには高価な特殊金属を必要と
するという問題がある。他方、後者の方法のようにアル
カリ性吸収溶剤を用いる場合にはカルボニル化合物の吸
収という点では効率的な方法であるが、メタクロレイン
の如き水に比較的吸収されにくいカルボニル化合物を含
むガスに対しては、除去能力が低く、また、吸収溶剤中
においてアルカリ触媒のためにアルデヒド類の縮合反応
が進み、固型浮遊物が生じて安定な操業を困難にすると
いう問題がある。
However, when using an absorption solvent containing a halogenide as in the former method, there are problems in that it tends to corrode the equipment material and requires expensive special metals to withstand long-term use. On the other hand, when using an alkaline absorption solvent as in the latter method, it is an efficient method in terms of absorption of carbonyl compounds, but it is not effective for gases containing carbonyl compounds, such as methacrolein, which are relatively difficult to absorb in water. However, there is a problem in that the removal ability is low, and the condensation reaction of aldehydes proceeds due to the alkali catalyst in the absorption solvent, resulting in the formation of solid suspended matter, making stable operation difficult.

そこで本発明者らは、有用な炭化水素の損失を極力抑制
し、さらに安定な操業を長期間可能にする工業的価値の
あるカルボニル化合物の除去方法を鋭意検討した結果、
有機酸を含む吸収溶剤を使用してカルボニル化合物を除
去し、さらに同伴する少量の炭化水素を回収する工程を
設けることが有効であることを見い出し本発明を完成す
るに到った。
Therefore, the present inventors have conducted intensive studies on a method for removing industrially valuable carbonyl compounds that suppresses the loss of useful hydrocarbons as much as possible and enables stable operation for a long period of time.
The present invention has been completed based on the discovery that it is effective to remove carbonyl compounds using an absorption solvent containing an organic acid and to further recover a small amount of accompanying hydrocarbons.

かくして本発明によれば、原料炭化水素の酸化脱水素反
応によ・シ生成する副生物としてカルボニル化合物を含
む反応混合ガスから該カルボニル化合物を除去する方法
において、精製工程が反応混合ガスを有機酸水溶液から
成る吸収溶剤と接触させてカルボニル化合物を吸収溶剤
中に吸収させ、目的とする不飽和炭化水素を含む非凝縮
性成分をガス成分として分離する吸収工程(1)、該工
程を導出した吸収溶剤から同伴する不飽和炭化水素を含
む非凝縮性成分を回収し、それを反応混合ガス中に循環
する回収工8(2)、該工程を導出した吸収溶剤からカ
ルボニル化合1vIJを除去したのち、吸収溶剤の少な
くとも一部を前記吸収工程(1)に循環する工程(3)
から成ることを特徴とする不飽和炭化水素の精製法が提
供される。
Thus, according to the present invention, in a method for removing a carbonyl compound from a reaction mixture gas containing carbonyl compounds as a by-product produced by an oxidative dehydrogenation reaction of a raw material hydrocarbon, the purification step converts the reaction mixture gas into an organic acid. Absorption process (1) in which a carbonyl compound is brought into contact with an absorption solvent consisting of an aqueous solution to be absorbed into the absorption solvent and a non-condensable component containing the target unsaturated hydrocarbon is separated as a gas component; Recovery process 8 (2), which recovers non-condensable components including accompanying unsaturated hydrocarbons from the solvent and circulates them into the reaction mixture gas, after removing the carbonyl compound 1vIJ from the absorption solvent from which this step was derived, Step (3) of circulating at least a portion of the absorption solvent to the absorption step (1)
A method for purifying unsaturated hydrocarbons is provided.

本発明において処理の対象となる反応生成ガスは酸化脱
水素反応によシモジオレフィンまたは共役ジオレフィン
を製造する際に得られるものであり、具体的にはn−ブ
テン、イソアミレン、エチルベンゼンなどのごとき炭素
数4〜8の炭化水素の酸化脱水素によシ1,3−ブタジ
ェン、イソプレン、スチレンなどを製造する方法におい
て得られる反応生成ガスが例示される。これらのなかそ
も1.3−ブタジェン製造時の反応生成ガスがとくに好
適である。かかる反応生成ガスは通常原料炭化水素と酸
素、それに必要に応じて加えられる水蒸気や不活性ガス
を酸化脱水素反応の存在下に約300〜700℃で接触
酸化し、さらに冷却工程を経て通常100℃以下、好ま
しくは80℃以下に冷却されて得られるものでおる。
The reaction product gas to be treated in the present invention is obtained when producing simodiolefin or conjugated diolefin by oxidative dehydrogenation reaction, and specifically, carbon gas such as n-butene, isoamylene, ethylbenzene, etc. Examples include reaction product gases obtained in a method for producing 1,3-butadiene, isoprene, styrene, etc. by oxidative dehydrogenation of hydrocarbons of numbers 4 to 8. Among these, reaction product gas during the production of 1,3-butadiene is particularly suitable. Such a reaction product gas is usually produced by catalytically oxidizing raw material hydrocarbons, oxygen, and water vapor or an inert gas added as needed at about 300 to 700°C in the presence of an oxidation-dehydrogenation reaction, and then passing through a cooling process to usually It is obtained by cooling to 80°C or lower, preferably 80°C or lower.

かかる反応混合ガス中には、通常、窒素、アルゴン、ヘ
リウム、−酸化炭素、二酸化炭素、酸素の如きガス成分
(非凝縮成分と総称する)が50〜95容賀%、好まし
くは65〜90容量%未反応の原料炭化水素や目的とす
る不飽和炭化水素が5〜40容殖%、好ましくは10〜
30容量%及び水蒸気が1〜20容量%、好ましくは3
〜15谷凰%含まれる。
Such a reaction gas mixture usually contains gas components such as nitrogen, argon, helium, carbon oxide, carbon dioxide, and oxygen (collectively referred to as non-condensable components) in an amount of 50 to 95% by volume, preferably 65 to 90% by volume. % of unreacted raw material hydrocarbons and target unsaturated hydrocarbons is 5 to 40%, preferably 10 to 40%.
30% by volume and water vapor from 1 to 20% by volume, preferably 3
Contains ~15%.

また副生物としてのカルボニル化合物は、ホルムアルデ
ヒド、アセトアルデヒド、グロピオアルデヒド、ブチル
アルデヒド、エナントアルデヒド、インバレルアルデヒ
ド、ベンズアルデヒド、アクロレイン、メタクロレイン
、クロトンアルデヒド、インクロトンアルデヒドなどの
ごときアルデヒド、アセトン、メチルビニルケトン、ジ
アセチル、メチルエチルケトン、3.3−ジメチ/l/
−2−ブタノン、2.4−ジメチル−3−ペンタノンな
ど・のご′ときケトン及び蟻歳、酢酸、プロピオン酸、
ml亭・、イソ酪酸、吉草酸、アクリル酸、メタクリル
酸、安息香酸、マレイン酸、フiル酸、シュウ酸などの
ごときカルボン酸などの形で存在しており、その量は、
通常、不飽和炭化水素1モルに対して0,0かかるカル
ボニル化合物を混合ガスから除去す01〜0.2モルで
ある。
Carbonyl compounds as by-products include aldehydes such as formaldehyde, acetaldehyde, gropioaldehyde, butyraldehyde, enantaldehyde, invaleraldehyde, benzaldehyde, acrolein, methacrolein, crotonaldehyde, incrotonaldehyde, acetone, and methyl vinyl ketone. , diacetyl, methyl ethyl ketone, 3.3-dimethy/l/
Ketones such as -2-butanone, 2,4-dimethyl-3-pentanone, etc., acetic acid, propionic acid,
It exists in the form of carboxylic acids such as isobutyric acid, valeric acid, acrylic acid, methacrylic acid, benzoic acid, maleic acid, fluoric acid, and oxalic acid, and the amount thereof is
Usually, the amount of carbonyl compound removed from the mixed gas is 0.0 to 0.2 mole per mole of unsaturated hydrocarbon.

るに際して、有機酸水溶液からなる吸収溶剤を用いるこ
とが本発明の必須栄件のひとつである。用いられる有機
酸としては、例えば@酸、酢酸、プロピオン酸、酪酸、
イソ酪酸、吉草酸、アクリル酸、メタクリル酸、安息香
酸、マレイン酸、フマル酸、フタル酸、シュウ酸などの
ごとき脂肪族または芳香族のカルボン酸が挙げられる。
One of the essential features of the present invention is to use an absorption solvent consisting of an aqueous organic acid solution. Examples of the organic acids used include @ acid, acetic acid, propionic acid, butyric acid,
Included are aliphatic or aromatic carboxylic acids such as isobutyric acid, valeric acid, acrylic acid, methacrylic acid, benzoic acid, maleic acid, fumaric acid, phthalic acid, oxalic acid, and the like.

有機酸動水溶液の濃度は通常0.1〜10、好捷しくは
0.4〜5%であり、有機酸濃度が過度に低いとカルボ
ニル化合物の吸収能力が低下し、逆に過度に高くなると
、精製ガス中への有機酸の損失が無視できなくなる。
The concentration of the organic acid aqueous solution is usually 0.1 to 10%, preferably 0.4 to 5%; if the organic acid concentration is too low, the absorption capacity for carbonyl compounds will decrease, and if it is too high, on the contrary , the loss of organic acids into the purified gas cannot be ignored.

かかる吸収溶剤のPHは通常5以下、好ましくは〕fk
4−1〜3である。この吸収溶剤は系外から新たに供給
してもよいが、酸化脱水素反応によシ副生する酸や水か
ら調製し、それを用いるのが、好ましい。
The pH of such an absorbing solvent is usually 5 or less, preferably [fk]
4-1 to 3. This absorption solvent may be freshly supplied from outside the system, but it is preferable to prepare it from acid and water produced as by-products in the oxidative dehydrogenation reaction and use it.

本発明方法の一例を第1図によって示すと次のとうシで
ある。
An example of the method of the present invention is shown in FIG. 1 as follows.

管■からカルボニル化合物を含む反応混合ガスを吸収塔
Aに導入し、他方管■から有機酸水溶液からなる吸収溶
剤をガスと向流接触するように導入する。有機酸水溶液
中には必要に応じてアルデヒド類の重合防止剤が添加さ
れる。
A reaction mixture gas containing a carbonyl compound is introduced into the absorption tower A through the tube (2), and an absorption solvent consisting of an aqueous solution of an organic acid is introduced through the tube (2) so as to be in countercurrent contact with the gas. If necessary, an aldehyde polymerization inhibitor is added to the organic acid aqueous solution.

吸収塔Aの操業条件は、一般に圧力が制いほど、また温
度が低いほど吸収効率は艮い。しかし、反応混合ガス中
の炭化水素類が凝縮しない温度以上および圧力以下で操
業されることが重要である。
Regarding the operating conditions of absorption tower A, generally speaking, the lower the pressure and the lower the temperature, the lower the absorption efficiency. However, it is important to operate above a temperature and below a pressure that does not condense the hydrocarbons in the reaction gas mixture.

これらのは度や圧力は対象とする炭化水素の種類や混合
ガス中の+iW& Wによって異なるが、通常−0,5
kg/dGから4ゆ/dG、好ましくは−0,2ゆ/i
Gから2に9/ff1G、および通常10〜70℃、好
゛ましくけ20〜50℃である。
These degrees and pressures vary depending on the type of target hydrocarbon and +iW&W in the mixed gas, but usually -0.5
kg/dG to 4 Yu/dG, preferably -0,2 Yu/i
G to 2 to 9/ff1G, and usually 10 to 70°C, preferably 20 to 50°C.

吸収溶剤の使用量は操作温度や圧力、塔の高さによって
異なるが、一般の吸収塔の設計法から決定される。吸収
塔への供給ガス1トン当り、通常5から500トンの盆
が使用される。
The amount of absorption solvent used varies depending on the operating temperature, pressure, and tower height, but is determined from the general design method of absorption towers. Typically 5 to 500 tons of trays are used per ton of gas fed to the absorption tower.

塔の構造は一般にガス中の微量成分を吸収するものであ
れば特に制約はない。例えば多孔板塔、グリッド塔、泡
鐘塔、スプレー塔、充填塔などがあげられる。塔の付属
物として冷却装置を付加することはカルボニル化合物の
吸収効率を^める上で効果的である。
There are generally no particular restrictions on the structure of the tower as long as it absorbs trace components in the gas. Examples include perforated plate towers, grid towers, bubble bell towers, spray towers, and packed towers. Adding a cooling device as an accessory to the tower is effective in increasing the absorption efficiency of carbonyl compounds.

さらに必要に応じて水が・a(4)から導入される。Furthermore, water is introduced from ・a(4) as necessary.

水を〃口えることによりて有機酸の飛散を防止すること
ができ、また管■および管■から導出される物質中の水
に相当する量を補充することができる。
By sipping water, it is possible to prevent the organic acid from scattering, and it is also possible to replenish the amount corresponding to the water in the substances discharged from tubes 1 and 2.

該吸収塔において、反応混合ガス中のカルボニル化合物
の95〜99.9%を容易に除去することができ、カル
ボニル化合物含量が通常0.2モル%以下の精製された
反応混合ガスが管■から得られる。
In the absorption tower, 95 to 99.9% of the carbonyl compounds in the reaction mixture gas can be easily removed, and the purified reaction mixture gas, which usually has a carbonyl compound content of 0.2 mol% or less, is passed from tube (1). can get.

さらに吸収塔Aの塔底の管■からカルボニルイヒ金物お
よび少量の非凝縮成分、炭化水素類を含む吸収溶剤が導
出され、炭化水素回収塔Bに導入される。該吸収溶剤に
同伴する炭化水素の世は、通常、反応混(、ガス中の炭
化水素の0.05〜2%である。
Further, an absorption solvent containing carbonyl metals, a small amount of non-condensable components, and hydrocarbons is led out from the bottom tube of the absorption tower A, and introduced into the hydrocarbon recovery tower B. The amount of hydrocarbons entrained in the absorption solvent is usually 0.05-2% of the hydrocarbons in the reaction mixture.

炭化水素回収塔Bでは吸収溶剤中に同伴する非凝縮性成
分および不飽和炭化水素が吸収溶剤ゝら分離され、ガス
状として管■から反応混合ガスの管1lX)へ戻される
。炭化水素回収塔の操業温+Xは40〜90°C1好−
ましくけ70〜85℃である。温度が低い場合には炭化
水素の回収が充分性われず、また高い場合にはカルボニ
ル化合物の放散カニ顕著となると同時にアルデヒド類の
重合が生じ、固型物の析出による操業トラブルを生じる
。操業圧力は通常、−0,5kg/crl G 〜0.
5 kIiI/crl Gである。
In the hydrocarbon recovery column B, the non-condensable components and unsaturated hydrocarbons entrained in the absorption solvent are separated from the absorption solvent and returned in gaseous form from the tube 1 to the reaction mixture gas tube 11X). The operating temperature +X of the hydrocarbon recovery tower is 40 to 90°C1 -
The temperature is 70-85°C. If the temperature is low, the recovery of hydrocarbons will not be sufficient, and if the temperature is high, the carbonyl compounds will dissipate significantly, and at the same time aldehydes will polymerize, causing operational troubles due to the precipitation of solids. The operating pressure is typically between -0.5 kg/crl G and 0.5 kg/crl G.
5 kIiI/crl G.

かかる操業によりてカルボニル化合物に同伴して損失す
る炭化水素を極力少なくすること力!できる。
Through such operations, it is possible to minimize the amount of hydrocarbons lost along with carbonyl compounds! can.

塔の形状は低沸点物である炭化水素が蒸発できるもので
あればいずれの装置でも良い。例えば、フラッシュ塔、
濡壁塔、スプレー塔、段塔、充填塔またはこれらの組合
せが挙げられる。
The shape of the column may be any device that can evaporate hydrocarbons, which are low-boiling substances. For example, flash tower,
Included are wet wall columns, spray columns, tray columns, packed columns or combinations thereof.

非凝縮性成分および不飽和炭化水素を放散した吸収溶剤
を管■から導出して放散塔Cに導入する。
The absorption solvent from which non-condensable components and unsaturated hydrocarbons have been liberated is led out from pipe (1) and introduced into stripping column (C).

放散塔Cでは吸収溶剤からカルボニル化合物をノ々赦さ
せる。塔の構造は格別制限がない。塔頂の管■から低沸
点物のアルデヒドやケトン、酸、水の混合物が導出され
、燃焼の如き無吾化処理を経た後捨てられる。塔底から
高沸点物の酸および水75(導出され、そのまま吸収塔
Aへ管■を通じて導入されると共に、一部は必要に応じ
て管■から系外へ導出される。
In the stripping tower C, the carbonyl compound is released from the absorption solvent. There are no particular restrictions on the structure of the tower. A mixture of low-boiling substances such as aldehydes, ketones, acids, and water is led out from the tube (2) at the top of the column, and is discarded after undergoing deoxidation treatment such as combustion. A high-boiling point acid and water 75 (are extracted from the bottom of the tower and introduced directly into the absorption tower A through pipe (2), and a portion is led out of the system through pipe (2) as necessary.

放散法はスチームストリッピングや蒸留法、空気や廃ガ
スによるガスストリッピングなど力;あげられる。なか
でも蒸留法が好ましい。蒸留塔の場合の操業条件は、通
常、操業圧力ー0.9〜0.1に9/cdGであシ、塔
頂の温度は25〜50℃、塔底の温度は60〜90℃で
ある。特に温度が90℃以上ではタールや固型物の析出
が認められ、安定な操業がしにくくなる。
Dissipation methods include steam stripping, distillation, and gas stripping using air or waste gas. Among these, the distillation method is preferred. The operating conditions for a distillation column are usually an operating pressure of -0.9 to 0.1 at 9/cdG, a temperature at the top of the column of 25 to 50°C, and a temperature at the bottom of the column 60 to 90°C. . Particularly when the temperature is 90°C or higher, precipitation of tar and solid substances is observed, making stable operation difficult.

カルボニル化合物吸収溶剤中には、必要にょジアルデヒ
ド類による重合を防ぐための重合防止剤が導入される。
A polymerization inhibitor is introduced into the carbonyl compound-absorbing solvent to prevent polymerization caused by diodialdehydes.

以上第1図によって本発明方法の一例を示したが、本発
明は第1図によって何ら限定されるものではない。
Although an example of the method of the present invention has been shown above with reference to FIG. 1, the present invention is not limited to FIG. 1 in any way.

本発明によれば、反応生成ガス中の有用成分である炭化
水素類の損失量を最少限にとどめ、ホルムアルデヒドや
酢酸などのごときカルボニル化合物を選択的に減少せし
めることができる。さらに、炭化水素中のカルボニル化
合物を実質的に皆無にすることができる、またアルデヒ
ド類はタールや固型物になシ易いものであるが、これら
の生成を抑制し、操業トラブルを防止し、安定に長期間
操業することができる。さらに除去されたカルボニル化
合物は無害化処理が実施容易な形で得られる。
According to the present invention, it is possible to minimize the amount of loss of hydrocarbons, which are useful components in the reaction product gas, and selectively reduce carbonyl compounds such as formaldehyde and acetic acid. Furthermore, carbonyl compounds in hydrocarbons can be virtually eliminated, and aldehydes, which easily become tar and solid matter, can be suppressed from forming and operational troubles can be prevented. It can operate stably for a long period of time. Furthermore, the removed carbonyl compound is obtained in a form that can be easily rendered harmless.

従って、従来法に比べて反応生成ガスよシ分離する廃水
中の有機物量を大幅に減することができ、その結果、廃
水処理を容易にすることができる。
Therefore, compared to the conventional method, the amount of organic matter in the wastewater separated from the reaction product gas can be significantly reduced, and as a result, the wastewater treatment can be facilitated.

以下に実施例を挙げて本発明をさらに具体的に説明する
The present invention will be explained in more detail with reference to Examples below.

実施例1 窒素72.6モル%、酸素2.1モル%、アルゴン、c
o及びCO2の合計2.4モル%、水−9,6モル%、
ブタン3.5モル%、正ブテン1.5モル%、プタジ:
r−77,0モル%、アルデヒド類(主としてポルムア
ルデヒド、ア七トアルデヒド、アクロレイン、メタクロ
レイン)0.66モル%、有aeO,ozモル%ヨリ成
シ、他に微黛のフラン、アセトン、ヘンゼン、メチルビ
ニルケトン及び高沸点副生成物が含“止れる反応混合ガ
スが毎時約1.24 rn’ (N TP基準)の速度
で管■を通じて吸収塔Aに供給される。吸収塔は内径3
センチ、長さ3mの充填塔であり、内部には5 m $
 X 5 zgの円面状ラシヒリングが充填されている
。塔頂からはアルデヒド類を放散したあとの有機酸水溶
液が、20℃に冷却されて毎時251の割合で管■を通
じて供給された。有機酸水浴液に含捷れる有機酸は反応
混合ガス中に含まれる有機酸が溶解したものであシ、酢
酸O,a i量%、アクリル酸0.4重量%、マンイン
酸0.2重量%、シュウ酸0.1重量%、イソラフ酸、
メタクリル酸、ギ酸を少−破含むものである。塔内の圧
力は0.05〜0.1 kfJ / cry Gに維持
されたつ塔内に導入された反応混合ガスは有機酸水浴液
と向流接触された。これによって反応混合ガス中に含ま
れていったカルボニル化合物は吸収分離され、吸収塔を
導出する混合ガス中には0.01モル%のアルデヒド類
が含まれていた。さらに該ガス中には有機酸、アセトン
およびメチルビニルケトンはほとんど認められなかった
。その他の成分組成は吸収塔に導入された反応混合ガス
の成分組成と実質的に同一であった。
Example 1 Nitrogen 72.6 mol%, oxygen 2.1 mol%, argon, c
o and CO2 total 2.4 mol%, water - 9.6 mol%,
Butane 3.5 mol%, normal butene 1.5 mol%, Ptazi:
r-77.0 mol%, aldehydes (mainly pormaldehyde, a7taldehyde, acrolein, methacrolein) 0.66 mol%, aeO, oz mol%, and a small amount of furan, acetone, The reaction mixture gas containing methane, methyl vinyl ketone, and high-boiling byproducts is fed through tube A to absorption column A at a rate of about 1.24 rn' per hour (based on N TP). 3
It is a packed tower with a length of 3 m and a height of 5 m inside.
A circular Raschig ring of X 5 zg is filled. An aqueous organic acid solution from which aldehydes had been diffused was cooled to 20° C. and fed through tube (1) at a rate of 251/hr. The organic acid contained in the organic acid aqueous bath liquid is the dissolved organic acid contained in the reaction mixture gas.Acetic acid O, a i amount%, acrylic acid 0.4% by weight, manic acid 0.2% by weight %, oxalic acid 0.1% by weight, isolafic acid,
It contains small amounts of methacrylic acid and formic acid. The pressure inside the column was maintained at 0.05 to 0.1 kfJ/cry G, and the reaction mixture gas introduced into the column was brought into countercurrent contact with the organic acid water bath liquid. As a result, the carbonyl compound contained in the reaction mixture gas was absorbed and separated, and the mixed gas discharged from the absorption tower contained 0.01 mol % of aldehydes. Furthermore, organic acids, acetone, and methyl vinyl ketone were hardly observed in the gas. The other component compositions were substantially the same as the component composition of the reaction mixture gas introduced into the absorption tower.

吸収塔の塔底からカルボニル化合物を吸収した有機酸水
溶液が導出され、70℃に加熱された後、管■を通じて
炭化水製回収塔Bに導入される。炭化水製回収塔は内径
12インチ、長さ0.5mの空塔であり、管■は塔上部
のガス層に、また管(6)は塔頂に、管(5)は塔底に
設置されている。回収塔内の温度は70℃に、また圧力
は0.15 k#/、i Gに維持される。
The organic acid aqueous solution that has absorbed the carbonyl compound is taken out from the bottom of the absorption tower, heated to 70°C, and then introduced into the hydrocarbon recovery tower B through pipe (1). The hydrocarbon recovery tower is an empty tower with an inner diameter of 12 inches and a length of 0.5 m. Pipe (1) is installed in the gas layer at the top of the tower, pipe (6) is installed at the top of the tower, and pipe (5) is installed at the bottom of the tower. has been done. The temperature in the recovery column is maintained at 70°C and the pressure at 0.15 k#/, iG.

回収塔の塔頂から管■を通じて窒素、崎素、アルゴン、
水、COおよびCO2の合計84,0モル%、ブタン、
ブテンおよびブタジェンの合計15.2モル%、アルデ
ヒド類0.8モル%からなるガスが毎時約0.01fT
1′(NTP基準)の速度で導出し、吸収塔Aへ戻され
る。回収塔の塔底から炭化水素を痕跡程度しか含まない
有機酸水溶液が管■を迫じて導出され、放散塔Cに導入
される。
Nitrogen, oxygen, argon,
Water, total 84,0 mol% of CO and CO2, butane,
A gas consisting of a total of 15.2 mol% of butene and butadiene and 0.8 mol% of aldehydes is generated at approximately 0.01 fT per hour.
1' (based on NTP) and returned to absorption tower A. An organic acid aqueous solution containing only traces of hydrocarbons is drawn out from the bottom of the recovery tower through pipe (2) and introduced into stripping tower (C).

放散塔は内径3インチ、長さ1.5mの充填塔であり、
内部には5闘グ×5籠の円筒状シシピリングが充填され
ておシ、塔底に加熱装置、塔頂に冷却装置および速流装
置をもつ蒸留塔である。塔内の圧力は約200mm H
g (絶対圧)であシ、塔頂の温度は30℃、塔底減反
は75℃に維持される。
The stripping tower is a packed tower with an inner diameter of 3 inches and a length of 1.5 m.
The inside of the distillation column was filled with cylindrical piping rings of 5 sizes x 5 cages, and had a heating device at the bottom, a cooling device and a rapid flow device at the top. The pressure inside the tower is approximately 200mmH
g (absolute pressure), the temperature at the top of the column is maintained at 30°C, and the reduction at the bottom of the column is maintained at 75°C.

放散塔の塔底からアルデヒド類を痕跡程度にしか含まな
い有機酸水溶液が回収された。該水溶液は、゛その大部
分を冷却装置を経由して吸収塔Aへ戻す。
An aqueous organic acid solution containing only traces of aldehydes was recovered from the bottom of the stripping tower. Most of the aqueous solution is returned to the absorption tower A via the cooling device.

塔頂の管■からは放散されたアルデヒド類、少量の炭化
水素類、少量の酸及び水が導出された。な・お該液中の
炭化水素類はυ特約1gの流出量であった。
Emitted aldehydes, a small amount of hydrocarbons, a small amount of acid and water were discharged from the top pipe (2).・The amount of hydrocarbons in the liquid was approximately 1 g.

かかる操作を通じて反応混合ガス中のカルボニル化合物
は98.5%除去された。また反応混合ガス中の炭化水
素類の損失は0.3%以下であった。
Through this operation, 98.5% of carbonyl compounds in the reaction mixture gas were removed. Moreover, the loss of hydrocarbons in the reaction mixture gas was 0.3% or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様を示すフローシートである
、 A:吸収塔 B:炭化水素回収塔 C:放散塔特許出願
人 日本七オン株式会社 第1図 L3
FIG. 1 is a flow sheet showing one embodiment of the present invention, A: Absorption tower B: Hydrocarbon recovery tower C: Stripping tower Patent applicant Nippon Shichion Co., Ltd. Figure 1 L3

Claims (1)

【特許請求の範囲】[Claims] 1、原料炭化水素の酸化脱水素反応によシ生成する副生
物としてカルボニル化合物を含む反応混合ガスから該カ
ルボニル化合物を除去する方法において、精製工程が反
応混合ガスを有機酸水溶液から成る吸収溶剤と接触させ
てカルボニル化合物を吸収溶剤中に吸収させ、目的とす
る不飽和炭化水素を含む非凝縮性成分をガス成分として
分離する吸収工程(1)、該工程を導出した吸収溶剤か
ら同伴する不飽和炭化水嵩を含む非凝縮性成分を回収し
、それを反応混合ガス中に循環する回収工程(2)、該
工程を導出した吸収溶剤からカルボニル化合物を除去し
たのち、吸収溶剤の少なくとも一部を前記吸収工程(1
)に循環する工程(3)から成ることを特徴とする不飽
和炭化水嵩の′#を製法。
1. In a method for removing carbonyl compounds from a reaction mixture gas containing carbonyl compounds as by-products produced by the oxidative dehydrogenation reaction of feedstock hydrocarbons, the purification step involves converting the reaction mixture gas into an absorption solvent consisting of an aqueous organic acid solution. Absorption step (1) in which the carbonyl compound is absorbed into the absorption solvent by contact and the non-condensable component containing the target unsaturated hydrocarbon is separated as a gas component; A recovery step (2) in which non-condensable components including hydrocarbon bulk are recovered and recycled into the reaction mixture gas, and after removing carbonyl compounds from the absorption solvent from which this step was derived, at least a portion of the absorption solvent is Absorption process (1
) A method for producing bulk unsaturated hydrocarbons, characterized by comprising step (3) of circulating the unsaturated hydrocarbon to
JP4101684A 1984-03-03 1984-03-03 Purification of unsaturated hydrocarbon Granted JPS60184029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4101684A JPS60184029A (en) 1984-03-03 1984-03-03 Purification of unsaturated hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4101684A JPS60184029A (en) 1984-03-03 1984-03-03 Purification of unsaturated hydrocarbon

Publications (2)

Publication Number Publication Date
JPS60184029A true JPS60184029A (en) 1985-09-19
JPH0348890B2 JPH0348890B2 (en) 1991-07-25

Family

ID=12596592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4101684A Granted JPS60184029A (en) 1984-03-03 1984-03-03 Purification of unsaturated hydrocarbon

Country Status (1)

Country Link
JP (1) JPS60184029A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3323797A1 (en) * 2016-11-22 2018-05-23 Basf Se Method for preparing 1,3-butadiene from n-butenes by oxidative dehydrogenation comprising an acidic washing of a c4 product gas flow

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52922A (en) * 1975-06-24 1977-01-06 Shigenobu Kuroki Method and apparatus for molding plastic materials
JPS56140931A (en) * 1980-04-04 1981-11-04 Nippon Zeon Co Ltd Preparation of conjugated diolefin
JPS56150023A (en) * 1980-04-22 1981-11-20 Nippon Zeon Co Ltd Preparation of conjugated diolefin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52922A (en) * 1975-06-24 1977-01-06 Shigenobu Kuroki Method and apparatus for molding plastic materials
JPS56140931A (en) * 1980-04-04 1981-11-04 Nippon Zeon Co Ltd Preparation of conjugated diolefin
JPS56150023A (en) * 1980-04-22 1981-11-20 Nippon Zeon Co Ltd Preparation of conjugated diolefin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3323797A1 (en) * 2016-11-22 2018-05-23 Basf Se Method for preparing 1,3-butadiene from n-butenes by oxidative dehydrogenation comprising an acidic washing of a c4 product gas flow

Also Published As

Publication number Publication date
JPH0348890B2 (en) 1991-07-25

Similar Documents

Publication Publication Date Title
EP0890569B1 (en) Method for producing methyl methacrylate
JP3028925B2 (en) Method for producing acrylic acid
US4595788A (en) Process for producing butadiene
KR100634678B1 (en) Method for producing methacrylic acid
JP2000290221A (en) Purification of (meth)acrylic acid
JPS60126235A (en) Production of butadiene
CN107428659B (en) Improved process for producing (meth) acrylic acid
JP2001247510A (en) Method of producing acrylic acid
KR920007872B1 (en) Process for recovery of methacrylic acid
KR900006901B1 (en) Process for producing acyulic acid
JPS60115532A (en) Production of butadiene
JPS6035328B2 (en) Production method of acrylic acid and acrolein
JP3681285B2 (en) Method for producing methyl methacrylate
JPS60184029A (en) Purification of unsaturated hydrocarbon
US4329513A (en) Method for dehydration of unsaturated aldehyde-containing gas
JP3832868B2 (en) Acrylic acid purification method
JP2795360B2 (en) Continuous production of dimethyl carbonate
GB2096601A (en) Process for producing methacrylic acid
JPS6160061B2 (en)
JPS6056127B2 (en) Acetic acid recovery method
JP4074455B2 (en) Method for producing (meth) acrylic acid
JPS6245218B2 (en)
US5319106A (en) Stabilization of mixtures of maleic anhydride and acrylic acid during distillation
JP2003277318A (en) Method for producing (meth)acrylic acid
JPH07118198A (en) Separation of methacrylic acid