JPS60182316A - Control device of variable displacement turbocharger - Google Patents

Control device of variable displacement turbocharger

Info

Publication number
JPS60182316A
JPS60182316A JP59036102A JP3610284A JPS60182316A JP S60182316 A JPS60182316 A JP S60182316A JP 59036102 A JP59036102 A JP 59036102A JP 3610284 A JP3610284 A JP 3610284A JP S60182316 A JPS60182316 A JP S60182316A
Authority
JP
Japan
Prior art keywords
pressure
nozzle
bypass valve
engine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59036102A
Other languages
Japanese (ja)
Other versions
JPH0519012B2 (en
Inventor
Yuji Hirabayashi
平林 雄二
Masahito Noguchi
雅人 野口
Keiji Hatanaka
畑中 啓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59036102A priority Critical patent/JPS60182316A/en
Publication of JPS60182316A publication Critical patent/JPS60182316A/en
Publication of JPH0519012B2 publication Critical patent/JPH0519012B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To obtain the predetermined supercharging pressure so as to promote an increase of engine torque, by actuating a bypass valve of exhaust gas so as to be closed when the supercharging pressure is controlled by a variable displacement means in a variable displacement turbocharger. CONSTITUTION:A control mechanism 9, actuating a bypass valve in an exhaust- gas bypass mechanism 8 to be closed when a nozzle of a variable displacement mechanism 7 operates opening, maintains the bypass valve to be closed even if the pressure of exhaust gas rises in the upstream of the nozzle. A turbine 5 is rotated at a high speed because the whole quantity of exhaust gas is allowed to flow in the turbine, and its coaxial compressor 6 causes the pressure of intake air to rise to a specified supercharging pressure. The control mechanism 9, if the supercharging pressure exceeds the specified value by increasing an engine speed, actuates the bypass valve to be opened, preventing an engine equipment from damage due to a supercharge.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、可変容量ターボチャージャの制御装置、特
に、排気バイパス機構を有する自動車用エンジンの可変
容量ターボチャージ↑lの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for a variable displacement turbocharger, and in particular to an improvement of a variable displacement turbocharger ↑l for an automobile engine having an exhaust bypass mechanism.

[従来技術] 自動車ターボチャージャ付エンジンは、一般に、排気の
エネルギを利用して吸気を過給しエンジントルクを向上
させるもので、この場合、エンジン破損防止」:、過給
圧(正圧)が規定値J、り上昇しないよう排気バイパス
機構を備え、過給圧が導かれるアクチュエータでバイパ
ス弁(スイング式つェストゲート弁)を開いて排気をバ
イパスさせている。
[Prior Art] Automotive turbocharged engines generally use exhaust energy to supercharge intake air to improve engine torque. An exhaust bypass mechanism is provided to prevent the exhaust gas from rising above the specified value J, and an actuator to which the supercharging pressure is guided opens a bypass valve (swing type thrust gate valve) to bypass the exhaust gas.

一方、ターボチャージャは広範囲の性能向上を図るべく
可変容量機構を備えるものが提案され、タービン入口に
設けたフラップ弁型式のノズル、又は、リング状ノズル
の開度を変え、全エンジン回転数での過給圧の向上を図
るようにしている(実開昭53−50310号公報参照
)。
On the other hand, a turbocharger equipped with a variable capacity mechanism has been proposed in order to improve performance over a wide range of areas, and by changing the opening degree of a flap valve-type nozzle or a ring-shaped nozzle installed at the turbine inlet, it is possible to improve the performance at all engine speeds. An attempt is made to improve the supercharging pressure (see Japanese Utility Model Application Publication No. 53-50310).

即ち、可変容量ターボチャージャは、低容量、(エンジ
ン回転数の低い領域)の場合はノズルを閉じ、また、反
対に、高音量(エンジン回転数の高い領域)の場合はノ
ズルを開くというように、エンジンの使用回転数に応じ
で、夫々に適合する性能を発揮し、これにより所定の過
給圧を得ようとするものである。
In other words, a variable displacement turbocharger closes the nozzle when the volume is low (low engine speed range) and, conversely, opens the nozzle when the volume is high (high engine speed range). The purpose of this system is to exhibit performance that is suited to the number of rotations used by the engine, thereby achieving a predetermined supercharging pressure.

しかしながら、このような従来の可変容量ターボチャー
ジャにあっては、エンジンの低回転域で過給圧を上昇さ
せようとノズルを閉じると、その初期段階でタービン入
口の排圧が上り、所定の過給圧に到達リ−る前にバイパ
ス弁が開いてしまい、過給圧が規定値まで上らないため
、エンジン1〜ルクが低下するという問題がある。
However, in such a conventional variable displacement turbocharger, when the nozzle is closed to increase boost pressure in the low engine speed range, the exhaust pressure at the turbine inlet rises in the initial stage, causing the predetermined supercharging pressure to rise. There is a problem in that the bypass valve opens before the boost pressure is reached and the boost pressure does not rise to the specified value, resulting in a drop in engine torque.

この理由は以下のとおりである。The reason for this is as follows.

即ち、エンジン過給圧を上げるためにはタルビンノズル
前後に適当な圧力差が必要であり、この圧力差でタービ
ンがその速度エネルギを得、これど同軸の]ンプレッザ
を高回転して過給圧が得られるのである。このように、
ターじ゛ン人口のエンジン排圧が上った状態にしてから
、次のノズル開面になるよう開度調整する関係上、この
排圧の影響をノズル上流のバイパス弁が受(プてしまう
In other words, in order to increase the engine boost pressure, an appropriate pressure difference is required before and after the talbin nozzle, and the turbine obtains its velocity energy from this pressure difference, which rotates the coaxial compressor at high speed and increases the boost pressure. You can get it. in this way,
Since the engine exhaust pressure at the target stage has risen and then the opening is adjusted to the next nozzle opening, the bypass valve upstream of the nozzle is affected by this exhaust pressure. .

従って、従来のバイパス弁は、これを作動するアクチュ
エータの過給圧と内蔵ぽねとのバランスが前述の排圧の
上昇分により崩れ、開作動して、排気をバイパスするこ
とになる。
Therefore, in the conventional bypass valve, the balance between the supercharging pressure of the actuator that operates the bypass valve and the built-in valve is disrupted by the above-mentioned increase in exhaust pressure, and the valve opens and bypasses the exhaust gas.

この結果、過給圧が規定値より落ちこむ、いわゆる、だ
れ込みを生じ、従って、トルクも低下するという不具合
点を生ずるものであった。
As a result, the supercharging pressure drops below the specified value, ie, a so-called slump occurs, resulting in a problem that the torque also decreases.

[発明の目的] この発明は、このような従来の問題点に着目してなされ
たもので・、可変容量のターボチャージャの過給圧のだ
れ込みを防止し、もって、エンジントルクの向上を図る
ことを目的とする。
[Purpose of the Invention] This invention was made by focusing on such conventional problems.It is an object of the present invention to prevent the supercharging pressure of a variable capacity turbocharger from sagging, thereby improving engine torque. The purpose is to

[発明の構成] この発明は、前記目的を達成するため、ノズルの作動に
よりタービンの流儀特性を変える可変容量機構と、バイ
パス弁にJ、り前記タービンをバイパスして排気を流す
排気バイパスm構と、前記ノズルの作動時バイパス弁を
閉作動する制御機構とを設(プたものである。
[Structure of the Invention] In order to achieve the above object, the present invention includes a variable displacement mechanism that changes the flow characteristics of a turbine by operating a nozzle, and an exhaust bypass structure that bypasses the turbine and allows exhaust gas to flow through a bypass valve. and a control mechanism that closes the bypass valve when the nozzle is activated.

[作用] 可変容量機構のノズルが開作動しているときは、制gI
Im構が排気バイパス機構のバイパス弁を閉作動さける
ので、ノズル上流の排圧が上ってもバイパス弁は閉作動
を維持する。従って、排気流量は全量タービンに流れる
ので、これが高速回転し、同軸のコンプレッサにより規
定の過給圧まで吸気3− を上昇させる。よって過給圧のだれ込み、ひいてはトル
クの落ちこみを防止する。やがてエンジン回転数が上昇
して過給圧が規定値を越えると、通常通り、バイパス弁
が開作動し、過過給等によるエンジン機器の破損を防止
する。
[Function] When the nozzle of the variable displacement mechanism is operating, the control gI
Since the Im mechanism prevents the bypass valve of the exhaust bypass mechanism from closing, the bypass valve maintains its closed operation even if the exhaust pressure upstream of the nozzle increases. Therefore, the entire amount of exhaust gas flows to the turbine, which rotates at high speed and raises the intake air 3- to a specified supercharging pressure by the coaxial compressor. This prevents a drop in supercharging pressure and, in turn, a drop in torque. When the engine speed eventually rises and the supercharging pressure exceeds a specified value, the bypass valve opens as usual to prevent damage to engine equipment due to overcharging.

[実施例] 以下、この発明を図面に基づいて説明する。第1図〜第
4図はこの発明の一実施例を示す図である。
[Example] The present invention will be described below based on the drawings. 1 to 4 are diagrams showing an embodiment of the present invention.

まず、全体構成を第1図により説明づる。エンジン1は
吸気管2より吸気を得て、作動を終えた排気を排気管3
より大気へ放出する。
First, the overall configuration will be explained with reference to FIG. The engine 1 obtains intake air from the intake pipe 2 and sends the exhaust gas after the engine has finished operating to the exhaust pipe 3.
released into the atmosphere.

ターボチャージ174はタービン5とコンプレッサ6と
を同軸で備えると共に、ターじン5の排気入口部に可変
容量1]f47と排気バイパス機構8とを備え、これら
を制御機構9により制御するようにしている。
The turbocharger 174 includes a turbine 5 and a compressor 6 coaxially, and also includes a variable capacity 1]f47 and an exhaust bypass mechanism 8 at the exhaust inlet of the turbine 5, and these are controlled by a control mechanism 9. There is.

第2醒目3艮具体的実施例で、吸気はエア70メータ1
1で計量され、コンプレッサ6で加圧され出r+で過給
圧1) bとなり、絞弁12で制御され、工4− ンジン1に吸入される。
In the second awakening stage 3 concrete example, the intake air is 70 meters 1
It is metered at 1), pressurized by the compressor 6, becomes supercharging pressure 1) at the output r+, is controlled by the throttle valve 12, and is sucked into the engine 1.

排気はエンジン1から排気管3を通り、途中、可変容量
機構7のノズル13を介してタービン5にエネルギを与
えてから排出する。
Exhaust gas passes from the engine 1 through the exhaust pipe 3, and on the way, it gives energy to the turbine 5 via the nozzle 13 of the variable displacement mechanism 7 before being discharged.

ノズル13は第3図に示すように、軸14を中心に回動
し、スロート15の面積を可変とし、渦巻状のスクロー
ル16へ入る排気最に対応する。
As shown in FIG. 3, the nozzle 13 rotates about a shaft 14 and has a throat 15 having a variable area, corresponding to the exhaust gas entering a spiral scroll 16.

再びM2図において、ノズル13の軸14はレバー17
及びロッド18を介して、アクチュエータ19のダイヤ
フラム20に連結される。
Again in figure M2, the shaft 14 of the nozzle 13 is connected to the lever 17.
and is connected to the diaphragm 20 of the actuator 19 via the rod 18 .

アクチュエータ19には、吸気管2のコンプレッサ6の
出口圧、即ち、過給圧P L]を導く導管27を設け、
ぞの途中に絞り22を設Cブると共に、この絞り22の
下流に逃し導管23を分岐し、その他端をコンプレッサ
6の入口側へ接続する。また、アクチュ■−夕19の大
気室27にばね24を設【ブ、過給圧PbにZ=1向す
るようにする。
The actuator 19 is provided with a conduit 27 that guides the outlet pressure of the compressor 6 of the intake pipe 2, that is, the supercharging pressure PL],
A throttle 22 is provided in the middle of the pipe, and a relief conduit 23 is branched downstream of the throttle 22, and the other end is connected to the inlet side of the compressor 6. In addition, a spring 24 is installed in the atmospheric chamber 27 of the actuator 19 so that it is directed in Z=1 direction toward the boost pressure Pb.

逃し導管23には電磁弁25を設(プ、これをコントロ
ールユニット26でデユーティ制御する。
A solenoid valve 25 is provided in the relief conduit 23 and is duty-controlled by a control unit 26.

排気バイパス機構8は、バイパス通路3oの入口にバイ
パス弁31をスイング式に取(]1−1− 、これをベ
ルクランク32及び11ツド33でアクチュエータ34
のダイヤフラム35に連結往る。ダイレフラム35は大
気室28に設けたばね36により[]ット33の反対方
向に弾発される。また、アクチュエータ34には過給圧
Pbを導入りる導管37が接続されるが、その圧力の取
出口は電磁弁25の上流、好ましくは、第2図のように
、絞り22の−に流で、吸気管2の取出口38より、所
定の管路抵抗(1殺述)を早する位置30どり−る。
The exhaust bypass mechanism 8 has a bypass valve 31 installed in a swing type manner at the entrance of the bypass passage 3o (]1-1-), and is operated by an actuator 34 using a bell crank 32 and an 11-end 33.
The diaphragm 35 is connected to the diaphragm 35. The direflame 35 is urged in the opposite direction of the cut 33 by a spring 36 provided in the atmospheric chamber 28. Further, a conduit 37 for introducing supercharging pressure Pb is connected to the actuator 34, but the pressure outlet is upstream of the electromagnetic valve 25, preferably, as shown in FIG. Then, from the intake port 38 of the intake pipe 2, move to a position 30 where a predetermined pipe line resistance (1 point) is increased.

以上に述べたアクチュエータ19,34、電磁弁25.
4管21,37等が第1図の制御機構9を構成する。
The actuators 19, 34 and solenoid valve 25 described above.
The four pipes 21, 37, etc. constitute the control mechanism 9 in FIG.

なお、吸気管2には過給圧(]ンブレッナ出口の吸気管
圧力)Pbを検出する過給圧セン1t−41と緊急用逃
し弁42が取付けられている。
A boost pressure sensor 1t-41 and an emergency relief valve 42 are attached to the intake pipe 2 to detect the boost pressure (intake pipe pressure at the outlet of the air vent) Pb.

コンl〜ロールユニツj〜26は、主に、マイクロブ[
1セツサと、メモリと、インタフェースとからなるマイ
クロコンピュータで構成され、前記、エアフローメータ
11がら空気流Fjk Q aを、過給圧センサ41か
ら過給圧P l)を、クランク角ヒンリ43からエンジ
ン回転数Noを、絞弁開度セン1ノ44から絞弁開度を
人力信号とし−C受りる。これらの信号のうちアナログ
信号はA / 1)変換器を介してデジタル信号として
入力される。メモリにはマイクロプロセッサを制御する
プログラムやマイクロブ[1セツサが実行する演算に必
要な各種データが格納されると共に、メモリは外部から
取り込んだデータの一時記憶を行う。マイクロブ[1セ
ツザは前記プログラムに従って燃N噴躬量、噴射時期及
び点火信号等を演算して運転状態に適切な噴射信号S1
、点火信号Spを出力すると共に、電磁弁25のデユー
ティ値を演算して制御信号DMを出力覆る。
Control l ~ roll unit j ~ 26 is mainly microbe [
It is composed of a microcomputer consisting of a setter, a memory, and an interface. The rotational speed No. is received from the throttle valve opening sensor 1 44 with the throttle valve opening as a human input signal -C. Among these signals, the analog signal is input as a digital signal via an A/1) converter. The memory stores programs that control the microprocessor and various data necessary for calculations executed by the microprocessor, and also temporarily stores data imported from the outside. Microbe [1 Setza calculates the fuel N injection amount, injection timing, ignition signal, etc. according to the program and generates an injection signal S1 appropriate for the operating condition.
, outputs the ignition signal Sp, calculates the duty value of the electromagnetic valve 25, and outputs the control signal DM.

次に前記実施例の作用を説明覆る。Next, the operation of the above embodiment will be explained.

まず、第4図のフローヂャ−1〜により電磁弁25のデ
コーアイ値D Mがまる。図中、[〕1〜P7はフロー
チャートの各ステップを示(。
First, the deco eye value DM of the solenoid valve 25 is determined by flowcharts 1 through 1 in FIG. In the figure, []1 to P7 indicate each step of the flowchart (.

Plでエンジン回転数NOと吸気流IQaのA/D変換
地が入力され、P2で]−ンジン1回転当7− りの空気流鉛丁0が計算される。1〕3でエンジン回転
数と1回転当りの空気流f3− r pに対しあらかじ
め決められたデユーティ値をルックアップしてくる。こ
のテーブルはNe及び−「pの分割点が有限であり、分
割点間の数値に対して番ま比例補間計算を行ない基本デ
ユーティ値Dvが決定される。
At Pl, the engine speed NO and the A/D conversion value of the intake air flow IQa are input, and at P2, the air flow rate per engine revolution is calculated. 1] In step 3, a predetermined duty value is looked up for the engine rotational speed and the air flow f3-rp per rotation. In this table, the dividing points of Ne and -p are finite, and the basic duty value Dv is determined by performing number proportional interpolation calculation on the numerical values between the dividing points.

ざらに、P4ではルックアップされた基本デユーティ値
DMが電磁弁の作動遅れ時間及び演算ソノ1〜部の誤動
作をしないよう上限値D0と下限値DLの間にあるかど
うかの判定を行い、[)Uより大ぎなっているときはP
bでDMを上限値に固定する。そして、P7でルックア
ップされた基本デユーティ値pMが記憶されこのメモリ
の数値に応じ図示していないタイマ計測部で電磁弁への
デコーティ削算が行なわれその結果がI10インターフ
ェースを介し電磁弁の作動を決定ツる。
Roughly speaking, in P4, it is determined whether the basic duty value DM that has been looked up is between the upper limit value D0 and the lower limit value DL in order to prevent the operation delay time of the solenoid valve and the malfunction of the calculation units 1 to 1. ) P if larger than U
Fix DM to the upper limit value with b. Then, the basic duty value pM looked up in P7 is stored, and in accordance with the value in this memory, a timer measuring section (not shown) performs decouty reduction on the solenoid valve, and the result is transmitted to the solenoid valve via the I10 interface. Determine.

次に実際の作動を第5図、第6図及び第7図ににり説明
する。
Next, the actual operation will be explained with reference to FIGS. 5, 6, and 7.

第5図は横軸にエンジン回転数N eを、縦軸にエンジ
ン1回転当りの空気流m T’ pをとったもの8− である。図のように、絞弁全開での運転線がFの線とな
り、ノズル全開で過給圧1”1)71’規定値例えば水
銀柱375m/mどなる点が81−1同じく全開で規定
値となる点がBUどなり、この間の領域C部がノズル開
度が変化づる領域(パ矢印方向に行くに従って開作動し
てゆく。
In FIG. 5, the horizontal axis represents the engine rotational speed Ne, and the vertical axis represents the air flow m T'p per engine rotation. As shown in the figure, the operating line with the throttle valve fully open becomes line F, and the point where the nozzle is fully open and the supercharging pressure is 1"1) 71' specified value, for example, mercury column 375 m/m, becomes the specified value with 81-1 also fully open. The point becomes BU, and the area C between this area is an area where the nozzle opening degree changes (the opening operation increases as the nozzle opens in the direction of the arrow).

又、排気バイパス弁は3uの点の前後に決められたAか
ら全開での運転線]三の間の領域り部で作動覆る。
Further, the exhaust bypass valve operates in the region between A and the fully open operating line] 3, which are determined before and after the point 3u.

上記の図でNeどTpに関して電磁弁のデユーティ値を
書いてこれをテーブルとして与えておく。
In the above diagram, write the duty values of the solenoid valves with respect to Ne, Tp, and provide them as a table.

このテーブルはエンジンの特性及び耐久信頼性により許
容される最大過給圧になるよう各エンジン回転数と空気
流量に関して制御テコ−ティ値どなるよう予め決められ
ている。
This table is predetermined to determine the control leverage value for each engine speed and air flow rate so as to obtain the maximum boost pressure allowed by the engine characteristics and durability and reliability.

第6図は電磁弁デユーティ値とアクチュエータ正圧及び
ノズル、バイパス弁の両開度の関係を示ず。
FIG. 6 does not show the relationship between the solenoid valve duty value, the actuator positive pressure, and the opening degrees of the nozzle and bypass valve.

前)ボのC領域の開度はC線、デア−ティ値はF線(1
00〜50位)、C領域の開度はd線、fコーティ値は
G (50〜O位)の範囲である。
The opening degree of the C area of the front) is the C line, and the duty value is the F line (1
00 to 50), the opening degree of the C region is in the range of d line, and the f coating value is in the range of G (50 to O).

即ち、第2図において、電磁弁25へのデユーティ値を
多く覆ると、電磁弁25の開時間が多くなり、アクチュ
エータ19の正圧は低下し、ばね24の力が杓勝ってノ
ズル13を全開とする。反対にテコ−ディ値を少くする
ど正圧が多くなってロンド18を介してノズル13を全
開とする。
That is, in FIG. 2, when the duty value to the solenoid valve 25 is increased, the opening time of the solenoid valve 25 becomes longer, the positive pressure of the actuator 19 decreases, and the force of the spring 24 becomes overwhelming and the nozzle 13 is fully opened. shall be. On the other hand, as the leverage value decreases, the positive pressure increases and the nozzle 13 is fully opened via the iron 18.

このノズルの作動範囲F(第6図)間においてはバイパ
ス弁はdlのように全開である。そして、バイパス弁は
徐々にd2及びd3のように聞いてゆく。
During this nozzle operating range F (FIG. 6), the bypass valve is fully open as indicated by dl. Then, the bypass valve gradually listens like d2 and d3.

第7図はデユーティ値O%、50%及び100%の場合
のアクチュエータへの導管の圧力が、導管の距頭及び各
要素によって低−ト(R)する様子をグラフにしたもの
で、絞り22の位置まではほぼ直線状に低下し、また、
デユーティ値がOに近いとぎは、流れがなくアクチュエ
ータへの正圧が逃げないので、殆ど低下しないものであ
る。
Figure 7 is a graph showing how the pressure in the conduit to the actuator is lowered (R) depending on the conduit head and each element when the duty values are O%, 50%, and 100%. It decreases almost linearly to the position of
When the duty value is close to O, there is no flow and the positive pressure to the actuator does not escape, so there is almost no decrease.

従って、ノズル13の作動範囲(C)においては、電磁
弁25のオンオフ作動により、導管21の圧力が低下し
て、バイパス弁31のアクチュエータ34にかかるので
、ばね28の張力を適宜選択づることにより、その間、
ばね28の力で、l”1ツド33を介して、バイパス弁
31を閉作動ざぜることができ、排圧上昇による、バイ
パス弁31の過早な開弁開始時期を容易に遅らせるとが
できる。
Therefore, in the operating range (C) of the nozzle 13, the pressure in the conduit 21 decreases due to the on/off operation of the solenoid valve 25, and is applied to the actuator 34 of the bypass valve 31. ,meanwhile,
The force of the spring 28 can cause the bypass valve 31 to close via the l"1 rod 33, and the premature start of opening of the bypass valve 31 due to an increase in exhaust pressure can be easily delayed. .

かくして、バイパス弁31の制御用圧力は開始圧力Po
に対して、1だ()低下しているので、この間全開に保
持され、Poに到って、d2のj、うに開作動してゆく
ことになる。
Thus, the control pressure of the bypass valve 31 is the starting pressure Po
However, since it has decreased by 1 (), it will be kept fully open during this period, and when it reaches Po, it will open to d2.

なお、領域1−1ではアクチュエータ正圧が変化しない
にもかかわらず、d3のJ、うに開作動を継続している
が、これはバイパス流量の増大にJ:る弁前後の差圧増
大にJ:るもので、この範囲では、もはや、ノズル制御
は全開のままの開閉作動領域外の領域であるので不都合
は生じない。
In addition, in region 1-1, although the actuator positive pressure does not change, the opening operation continues in d3, but this is due to an increase in the bypass flow rate and an increase in the differential pressure before and after the valve. : In this range, no inconvenience occurs because the nozzle control is outside the opening/closing operation range where the nozzle remains fully open.

第8図はエンジン回転数に対づ−る排圧の変化を図示し
たもので、Aはノズル全閉、Bはノズル全開で、ノズル
の開閉のときの排圧はCのような過11− 渡状態となる。K範囲外がバイパス弁の作動域であるの
で、過渡線CのX部分で排圧が上る際、バイパス弁にこ
の圧力がかかって、従来は第9図の点線Yのように過給
圧が低下し、いわゆるだれ込みを生じI〔。
Figure 8 shows the change in exhaust pressure with respect to the engine speed. It becomes a state of passing. Since the outside of the K range is the operating range of the bypass valve, when the exhaust pressure rises at the X portion of the transient line C, this pressure is applied to the bypass valve, and conventionally the boost pressure increases as shown by the dotted line Y in Figure 9. This causes so-called sagging.

しかしながら、本発明の実施例では、ノズル開閉作動中
、電磁弁25、アクチュエータ34等の制御機構9によ
り、バイパス弁31を閉作動するので、第9図の実線Z
のように、過給圧がシャープに上り従来のようなだれ込
みがなくなる。この結果、]−ンジントルクが向上し、
ノズル開閉作動により性能を良好に発揮できる。
However, in the embodiment of the present invention, the bypass valve 31 is closed by the control mechanism 9 such as the electromagnetic valve 25 and the actuator 34 during the nozzle opening/closing operation, so that the solid line Z in FIG.
As shown in the figure, the boost pressure rises sharply and the slump that occurs in the conventional system disappears. As a result, engine torque is improved,
Good performance can be achieved by opening and closing the nozzle.

前記実施例は、更に、アクチュエータの作動圧として、
制御しようと一す−ろ過給圧を用いているのぐ、過給圧
が一トるど、ノズル又はバイパス弁が開作動してこれを
下げようとし、フィードバックがかかり、都合がよい。
The embodiment further includes, as the actuating pressure of the actuator,
When the supercharging pressure is leveled off, the nozzle or bypass valve is opened to try to lower it, which is convenient because the filtering supply pressure is used to control the supercharging pressure.

第10図には、他の実施例を示づ−6 この実施例は第2図とはバイパス弁36のアクヂコ王−
タ34への導管37に三方電磁弁45を12− 設【プ、これをコントロールユニット26で制御ll 
−るようにしlζことが異なる。
Another embodiment is shown in FIG. 10. This embodiment is different from that in FIG.
A three-way solenoid valve 45 is installed in the conduit 37 to the tank 34, and is controlled by the control unit 26.
- The difference is that lζ is made as follows.

三方電磁弁/15は通電時、y)クチコT−夕34の導
管47が大気口46と通じ、非通電時、該導管47がノ
ズル側アクチコエータ19の導管21と通ずる。
When the three-way solenoid valve/15 is energized, the conduit 47 of the mouthpiece T-tube 34 communicates with the atmosphere port 46, and when not energized, the conduit 47 communicates with the conduit 21 of the nozzle-side acticoator 19.

この実施例はバイパス弁の作動開始圧力p oに対し、
電磁弁25のデユーティ値を100%近くにしてもノズ
ルの開作動までの余裕圧力1が充分に確保できないよう
な場合には、更に、バイパス弁用アクチュエータ34の
正圧を下げて、これを閉作動する必要があり、その場合
に有効である。
In this example, for the activation start pressure po of the bypass valve,
If the duty value of the solenoid valve 25 is set close to 100%, but sufficient margin pressure 1 is not secured until the nozzle opens, the positive pressure of the bypass valve actuator 34 is further lowered to close it. It needs to work and is effective in that case.

本実施例によりノズル作動と同時にコントロールユニッ
ト26から指令しC,三方電磁弁45に通電し、アクチ
ュエータ34の圧力を大気圧に通じて下げることにより
、バイパス弁31を確実に閉作動させることができる。
According to this embodiment, the bypass valve 31 can be reliably closed by issuing a command from the control unit 26 at the same time as the nozzle operation, energizing the three-way solenoid valve 45, and lowering the pressure of the actuator 34 to atmospheric pressure. .

このようなことは、ノズ゛ル用アクチコエータ19の過
渡特性を改善づるため、絞り22の面積を大ぎくした場
合、往々にして必要になる。特に、ノズル開度を小さく
絞るとタービン八[」排圧が一ト冒し、また、二[ンジ
ン加速時のように、ターボヂト−ジ′VIの回転]−昇
に先だって入[1排圧が上昇り−るのC”、これにより
バイパス弁が開ぎ易くなる。
This is often necessary when the area of the aperture 22 is increased in order to improve the transient characteristics of the nozzle acticoator 19. In particular, when the nozzle opening is narrowed to a small degree, the exhaust pressure of the turbine increases temporarily, and when the engine accelerates, the exhaust pressure increases before the engine starts to increase. This makes it easier for the bypass valve to open.

そこで゛1記実施例のように大きな差圧CMi実に閉じ
ることが必要と4Tるのである。
Therefore, it is necessary to actually close the large differential pressure CMi as in the first embodiment.

[発明の効果] 以上げ1明したl;うに、この発明にJ、れぼ、その構
成を可変容儀ターボチャージャの可変容品手段で過給圧
を制御しているとぎは排気バイパス弁を閉作動ざゼる構
成としたため、タービン人[]圧力がTRしてもバイパ
ス弁は閉作動lす゛、所定の過給圧にTRさせることか
でき、エンジン1ヘルクの増大を図ることができるとい
う効果が得られる。
[Effects of the Invention] As stated above, the present invention has a structure in which the supercharging pressure is controlled by the variable volume means of the variable volume turbocharger, and the exhaust bypass valve is closed. Since the structure is such that the bypass valve closes even if the turbine pressure is TR, it is possible to TR to the predetermined supercharging pressure, and the effect is that it is possible to increase the engine Herk per unit. is obtained.

また、他の実施例は確実にバイパス弁を閉作動づるl〔
め、過給圧のだれ込みの心配は全くむくなる。。
In addition, other embodiments can reliably close the bypass valve.
Therefore, there is no need to worry about supercharging pressure sagging. .

なお、この発明は、アクチコエータの制御圧どして真空
を用いても成立し、また、バイパス弁をデコーデイ制御
覆る場合にも同様に成立Jる。
Note that the present invention can be applied even if a vacuum is used as the control pressure of the acticoator, and can also be applied in the same way when the bypass valve is used for decoding control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の全体図、第2図は第1図
の具体的構成図、第3図は角変容量機構を示す断面図、
第4図は第2図の制御信号プラグラムのフローチャート
、第5図はテーブル説明図、第6図はデコーティ値に対
する開度及び圧力線図、第7図は導管の圧力勾配を示す
説明図、第8図はノズル作動時のエンジン排圧性能図、
第9図は過給圧性能図、第10図は他の実施例の具体的
構成図である。 (図面の主要部を現わす符号の説明) 1・・・エンジン 2・・・ 吸気管 3・・・ 排気管 4・・・ ターポチ17−ジヤ5・
・・ タービン 6・・・コンプレッサ7・・・ 可変
容ff1ll構 8・・・排気バイパス機構9・・・ 
制御線描 13・・・ ノズル19・・・ アクチユエ
ータ 25・・・ 電磁弁 26・・・ コントロールユニット 30・・・ バイパス通路 31・・・ バイパス弁1
5− 34・・・ アクチコエータ 45・・・ 三方電磁弁 代理人 弁理士 三 好 保 男 17− =16− 第7図 A立1 第8図 エンジン回転数− 第9図 で−、ご−51−m壽ゴ紡 エンジン凹壬A伏
FIG. 1 is an overall view of an embodiment of the present invention, FIG. 2 is a specific configuration diagram of FIG. 1, and FIG. 3 is a sectional view showing the angular displacement mechanism.
FIG. 4 is a flowchart of the control signal program in FIG. 2, FIG. 5 is an explanatory diagram of the table, FIG. Figure 8 shows the engine exhaust pressure performance diagram when the nozzle is operating.
FIG. 9 is a supercharging pressure performance diagram, and FIG. 10 is a specific configuration diagram of another embodiment. (Explanation of symbols representing main parts of the drawing) 1... Engine 2... Intake pipe 3... Exhaust pipe 4... Tarpot 17-Gear 5-
...Turbine 6...Compressor 7...Variable displacement ff1ll structure 8...Exhaust bypass mechanism 9...
Control line drawing 13... Nozzle 19... Actuator 25... Solenoid valve 26... Control unit 30... Bypass passage 31... Bypass valve 1
5- 34... Acticoator 45... Three-way solenoid valve agent Patent attorney Yasu Miyoshi 17- = 16- Figure 7 A-1 Figure 8 Engine rotation speed- Figure 9-, 51- mju gobo engine concave a

Claims (1)

【特許請求の範囲】[Claims] ノズルの作動によりタービンの流量特性を可変にする可
変容量機構と、バイパス弁により前記タービンをバイパ
スして排気を流す排気バイパス機構と、前記ノズルの作
動時バイパス弁を閉作動する制御機構とを設けた可変容
量ターボチャージャの制御装置。
A variable capacity mechanism that varies the flow rate characteristics of the turbine by operating a nozzle, an exhaust bypass mechanism that bypasses the turbine and allows exhaust to flow through a bypass valve, and a control mechanism that closes the bypass valve when the nozzle is operated. Control device for variable displacement turbocharger.
JP59036102A 1984-02-29 1984-02-29 Control device of variable displacement turbocharger Granted JPS60182316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59036102A JPS60182316A (en) 1984-02-29 1984-02-29 Control device of variable displacement turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59036102A JPS60182316A (en) 1984-02-29 1984-02-29 Control device of variable displacement turbocharger

Publications (2)

Publication Number Publication Date
JPS60182316A true JPS60182316A (en) 1985-09-17
JPH0519012B2 JPH0519012B2 (en) 1993-03-15

Family

ID=12460400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59036102A Granted JPS60182316A (en) 1984-02-29 1984-02-29 Control device of variable displacement turbocharger

Country Status (1)

Country Link
JP (1) JPS60182316A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544486A (en) * 1991-08-13 1993-02-23 Mitsubishi Motors Corp Waste gate opening/closing controller of variable volume turbocharger
FR2851614A1 (en) * 2003-02-11 2004-08-27 Siemens Ag METHOD FOR ADJUSTING THE INTAKE PRESSURE IN THE CASE OF AN INTERNAL COMBUSTION ENGINE EQUIPPED WITH AN EXHAUST GAS TURBOCHARGER
WO2011002697A3 (en) * 2009-07-02 2011-04-21 Honeywell International Inc. Turbocharger system for air-throttled engines
US8446029B2 (en) 2010-04-05 2013-05-21 Honeywell International Inc. Turbomachinery device for both compression and expansion
US8544262B2 (en) 2010-05-03 2013-10-01 Honeywell International, Inc. Flow-control assembly with a rotating fluid expander
US9567962B2 (en) 2011-05-05 2017-02-14 Honeywell International Inc. Flow-control assembly comprising a turbine-generator cartridge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132332U (en) * 1980-03-10 1981-10-07
JPS59159732U (en) * 1983-04-12 1984-10-26 三菱自動車工業株式会社 Variable throttle turbo gear

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132332U (en) * 1980-03-10 1981-10-07
JPS59159732U (en) * 1983-04-12 1984-10-26 三菱自動車工業株式会社 Variable throttle turbo gear

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544486A (en) * 1991-08-13 1993-02-23 Mitsubishi Motors Corp Waste gate opening/closing controller of variable volume turbocharger
FR2851614A1 (en) * 2003-02-11 2004-08-27 Siemens Ag METHOD FOR ADJUSTING THE INTAKE PRESSURE IN THE CASE OF AN INTERNAL COMBUSTION ENGINE EQUIPPED WITH AN EXHAUST GAS TURBOCHARGER
WO2011002697A3 (en) * 2009-07-02 2011-04-21 Honeywell International Inc. Turbocharger system for air-throttled engines
US9115644B2 (en) 2009-07-02 2015-08-25 Honeywell International Inc. Turbocharger system including variable flow expander assist for air-throttled engines
US8446029B2 (en) 2010-04-05 2013-05-21 Honeywell International Inc. Turbomachinery device for both compression and expansion
US8544262B2 (en) 2010-05-03 2013-10-01 Honeywell International, Inc. Flow-control assembly with a rotating fluid expander
US9567962B2 (en) 2011-05-05 2017-02-14 Honeywell International Inc. Flow-control assembly comprising a turbine-generator cartridge

Also Published As

Publication number Publication date
JPH0519012B2 (en) 1993-03-15

Similar Documents

Publication Publication Date Title
US4763476A (en) Controller for variable geometry type turbocharger
JPS60240829A (en) Acceleration detecting device for engine with turbocharger
JPS60182319A (en) Control device of variable displacement turbocharger
JPS60182316A (en) Control device of variable displacement turbocharger
JPH052816B2 (en)
JPH0749771B2 (en) Supercharging pressure control device for internal combustion engine with variable displacement exhaust turbocharger
JPH03294623A (en) Supercharge control device for two-stage supercharged gasoline internal combustion engine
JPS5848716A (en) Controller of turbo charger for engine
JPS60219418A (en) Control device for variable capacity turbo charger
JPS60182318A (en) Control device of variable displacement turbocharger
JP2522077B2 (en) Control method of engine with supercharger
JPH06323149A (en) Engine with exhaust driven superconductor
JPH0539726A (en) Supercharging pressure controller for engine with supercharger
JP2840791B2 (en) Control device for supercharged engine
JPH03199626A (en) Supercharging control method for engine with supercharger
JPH0326269Y2 (en)
JPH0521635Y2 (en)
JPS6056128A (en) Control device for variable displacement type turbo-charger
JPS60182320A (en) Control device of variable displacement turbocharger
JPS61175239A (en) Supercharger of engine
JPS61123717A (en) Variable nozzle controller for turbosupercharger
JPH0625641Y2 (en) Intake device for internal combustion engine with turbocharger
JPH0310371Y2 (en)
JPH0378530A (en) Supercharge pressure control device
JPS6329026A (en) Supercharge pressure controller for internal combustion engine equipped with variable capacity type exhaust turbocharger