JPS60183560A - Automatic analyzing device - Google Patents

Automatic analyzing device

Info

Publication number
JPS60183560A
JPS60183560A JP3959684A JP3959684A JPS60183560A JP S60183560 A JPS60183560 A JP S60183560A JP 3959684 A JP3959684 A JP 3959684A JP 3959684 A JP3959684 A JP 3959684A JP S60183560 A JPS60183560 A JP S60183560A
Authority
JP
Japan
Prior art keywords
optical path
path length
reaction vessel
liquid
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3959684A
Other languages
Japanese (ja)
Inventor
Kiyokazu Nakano
中野 清和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP3959684A priority Critical patent/JPS60183560A/en
Publication of JPS60183560A publication Critical patent/JPS60183560A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/021Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a flexible chain, e.g. "cartridge belt", conveyor for reaction cells or cuvettes

Abstract

PURPOSE:To analyze concentration efficiently with high accuacy by calculating the optical path length of a reactor previously, putting liquid to be inspected in the reactor and performing concentration measuring operation by the automatic conveyance of the reactor, and correcting the measured value of concentration with the optical path length of the reactor. CONSTITUTION:Numbers of reactors 3 are moved intermittently by a conveying means 2. Then, the reactors 3 are cleaned at a position (a) and pure water is put in the reactors 3 at a position (b); and they are irradiated with light with two absorption wavelength in a near infrared-ray wavelength range from an irradiating mirror 21 and the optical path length of the reactors 3 is calculated from different in light absorption and inputted to a storage device 30. Then, the water is discharged at a position (c) and the liquid 7 to be inspected is dispensed at a position (d). The reactors 3 are conveyed automatically in sequence and the liquid is irradiated at a position (e) through an irradiating mirror 22 for concentration measurement to measure the concentration, which is inputted to an operator 27. Then, the measured value of the liquid concentration is corrected as to the influence of the optical path length of the reactors which is stored in advance and displayed 28. Therefore, the measured value of the liquid concentration is only corrected with the optical path length of the reactors in series operation to take an analysis efficiently with high accuracy.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は自動分析装置に関し、QWに、多数の被検試
料の成分温石を自動的に測定りる白動分(h装置に関づ
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field This invention relates to an automatic analyzer, and relates to a white movement (h) device that automatically measures the constituent warm stones of a large number of test samples in a QW. .

(ロ)従来技術 自動分析装置においては、使用される多数の反応容器の
光路長を同一精度で経ン首的に作ることが冗しいことか
ら、各反応容器の光)δ長を補止して11−シい測定前
をめることは、きわめ(KF要どなる。
(b) In conventional automatic analyzers, since it is cumbersome to automatically create the optical path lengths of the many reaction vessels used with the same accuracy, it is necessary to compensate for the optical path length of each reaction vessel. It is very difficult to start the measurement for a long time (KF required).

測定セルを兼ねた反応容器の光路長を?+li 、iL
する方法としては、11間昭58−1(i7942号公
報に開示されCいるように、多数の反応容器に発色した
溶液を加え(測定した吸光度の平均を標準の吸光度とし
、個々の反応容器の水を用い−C測定した吸光度と(票
ill、の吸光度とを比較して個々の反応容器の固有の
伯をめ、この値C各反応容°器の一般検体のaIす定値
を補正覆ることか行われ−Cいる。
What is the optical path length of the reaction vessel that also serves as a measurement cell? +li, iL
As disclosed in 1197-1 (I7942), a colored solution is added to a large number of reaction vessels (the average of the measured absorbances is taken as the standard absorbance, and the average of the measured absorbance is taken as the standard absorbance, and the Compare the absorbance measured using water with the absorbance of It is done -C.

しかし、この方法によるどきは、 (1)反応容器の光路長を知るために(,1、色素て発
色さlた液体と水の2種類の液イホについて吸光度を2
回測定する必要かある。
However, when using this method, (1) In order to know the optical path length of the reaction vessel (1), calculate the absorbance of two types of liquids, one colored with a dye and one water.
Is it necessary to measure twice?

(2)溶液の発色に使用ケる色素の選定にあたっては、
光色が安定であり、反応容器に吸着しで汚染しない等の
制約か要求される。
(2) When selecting a dye that can be used to color a solution,
It is required that the light color is stable and that it does not adsorb to the reaction vessel and contaminate it.

(31fe (Δしたd夕体の吸光度測定値と光路長の
関係を別にめ−Cおい−C1反応容器の光路(kに換斡
しな(ノればならない手数がかかる。
(The relationship between the measured value of the absorbance of the d-body and the optical path length must be changed to the optical path (k) of the reaction vessel.

f’ll試オ′月中の検体をか折りる賃置木来の(幾能
ど反応容器の光路長の測定とを11j目14に実施でき
ない。
The measurement of the optical path length of the reaction vessel could not be carried out on the 11th day of the 14th day of the test, since the sample was being folded during the trial period.

などの不都合があった。There were other inconveniences.

(ハ)発明の目的 この発明は、上記準j1情に鑑みでなされたもので、そ
の主要な目的の一つは、反応容器の光路長の補正を色素
を用いない潤滑で安定した状態の液体を用いて、被検成
分の測定と同時に行うことかでさる自動分析装置の提供
にある。
(c) Purpose of the Invention This invention was made in view of the above-mentioned quasi-j1 circumstances, and one of its main purposes is to correct the optical path length of a reaction vessel by using a stable liquid lubrication system that does not use dyes. An object of the present invention is to provide an automatic analyzer that can simultaneously measure a test component using the same method.

(ニ)発明の構成 この発明は、多数の反応容器と、その搬送手段と、光路
長を計9% iるための液体、被倹試わ1及び分析試薬
の一定量をそれぞれ各反応容器に分注り−る分注手段と
、前記の光路長をHt glづるための31体が分注さ
れた各反応容器に、近赤外波長城の二吸収波長光を照射
し、被検試わ1が分注された各反応容器にi!iii度
測定用の波長光を照射りる照射手段と、照射された二吸
収波艮光を測Tりる測定f二段と、その測定結果から各
反応容器の光路長を61伸しく記憶づる演Q記憶手段と
、照射された測定波f(光から被検成分の1B11度を
測定−づるt)測手段と、該語1(I11手段C測正(
きれた各測定(ぼ1に前記演紳記憶手段に各反応容器の
光路長についCの補止をilつ(補正淵1uを91紳り
る補正演の手段と、十記各手段の作動を制1211 !
J61’l 1311手段とを備え/J自動分析装買で
ある。
(D) Structure of the Invention The present invention comprises a large number of reaction vessels, a means for transporting them, a liquid for increasing the optical path length by 9% in total, a predetermined amount of reagent 1, and an analytical reagent into each reaction vessel. The dispensing means for dispensing the liquid and each reaction vessel into which the 31 specimens were dispensed for determining the optical path length were irradiated with light with two absorption wavelengths in the near-infrared wavelength range. i! into each reaction vessel into which 1 was dispensed. An irradiation means for irradiating wavelength light for 3 degree measurement, two measurement stages for measuring the irradiated dual absorption wave light, and 61 times the optical path length of each reaction vessel is memorized from the measurement results. The irradiated measurement wave f (measures 1B11 degrees of the component to be detected from the light) measurement means, the word 1 (I11 means C measurement (
For each measurement performed (in addition, the compensation of C for the optical path length of each reaction vessel is stored in the compensation memory means (a compensation compensation means with a compensation depth of 91 mm) and the operation of each of the ten means. System 1211!
It is equipped with J61'l 1311 means/J automatic analysis equipment.

(ホ)実施例 以1・図に承り一実施例に阜づいでこの発明を訂述づる
。イLJ3、これによってこの発明が限定されるもので
はイiい。
(E) Embodiment 1. This invention will be further described based on one embodiment with reference to the drawings. However, this invention is not limited by this.

第1図にa3いて、反応容器直接測光方式の自動分析装
置(1)は、測定セルを兼ねた多数の反50容器(3)
、(3)・・・・・・を間欠的にgiFII?l−る搬
送手段(2)と、光路長をめるための水((5)、試料
(7)及び水(6)、試薬!81 +9)を各反応打器
(3)に分注す゛る分注手段!/11と、前記水((5
)が分注された各反応容器(3)に近赤外波長域の4く
の二つの吸収波長光を照射し、被検試料(7)が分?1
された各反応容器(33)に反応液の濃度測定用の波長
光を照Q’1 ′1Jるijl、を用手段00)ど、こ
の照射手段(101からの設定された波長を受(〕(各
反応容器(3)の光路長と濃度測定をt′jい、′lA
l測度側に各反応容器(3)の光路長につい−(の補正
を1−jう分析部(1])とを備えている。
In Figure 1, the automatic analyzer (1), which uses direct photometry in reaction vessels, has a large number of 50-diameter vessels (3) that also serve as measurement cells.
, (3)... intermittently giFII? Dispense the water ((5), sample (7) and water (6), reagent !81 +9) for measuring the optical path length into each reaction container (3). Dispensing means! /11 and the water ((5
) is dispensed into each reaction vessel (3), and the test sample (7) is irradiated with light with two absorption wavelengths in the near-infrared wavelength range. 1
The irradiation means (101) receives the set wavelength light from the irradiation means (101) and irradiates each reaction vessel (33) with a wavelength light for measuring the concentration of the reaction solution. (Measure the optical path length and concentration of each reaction vessel (3) t′j,′lA
The analyzer (1) is provided on the measurement side for correcting -(1-j) for the optical path length of each reaction vessel (3).

搬送子1没(2)(ま、図の実施例では、−1ン1ヘレ
スの搬送用コンベアが示され−Cいるか、回転テーブル
を用い′C間欠的に移動(゛さるようにして6よい。
Conveyor 1 (2) (In the example shown in the figure, a conveyor for transporting -1 and 1 is shown. .

分注器Pj +41 ニa3イT IJ:、水(53)
、(01a5よひ試薬to+、(9)の分注は、それぞ
れ分注器02)、fl:3+、(+4)、(15)を用
いて行われ、検体架設テーブル(161−lに載置0れ
た被検試才旧7)の分注は、検体ビ′へツタ(17)を
用い−c を了われる。この実施例では試薬(8)、+
9)を2種類用いる場合が図示されでいるが、試薬(ε
3)、(53)は2トド刀]に限定されるもの”(はな
く、測定]j′11−1など8東に応じて増減される。
Dispenser Pj +41 Nia3iT IJ:, Water (53)
, (01a5 Yohi reagent to+, (9) is dispensed using dispensers 02), fl:3+, (+4), and (15), respectively, and placed on the sample mounting table (161-l). Dispensing the sample sample (7) that has been removed is completed using the ivy (17). In this example, reagent (8), +
9), the case where two types of reagents (ε
3), (53) are limited to 2 Todo swords] (not measured), and are increased or decreased according to 8 east, such as j'11-1.

照射手段00)は、光源ラン/(1δ))、1ノンス(
1日)、J二角彫工に形成されたミラー□□□、光路1
N測定光照1:jJ Illミラー(21)、被検成分
濃度測定用光照IJijミラー(Z21、および所要の
各波長光を透過りる複数のノイルクー+24)を備えて
回転し11するように保1、りされたノrルター架設置
I−タ(イ))とからなつCいる。フィルター架設置」
−夕I?3+ 1.1、水の吸II)!波長光を透過J
るフィルターを備λ刃ごl−ュータど、(・ト々の被検
成分の謂瓜測疋に用いられる波長を透過り−るフィルタ
ーを備えIこに]−夕とを分間1しく設()でしよい。
The irradiation means 00) has a light source run/(1δ)), 1 nonce (
1st), mirror formed in J diagonal carving, optical path 1
N measurement light source 1: equipped with a jJ Ill mirror (21), a light source IJij mirror (Z21, and a plurality of Noil Ku+24 for transmitting light of each required wavelength) for measuring the concentration of the analyte component, and maintained so as to rotate 11. , and the removed Norter rack installation I-ta (A). Filter rack installation
- Evening I? 3+ 1.1, water absorption II)! Transmit wavelength light J
A computer equipped with a filter that transmits the wavelengths used for the so-called measurement of various analyte components is installed at a rate of 1 minute. ).

近赤外波1(域にa3りろ水の吸収波長の選択にあたつ
Cは、同波I(域にJ3りる反応容器(3)の透過イ′
(W! 2図)と水の透過率(第3図)とを参照し−C
1反応容器(3)の累月白身の吸収を相殺Cさる三波長
を選ふことが必要て・あり、反応゛容器に3)の搬送1
1.1の反応容器(33)間の空気を対照として二液長
間の吸光度を零と定める。例えば、石英製の反応容器(
33)は、第2図に示り如< 、900nm−2100
nmよでの波長範囲では、はば一定の透過率特性を示し
Cいるから、測定用三波長どしては、/11/λ、、 
= 900nm /9751101.1(170nm/
 12001’1lll、 11070n/ 1260
nm等の使用か可能に416゜これに対し、合成樹脂製
の反応容器[31(は、近赤外波長域に合成樹脂特有の
吸収帯か数多くあるのC1測定用二波長の選択に当つ【
は8怠を要づる。例えば、合成樹fluとしてアクノル
系樹脂を選んlご場合には、第2図にj1η如く、94
0〜9g0n… 、10Go、〜・+NOI1m、12
[i0□〜+ 310 n口1の波長域で一定の透過率
を示しているから、測定用三波長としCλ1/λ、=9
7flnm / +070nm、あるいは11070n
/ 428(lnmの使用が旬能どなる。
Near-infrared wave 1 (in the region A3) C, which is used to select the absorption wavelength of water, is the same wave I (in the region J3)
(W! Figure 2) and water permeability (Figure 3) -C
It is necessary to select three wavelengths that cancel out the absorption of the whites in the reaction vessel (3), and transport 1 of 3) into the reaction vessel (3).
Using the air between the reaction vessels (33) in 1.1 as a reference, the absorbance between the two liquid lengths is determined to be zero. For example, a reaction vessel made of quartz (
33) is shown in Fig. 2, 900nm-2100
In the wavelength range of nm, C shows a constant transmittance characteristic, so the three wavelengths for measurement are /11/λ,...
= 900nm/9751101.1(170nm/
12001'1ll, 11070n/1260
On the other hand, it is possible to use a reaction vessel made of synthetic resin [31].There are many absorption bands specific to synthetic resins in the near-infrared wavelength region. [
requires 8 laziness. For example, if you select Acnol resin as the synthetic resin flu, 94
0~9g0n…, 10Go, ~・+NOI1m, 12
[i0□~+310 n Since it shows a constant transmittance in the wavelength range of 1, the three wavelengths for measurement are Cλ1/λ, = 9
7flnm/+070nm or 11070n
/ 428 (The use of lnm is shocking.

分析部(11)は、光路長測定)IC照Q−1川ミフー
(21)から三波長の照射を受【ノlC各反応容器(3
3)の光路長を測定する測定手段(ハ)と、この測定値
にり旧師しC記憶り−る演幹記憶手段(1)ど、)閃1
す測定波長用照射ミシー〃)からの測定波長の照射を受
()て各反応容器(3)の濶痘を測定する旧制手段Qb
)と、この、;t 1lll J一段(ん)で測定され
た各測定値に前記演紳記1セ手段(’litに記憶させ
Cいる各反応容器(3))につい(の光路長の補正を行
って補正温度をt]鈴りる補正演τ卓手段(271と、
装置構成の各手段の作動を制illりる制御手段の3)
とからなつ−Cいる。
The analysis section (11) receives irradiation of three wavelengths from IC Teru Q-1 Kawa Mihu (21) (optical path length measurement), and each reaction vessel (3
3) Measuring means (c) for measuring the optical path length;
old system means Qb for measuring the pox in each reaction vessel (3) by receiving irradiation at the measurement wavelength from the measurement wavelength irradiation unit (3);
), and for each reaction vessel (3) stored in to calculate the corrected temperature using the correction calculation means (271).
3) control means for controlling the operation of each means of the device configuration;
Tokara Natsu-C is here.

測定終了後の反応液と、光路長測定後の水(j−i) 
Iよ、排出装置翰によって各反応容器(3)から装(占
りiにす1出される。
Reaction liquid after measurement and water after optical path length measurement (ji)
I, 1 volume is discharged from each reaction vessel (3) by the discharge device.

次に装置の作動につい(説明りる、。Next, I will explain the operation of the device.

間欠的に移動される搬送J゛段(2)か停止したとさ、
(0)の位置にa3いて被検成分!測定の終了した反応
容器(3()中の反応液を1ノ1出装置V邊(ごにつC
装置外に1)1出される。次に分?U−:S (12)
によつ(一定ωの水(I11!水) (5]を針入りる
。70度この洗浄水(水)をIJt−!I! )i ’
Z(にIによつ゛UH置外にυ1出し、新たに洗浄水を
ン1入りる。この操作は数回くり返し行なわれる。この
反応器(3)が110送手段(2)によってdI+の位
置まで移動され停止されl〔とさ、フィルター架設置−
1−タZ3)を回IIν、して光路長測定に適りる三波
長を通り各フィルターG41を反応器(3)の前面に位
i賀して光源ラン108)からの光を照q・1シ、演紳
iiJ憶手段C(,11によつ−C二波艮光からその反
応容器(33)の光路長を4忰しC記憶さける。なお、
二吸収波長による測定吸光度;lは、反応容器によるも
のか相殺され、従って光路長方の水のみに比例Jる値を
示し、その1lriにしとり゛いて正確な光路長をめる
(?lli正Jる)ことか−Cきるねりである。(C)
の位置に停止した反応容器(3)内に水(5)は、す1
出装置囚によって装胃外【こIJt出される。反応容器
(3)は(小の位置に停止したどき、反応液作成のため
、分ンJ器03i 1JJ、′−)C検体架設テーブル
06)上に載置された被検i、+(′A’l +7+の
一定量が検体ピヘツタQ71により分注される。被検試
料(7)が針入された反応オV:褐に3)には、反応容
器(3))か)1θ度測定位1iff (0)に移動さ
れる。1.ぐの間に、試薬(E3)及び必要に応じ−C
試薬(0)か分?1.器(14)、051によりイれぞ
れ一定flずつ供給される。
When the conveyance stage J (2), which is moved intermittently, stops,
The test component is a3 at position (0)! The reaction solution in the reaction container (3
1) 1 is output outside the device. Next minute? U-:S (12)
Yotsu (Water of constant ω (I11! water) (5) is inserted into the needle. 70 degrees This washing water (water) is IJt-!I!) i'
Take out υ1 to the outside of the UH position using Z(I), and add 1 new wash water. This operation is repeated several times. This reactor (3) is moved to the dI+ position by means of It was moved to and then stopped.
The light from the light source run 108) is illuminated by placing each filter G41 in front of the reactor (3) through three wavelengths suitable for optical path length measurement. 1. From the two-wave illumination, calculate the optical path length of the reaction vessel (33) by 4 degrees and memorize it.
Absorbance measured at two absorption wavelengths; l is canceled by the reaction vessel, and therefore shows a value proportional to only the water in the optical path length, and by taking that 1lri to determine the accurate optical path length (?lli correct Jru) Kotoka-C Kiruneri. (C)
The water (5) is in the reaction vessel (3) stopped at the position of 1
The prisoner is removed from the stomach by the prisoner. When the reaction container (3) stopped at the small position, the sample i, +(' A fixed amount of A'l +7+ is dispensed by the sample pipette Q71.The test sample (7) is inserted into the reaction vessel (3), and the reaction vessel (3)) is placed in the reaction vessel (3)) for 1θ degree measurement. is moved to position 1iff (0). 1. During the preparation, add reagent (E3) and -C as necessary.
Reagent (0) or minutes? 1. A fixed amount of fl is supplied to each of the containers (14) and 051.

濃度測定位置(e)に(°P止した反応容器(33)の
反応液には、フィルター架設[j−夕G”310) i
f;2度測定用のフィルターシ4)を通過した光3j+
iランプ(18)の波I(光が照射され、反応液の被検
成分濃度か旧制手段IAj) I−二よって測定される
。4測手段G:&l ’c測疋した淵庶測〉1j値には
、反応容器(3)に光路長の影響か含、1、れるか、こ
の影包)は、補正演C)手段(7θに(j3いC1先(
J演粋記憶手段(ハ)に記憶さμた反応器i!i; f
:31の光路1、(吸光度を補正りることにJ、つC除
かれ、同一光路長に換偉されだ補jト)閉度か1′jら
れる。
A filter was installed on the reaction liquid in the reaction container (33) which was stopped at the concentration measurement position (e) (°P).
f: Light 3j+ that passed through filter 4) for twice measurement
The wave I of the i lamp (18) (light is irradiated, and the concentration of the analyte component in the reaction solution is measured by the old control means IAj) I-2. 4 Measurement means G: & l 'c measured depth general measurement〉1j value includes the effect of the optical path length on the reaction vessel (3); 7θ (j3 C1 ahead (
The reactor i! stored in the J-actual storage means (c). i; f
:31 optical path 1, (J and C are removed to correct the absorbance and converted to the same optical path length) the degree of closure is increased by 1'j.

上記作動は、搬送手段に、J、つC11f7送さtL 
(<る各反応容器に3)について、制1211丁1す(
x、i)にJ、つ(制囲さねでいる。
The above operation causes J, C11f7 to be sent to the conveying means.
(< 3 for each reaction vessel), 1211 columns 1 (
x, i) is J, one (restricted).

イれ、l、9.1記装置によるどき(ま、各反1心谷器
(33)の光に’81・〈の浦」lを色メ・、を用い4
fいで、ホ(5)のみによつ(行うことか(さ、しかし
試2.il (7+中の被検成分の測定ど同++、%に
?Jつことかc′さる。このため、光路jマ(J法の一
定した多数の反1.L・容器を装]′1りるin)の技
術的及び経済的な不都合を解消して分4f L’+1u
ロー向十リルコトカC′、C!ニル。、1、た、反応’
6 :;g f3) (J)成形L′lIすにイれはど
汀怠を払わ4τくCしよいため、反応8器の小形化が司
1°jヒとなり、反応液量(試蘭iii ・FA 体j
+! ) (1) 必M jii f 少% < LI
 T If :+’j 0月)i)減を(まかることか
(さる。
I, using the device described in 9.1 (well, using the '81〈Noura'' l color method for the light of each anti-1 Shintani device (33), 4
Is it possible to perform only E (5) in f, but test 2.il (how does the measurement of the test component in 7+ ++,%?J or c').For this reason, By solving the technical and economical inconveniences of the optical path jma (equipped with a constant number of anti-1.L containers in the J method),
Row mukai juril kotka C', C! Nil. ,1,ta,reaction'
6:;g f3) (J) Since the molding L'lI is easy to avoid the stagnation and can be reduced to 4τ, the size of the reactor 8 is reduced to 1°j, and the amount of reaction liquid (test run) is reduced. iii ・FA body j
+! ) (1) Necessary M jii f small% < LI
T If :+'j 0 month) i) Is it to cover the decrease?

4丙13、I’、’、 ii[:実施例にC3いては、
反応容器の光路](測定に水を用いる場合について説明
したが、反1心液の1′1成に先た゛つC試オ」を分(
↓りる前に分411試薬の一成分であるix山イ没を分
注し、水に代えて緩挿+i(!l!を測定しC反I芯容
器の光路長をめてもよい。
4 丙13, I', ', ii[: In the example, C3 is
Optical path of reaction vessel] (Although we have explained the case where water is used for measurement, it is also necessary to separate
↓You can also measure the light path length of the C-I core container by dispensing ix and 411 reagent components, i.

<l\)発明の効!、!! この発明は、反応容器の光路長の補正に水、または5メ
jl’+ ’dli、を用い、光路長の測定を被検成分
濃度(1) i’ll!lシ1どど同−装置を用い−C
同11.’l lこ一連の動作としC効率よく?−jい
(jするJ、う(Jした6U)(あり、反応B器の汚れ
を少なく(7(分(J11冒Iよを同士りることか(き
るどどしに、反I心谷器の製ft 二+ストの低減及び
反応容器の小形化による反応’dl j(1の少111
化か実現CJ〜る1゜ 4 図面の簡j、ljな説明 第1図(A>はこの発明の一実施例を小り(代能説明図
、第1図(13)はそのフィルター架設置−ュータの平
面説明図、第2図(,1石英とアクリル(611指の〕
Δ過率を示り線図、第3図+t rj矢の反I心′8器
を用いた場合の水の透過率を示づ線図、第4図は艮1、
と、容器に6英を用いた場合の光路長と水の吸光曳の関
係を各測定三波艮の組合μに対して小しlJ線図Cある
<l\) The effectiveness of invention! ,! ! In this invention, water or 5mjl'+'dli is used to correct the optical path length of the reaction vessel, and the optical path length is measured based on the concentration of the analyte component (1) i'll! -C using the same equipment
Same 11. 'l Is this series of operations efficient? -J (J to do J, U (J to 6U) The reaction 'dl j (1's small 111
Realization CJ~1゜4 Simplified explanation of the drawings Figure 1 (A> is a small explanatory diagram of one embodiment of this invention, Figure 1 (13) is a diagram showing the installation of the filter rack. -Explanatory plan view of the computer, Figure 2 (1 quartz and acrylic (611 fingers))
Figure 3 is a diagram showing the Δ penetration rate, Figure 3 is a diagram showing the water permeability when using an anti-I core '8 device with the +trj arrow, Figure 4 is 1,
Then, there is a small lJ diagram C showing the relationship between the optical path length and the absorption trace of water when using 6E as the container for each measured three-wave combination μ.

Claims (1)

【特許請求の範囲】 1、多数の反応容器と、その搬送手段と、光路長を31
幹づるための液体、被検試料及び分析試薬の一定ffH
をそれぞれ各反応容器に分注Jる分注手段と、前記の光
路長を計粋するための液体が分注された各反応容器に、
近赤外波長域の二吸収波長光を照射し、被検試料が分注
された各反応容器に濃度測定用の波長光を照射づ−る照
射手段と、照射された二吸収波長光を測定する測定手段
と、その測定結果から各反応容器の光路長をt1鉾して
記憶する演粋記憶手段と、照射された測定波長光から被
検成分の濃度をalり定ブーるηlal!I手段と、該
i1測手段U′1Ill定された各測定値に前記演紳記
憶手段に配憶させた各反応容器の光路長についての補任
を?jつて補止温度を唱粋する補正演鋒手段ど、上記各
手段の作動を制す11づる制御手段とを(イ11えIj
自動分析装置。 2、反応容器か測定レルを兼ねた特許請求の範囲第1項
記載の自動分析装置。 3、反応容器か、反応液を調整づるための反応容器と、
得られる反応液を測定づるための測定レルとからなる特
許請求の範囲第1項記載の白!FII分4(r装置。 4、光路長をめるために使用する液体か純粋な水または
緩衝液である14檜晶求の範囲第1項記載の自動分析装
置。
[Claims] 1. A large number of reaction vessels, their conveyance means, and an optical path length of 31
Constant ffH of liquid, test sample and analytical reagent
a dispensing means for dispensing the liquid into each reaction vessel, and a dispensing means for dispensing the liquid into each reaction vessel, into which the liquid for measuring the optical path length is dispensed,
Irradiation means that irradiates light with dual absorption wavelengths in the near-infrared wavelength range and irradiates wavelength light for concentration measurement onto each reaction container into which the test sample is dispensed, and measures the irradiated light with dual absorption wavelengths. a measuring means for determining the optical path length of each reaction vessel based on the measurement results and storing the optical path length for each reaction vessel; I means and the i1 measurement means U'1Ill supplement the optical path length of each reaction vessel stored in the storage means for each determined measurement value? 11 control means for controlling the operation of each of the above means, such as a correction force control means for recommending supplementary temperature.
Automatic analyzer. 2. The automatic analyzer according to claim 1, which also serves as a reaction vessel and a measurement barrel. 3. A reaction vessel or a reaction vessel for adjusting the reaction solution;
The white product according to claim 1, further comprising a measurement rail for measuring the resulting reaction solution. 4. The automatic analyzer according to item 1, which is a liquid used to measure the optical path length, pure water or a buffer solution.
JP3959684A 1984-02-29 1984-02-29 Automatic analyzing device Pending JPS60183560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3959684A JPS60183560A (en) 1984-02-29 1984-02-29 Automatic analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3959684A JPS60183560A (en) 1984-02-29 1984-02-29 Automatic analyzing device

Publications (1)

Publication Number Publication Date
JPS60183560A true JPS60183560A (en) 1985-09-19

Family

ID=12557487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3959684A Pending JPS60183560A (en) 1984-02-29 1984-02-29 Automatic analyzing device

Country Status (1)

Country Link
JP (1) JPS60183560A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003637A1 (en) * 1994-07-25 1996-02-08 Molecular Devices Corporation Determination of light absorption pathlength in a vertical-beam photometer
US5959738A (en) * 1994-07-25 1999-09-28 Molecular Devices Corporation Determination of light absorption pathlength in a vertical-beam photometer
US6496260B1 (en) * 1998-12-23 2002-12-17 Molecular Devices Corp. Vertical-beam photometer for determination of light absorption pathlength
CN104215628A (en) * 2014-09-04 2014-12-17 北京纳百景弈生物科技有限公司 Portable quantitative analysis device capable of rapidly detecting test paper

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003637A1 (en) * 1994-07-25 1996-02-08 Molecular Devices Corporation Determination of light absorption pathlength in a vertical-beam photometer
US5959738A (en) * 1994-07-25 1999-09-28 Molecular Devices Corporation Determination of light absorption pathlength in a vertical-beam photometer
US6404501B1 (en) * 1994-07-25 2002-06-11 Molecular Devices Corporation Determination of light absorption pathlength in a vertical-beam photometer
US6496260B1 (en) * 1998-12-23 2002-12-17 Molecular Devices Corp. Vertical-beam photometer for determination of light absorption pathlength
CN104215628A (en) * 2014-09-04 2014-12-17 北京纳百景弈生物科技有限公司 Portable quantitative analysis device capable of rapidly detecting test paper

Similar Documents

Publication Publication Date Title
US4528159A (en) Automated analysis instrument system
US20110104737A1 (en) Photometric measuring method for a sample liquid, a photometric measuring device, and a mixing container for a photometric measuring device
JPS56147072A (en) Automaic analyzing system
JPS6361956A (en) Chemical analysis instrument
JPS6126623B2 (en)
CN104160251A (en) Calibration method for reagent card analyzers
US20100099133A1 (en) Method and apparatus for the treatment of specimens
DE3343176A1 (en) AUTOMATED ANALYZER
JPH01500368A (en) liquid light tube and cap assembly
JPS60183560A (en) Automatic analyzing device
US20060292038A1 (en) Automated sample analyzer and cuvette
JP2007187445A (en) Autoanalyzer
JPH0576571B2 (en)
WO2020116058A1 (en) Analyzer and analysis method
JPH0547782B2 (en)
JPS58628B2 (en) automatic fractionator
JPH0554067B2 (en)
JPH0510953A (en) Method for judging and analyzing prozone in antigen antibody reaction
JPS6411909B2 (en)
JPH0617918B2 (en) Automatic analyzer
JPS6129740A (en) Automatic chemical analysis instrument
JPS60231171A (en) Automatic analyzer
CN211374782U (en) Quantitative detection analyzer for fluorescence immunoassay reagent
JP2505190B2 (en) Chemical analyzer
JPH03181861A (en) Automatic analyser