JPS6018196B2 - Electric motor control device - Google Patents

Electric motor control device

Info

Publication number
JPS6018196B2
JPS6018196B2 JP52101643A JP10164377A JPS6018196B2 JP S6018196 B2 JPS6018196 B2 JP S6018196B2 JP 52101643 A JP52101643 A JP 52101643A JP 10164377 A JP10164377 A JP 10164377A JP S6018196 B2 JPS6018196 B2 JP S6018196B2
Authority
JP
Japan
Prior art keywords
current
commutation
motor
chopper
commutating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52101643A
Other languages
Japanese (ja)
Other versions
JPS5436516A (en
Inventor
博 成田
正彦 射場本
仁一 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP52101643A priority Critical patent/JPS6018196B2/en
Priority to US05/936,927 priority patent/US4209733A/en
Publication of JPS5436516A publication Critical patent/JPS5436516A/en
Publication of JPS6018196B2 publication Critical patent/JPS6018196B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/907Specific control circuit element or device
    • Y10S388/915Sawtooth or ramp waveform generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/907Specific control circuit element or device
    • Y10S388/917Thyristor or scr
    • Y10S388/92Chopper

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)
  • Power Conversion In General (AREA)
  • Dc-Dc Converters (AREA)

Description

【発明の詳細な説明】 本発明は電動機制御装置、特にサィリスタチョッパを用
いた電動機制御装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a motor control device, and particularly to a motor control device using a thyristor chopper.

最近、電動機に供給する電力を制御するためにサィリス
タ等を使用したチョッパ回路により、電動機に印加され
る電圧を所定の周期でもつて間歌的に制御し、その平均
値を所要の値に制御する如き手段が提案されている。そ
して、電動機に供給される電力を広い範囲でもつて制御
するために上記チョッパの通流率(チョッパのオンオフ
周期Tに対するオン時指m,の比率T,/T、以下通流
率yと表す)も広い範囲で制御されることが望ましい。
そこで従釆は、例えば第1図の如きチョッパ回路を用い
た電動機制御装置が知られている。
Recently, in order to control the power supplied to the motor, chopper circuits using thyristors etc. are used to control the voltage applied to the motor intermittently at a predetermined period, and to control the average value to the desired value. Similar methods have been proposed. In order to control the power supplied to the motor over a wide range, the chopper's conduction rate (the ratio of the on-time finger m to the chopper's on-off period T, T, /T, hereinafter referred to as conduction rate y) is used. It is also desirable to be able to control this over a wide range.
Therefore, a motor control device using a chopper circuit as shown in FIG. 1, for example, is known as a slave.

第1図において、Vsは直流電源、Mは電動機電機子、
Fは電動機界磁、MSLは平滑リアクトル、CHはチヨ
ツ/ゞ、DFはフリーホイールダイオードを示すもので
、これらの構成部品により公知のチョッパによる電動機
制御装置が構成される。また、チョッパCHも公知のも
ので、主として電動機電流IMを通流する主サィリスタ
MTh、該主サィリスタMmを転流するための転流パル
ス電流回路を動作せしめる転流サィリスタAm、髭流電
圧Vcoを貯える転流コンデンサC。、談転流コンデン
サCoに共勤して転流パルス電流ioを生ぜしめる転流
IJァクトルL。、前記転流コンデンサCoの転流露圧
Vcoが主サィリスタMThのオン時に放電することを
阻止するダイオードDcから横成される。チョツパの主
サイリスタMThのゲートには移相器APSの出力を微
分回路DIで立ち上がり微分したものが、転流サィリス
タAThのゲートには移相器A的の電源を兼ねる発振器
OSC出力を微分回路○2で立ち上がり微分したものが
夫々印加され、また電流制御系ACRからの出力により
電動機電流1一が電流指令IPに追従制御されるように
移相器出力幅つまり主サィリスタMThのオン比率(チ
ョツパの通流率)が制御されることになる。第2図は、
以上に述べた第1図回路におけるチョッパ制御1周期の
動作波形を示すもので、チョッパCHの転流動作期間に
注目すると転流サィリスタAThのオンから実際にチョ
ッパCHの電流が零となって該チョッハ℃日がオフとな
るまでに転流動作時間Toが必要となることがわかる。
In Figure 1, Vs is a DC power supply, M is a motor armature,
F is a motor field, MSL is a smoothing reactor, CH is a magnet, and DF is a freewheel diode. These components constitute a known chopper-based motor control device. Further, the chopper CH is also known, and mainly includes a main thyristor MTh through which the motor current IM flows, a commutation thyristor Am that operates a commutation pulse current circuit for commutating the main thyristor Mm, and a whisker current voltage Vco. Commutation capacitor C for storage. , a commutating IJ factor L cooperating with the commutating capacitor Co to generate a commutating pulse current io. , a diode Dc that prevents the commutation exposure voltage Vco of the commutation capacitor Co from discharging when the main thyristor MTh is turned on. The gate of the main thyristor MTh of the Chotsupa is the output of the phase shifter APS, which is differentiated by a differentiating circuit DI, and the gate of the commutating thyristor ATh is the output of the oscillator OSC, which also serves as the power supply for the phase shifter A, is used by the differentiating circuit. The output width of the phase shifter, that is, the on-ratio of the main thyristor MTh (the on-ratio of the main thyristor MTh) is conduction rate) will be controlled. Figure 2 shows
This shows the operating waveforms of one cycle of chopper control in the circuit in Figure 1 described above.If we pay attention to the commutation operation period of the chopper CH, the current of the chopper CH actually becomes zero after the commutation thyristor ATh is turned on. It can be seen that the commutation operation time To is required before the switch is turned off.

この転流動作時間T。は、転流パルス電流i。が流れる
転流半周期↑c(=mノLo・Co)、転流パルス電流
ioの反転電流で主サィリスタMmに流れている電動機
電流IMを打消すまでの時間7M、転流コンデンサCo
に転流電圧Vcoを充電する時間7cとから成る。チョ
ッパCHの通流率制御範囲を広くとるには、チョッパC
Hの最小通流率yminをできるだけ小さい値にするこ
とが望ましい。
This commutation operation time T. is commutated pulse current i. commutation half cycle ↑c (=m no Lo・Co), the time it takes for the reversal current of the commutation pulse current io to cancel the motor current IM flowing in the main thyristor Mm, 7M, the commutation capacitor Co
and a time 7c for charging the commutation voltage Vco. To widen the flow rate control range of chopper CH, use chopper C.
It is desirable to set the minimum conduction rate ymin of H to a value as small as possible.

チョツパCHの最小通流率ymlnは、主サィリスタM
Thと転流サィリスタAThが同時にオンされた場合で
、その値はツmin=L『1)min−T。
The minimum conduction rate ymln of Chotsupa CH is the main thyristor M
When Th and commutating thyristor ATh are turned on at the same time, the value is tsumin=L'1)min-T.

【1}T −Tで示される。 [1}Denoted by T −T.

これから、チョツパCHの最小通流率yminを小さく
するには、チョツパCHのオンオフ周期Tを一定とした
場合に転流動作時間Toを小さくする必要があることが
わかる。転流コンデンサCoへの電圧充電時間7cはそ
のときの電動機電流IMによってほぼ一義的に定まるの
で、転流動作時間T。を小さくするには転流半周期7P
を4・さくする必要がある。転流半周期7Pは使用する
サィリスタのターンオフタイムに依存されることになる
が、ターンオフタイムを一定とした場合、転流半周期ヶ
Pを々・さくすることは必然的に転流パルス電流i。の
波高値を高くすることになる。さて、電動機に供聯合さ
れる電力を広範囲に制御するためには、チョッパCHの
最4・薄流率ym1nをできるだけ小さくすることが必
要で、第1図の従来装置では前記したような転流パルス
電流ioの波高値を高く(例えば、転流パルス電流io
の波高値を消弧すべき電動機電流IMの3〜5倍)して
最小通流率yminを小さくすることが行なわれている
From this, it can be seen that in order to reduce the minimum conduction rate ymin of the chopper CH, it is necessary to reduce the commutation operation time To when the on-off period T of the chopper CH is constant. The voltage charging time 7c to the commutation capacitor Co is almost uniquely determined by the motor current IM at that time, so the commutation operation time T. To reduce commutation half cycle 7P
It is necessary to reduce 4. The commutation half-period 7P depends on the turn-off time of the thyristor used, but if the turn-off time is constant, decreasing the commutation half-period P will inevitably reduce the commutation pulse current i. . This will increase the wave height value. Now, in order to control the electric power coupled to the electric motor over a wide range, it is necessary to make the minimum flow rate ym1n of the chopper CH as small as possible. Increase the peak value of the pulse current io (for example, increase the peak value of the commutated pulse current io
3 to 5 times the motor current IM to be extinguished) to reduce the minimum conduction rate ymin.

このため、転流サィリスタAThの電流容量が大きくな
ったり、転流コンデンサC。の転流露樹利用率が悪くな
るので転流コンデンサ容量が大きくなる等の理由からチ
ョツパCHの転流装置が大型で高価なものになっていた
。また、電動機はそれに接続される負荷の大小により電
動機電流IMもズか願こ変動するが、チョツパCHとし
ては最大の電流を消弧するように転流回路定数が設定さ
れるため、転流パルス電流ioは電動機電流IMの大小
にあまり関係なく大きな値に設定されることになり、転
流回路としては非常に不経済な設計になっていることも
該転流回路要素を大型・高価なものにしている原因とな
っている。本発明の目的は、上託した従来技術の欠点を
なくし、転流エネルギー反転路内の機器のパルス電流耐
量を軽減して転流装置を小型で安価なものとすることの
できる電動機制御装置を得ることにある。
For this reason, the current capacity of the commutating thyristor ATh increases, and the current capacity of the commutating capacitor C increases. The commutation device of the Chotupa CH has become large and expensive because the commutation capacitor capacity becomes large because the utilization rate of the commutation dew is poor. In addition, the motor current IM of the motor fluctuates depending on the size of the load connected to it, but since the commutation circuit constant is set so as to extinguish the maximum current as a chopper CH, the commutation pulse The current io is set to a large value regardless of the magnitude of the motor current IM, and the design of the commutation circuit is extremely uneconomical, which also makes the commutation circuit elements large and expensive. This is the cause of this. An object of the present invention is to provide a motor control device that eliminates the drawbacks of the prior art, reduces the pulse current withstand capacity of equipment in the commutation energy reversal path, and makes the commutation device small and inexpensive. It's about getting.

本発明の特徴は、チョッパの転流エネルギー反転路と電
動機電流路とを結合する可飽和リアクトル型変流器を設
けたことである。
A feature of the present invention is that a saturable reactor type current transformer is provided to connect the commutation energy reversal path of the chopper and the motor current path.

第3図に本発明の一実施例を示す。FIG. 3 shows an embodiment of the present invention.

この実施例が第1図の従来装置と異なる部分は、チョッ
パの転流リアクトルとしてチョツパ電流icHが通流す
る1次巻線N,と転流パルス電流i。が通流する2次巻
線N2をもつ可飽和リアクトル型変流器SCTを設け、
更にチョツハ℃日を最小通流率の状態で間引き制御を行
なうためにチョツパの転流サィリスタAThのゲートに
移相器A塔出力を微分回路D2で立ち上がり微分したも
のを与えたことにある。なお、間引き制御は後述するよ
うに必要に応じて設けられるものである。先ず、チョッ
ハ℃日の転流リアクトルを可飽和リアクトル型変流器S
CTにした効果について述べる。
This embodiment differs from the conventional device shown in FIG. 1 in the primary winding N, which serves as a chopper commutation reactor, through which the chopper current icH flows, and in the commutation pulse current i. A saturable reactor type current transformer SCT having a secondary winding N2 through which current flows is provided,
Furthermore, in order to perform thinning control in a state of minimum conduction rate, the output of the phase shifter A tower is differentiated by a differentiating circuit D2 and is applied to the gate of the commutating thyristor ATh of the chopper. Note that the thinning control is provided as necessary, as will be described later. First, convert the commutation reactor into a saturable reactor type current transformer S.
The effects of using CT will be described.

第4図は、第3図回路におけるチョツパ制御1周期の動
作波形を示すもので、チョッパCHの転流ェネルギ−反
転期間でrに注目すると転流パルス電流ioはi。=母
‐・N(母‐iCH)となって常に電動機電流IMに見
合った電流値になる。これは、第3図において主サィリ
スタMThがオンされて変換器SCTの1次巻線N,に
チョッパ電流lcH(=1一)が流れているところに、
転流サィリスタAThがオンされるので変流器SCTの
変流作用によりその2次巻線N2には転流コンデンサC
。から母.・Nの電流が流れることになるためである。
この転流動作期間における変流器SCTの動作波形を第
5図に示す。1次巻線N,に流れるチョツパ電流lcH
(=IM)のため、変流器SCTの磁束レベルは第5図
ハの■一i曲線(■:磁束、i:励磁電流)における正
の飽和値■Fにある。
FIG. 4 shows the operating waveform of one cycle of chopper control in the circuit of FIG. 3. If we pay attention to r during the commutation energy inversion period of the chopper CH, the commutation pulse current io is i. = Mother - N (mother - iCH), and the current value always matches the motor current IM. This is because in FIG. 3, where the main thyristor MTh is turned on and the chopper current lcH (=1-) flows through the primary winding N of the converter SCT,
Since the commutating thyristor ATh is turned on, the commutating capacitor C is connected to its secondary winding N2 due to the current transforming action of the current transformer SCT.
. From my mother. - This is because a current of N will flow.
FIG. 5 shows the operating waveforms of the current transformer SCT during this commutation operation period. The chopper current lcH flowing through the primary winding N,
(=IM), the magnetic flux level of the current transformer SCT is at the positive saturation value ■F in the ■i curve (■: magnetic flux, i: excitation current) in FIG. 5C.

この状態で、転流サィリスタAThがオンされると変流
器SCTの2次巻線N2には転流コンデンサ電圧Vco
が印加され、磁束レベルは正の飽和値から負の飽和値■
nに向って引き戻され、このときの変流作用により2次
巻線N2には転流コンデン偽物歓流として母‐・Mの電
流が流れる。
In this state, when the commutating thyristor ATh is turned on, the commutating capacitor voltage Vco is applied to the secondary winding N2 of the current transformer SCT.
is applied, and the magnetic flux level changes from the positive saturation value to the negative saturation value■
The current is pulled back toward n, and due to the current transformation effect at this time, the current of mother -.M flows in the secondary winding N2 as a commutated capacitor fake current.

転流コンデンサ電圧Vc。は放電々流母‐・Mのため次
第に減少して零となるが、今度は2次巻線N2に流れる
電流学‐・Nが転流コンデンサCoの充麗々流として流
れ、転流コンデンサ電圧Vooをこれまでの極性とは逆
極性に充電することになる。この結果、2次巻線N2に
印加される電圧極性も反対となるので、変流器SCTの
磁束レベルは再び正の飽和値○Pに引き戻されることに
なる。変流器SCTの磁束レベルが正の飽和値に達する
と2次巻線N2の飽和ィンダクタンスは急速に小さくな
り、主サィリスタ消弧期間↑N十丁cへ移り、その初期
において、この飽和ィンダクタンスと転流コンデンサに
よるL一C振動電流で転流サィリスタATh及び主サイ
リス夕MThがオフされる。以後、チョツパ電流lcH
(=IM)はダイオードDc→2次巻線N2→転流コン
デンサCoを通って流れ、転流コンデンサ電圧Vcoを
所定値に充電したところでチョッハ汁軍流lcHが零、
つまりチョツパCHがオフされることになる。このサィ
リスタ消弧期間ヶM+↑cにおいては、Co→MTh(
逆方向)→Dc→N2→Coという主サィリスタ消弧路
に電流が流れるが、この電流は、当実施例においては主
サイリスタMTh牡こ順方向に流れる電流IMより大き
くなることはない。従って、第5図に示されるように変
流作用を行なっている時間7,が第1図従来回路の転流
半周期すPに等しくなるように可飽和リアクトル型変流
器SCTの電圧時間積を決めれば、チョッパCHの最小
通流率ッminも第1図従来回路と等しくできる。第5
図より、変流作用時間7Tは可飽和リアクトル型変流器
SCTの磁束が正の飽和値から負の飽和値に変化する時
間のほぼ2倍と考えてよいので、可飽和リアクトル型変
流器SCTの電圧時間穣V・SはV・S=VC。
Commutation capacitor voltage Vc. The current gradually decreases to zero due to the discharge current mother-M, but now the current flowing through the secondary winding N2 flows as a full current of the commutating capacitor Co, and the commutating capacitor voltage Voo will be charged with the opposite polarity from the previous polarity. As a result, the polarity of the voltage applied to the secondary winding N2 is also reversed, so that the magnetic flux level of the current transformer SCT is again pulled back to the positive saturation value ○P. When the magnetic flux level of the current transformer SCT reaches a positive saturation value, the saturation inductance of the secondary winding N2 decreases rapidly, and the main thyristor arc extinction period ↑N10c occurs. The commutating thyristor ATh and the main thyristor MTh are turned off by the L-C oscillating current caused by the inductance and commutating capacitor. After that, the chopper current lcH
(=IM) flows through the diode Dc → the secondary winding N2 → the commutating capacitor Co, and when the commutating capacitor voltage Vco is charged to a predetermined value, the electric current lcH becomes zero,
In other words, the Chotsupa CH is turned off. In this thyristor extinction period M+↑c, Co→MTh(
A current flows in the main thyristor arc-extinguishing path (reverse direction)→Dc→N2→Co, but in this embodiment, this current does not become larger than the current IM flowing in the forward direction of the main thyristor MTh. Therefore, as shown in FIG. 5, the voltage-time product of the saturable reactor type current transformer SCT is adjusted so that the time 7 during which current transformation is performed is equal to the commutation half period P of the conventional circuit of FIG. By determining , the minimum conduction rate min of the chopper CH can be made equal to that of the conventional circuit shown in FIG. Fifth
From the figure, the current transformation action time 7T can be considered to be approximately twice the time for the magnetic flux of the saturable reactor type current transformer SCT to change from the positive saturation value to the negative saturation value, so the saturable reactor type current transformer The voltage time value V・S of SCT is V・S=VC.

X牛X芸=ご二王子二 ‐‐…‐■ となり、一方、可飽和リアクトル型変流器SCTの鉄心
の断面積をA(枕)、磁束密度をB(Wb/〆)とすれ
ば電圧時間積V・SはV・S=2N2・B・A
……{31となるので、これら‘2}〜‘3
}式より使用する歓心の材料や寸法等を決めればよい。
X Cow The time product V・S is V・S=2N2・B・A
...{31, so these '2} ~ '3
}The material and dimensions of the huanshin to be used can be determined from the formula.

ところで、第3図の本発明回路では転流コンデンサCo
の充放電々流つまり転流パルス電流i。
By the way, in the circuit of the present invention shown in FIG. 3, the commutating capacitor Co
The charging and discharging current, that is, the commutation pulse current i.

が鰯機電流1M‘こ見合った値母‐・M‘こ綱刈る結果
、転流コンデンサ電圧Vcoを一定と仮定した場合には
、電動機電流IMの大小に応じて前記変流作用時間↑で
が変動するおそれがある。一般に、転流コンデンサ電圧
Vcoは転流コンデン・サCoへの充蚤々流が流れてい
る回路のィンダクタンスつまり転流リアクトルや配線等
によるィンダクタンスL′のため電源電圧Vs以上に過
充電されることは周知で、その値はvC。
As a result, if the commutating capacitor voltage Vco is assumed to be constant, the current commutation action time ↑ will vary depending on the magnitude of the motor current IM. There is a risk of change. Generally, the commutating capacitor voltage Vco is overcharged to more than the power supply voltage Vs due to the inductance L' of the circuit through which a large current flows to the commutating capacitor Co, that is, the inductance L' caused by the commutating reactor, wiring, etc. It is well known that the value is vC.

=vS+・M.店 .・肌‘4’で示される。=vS+・M. shop . - Indicated by skin '4'.

これより、電動機電流IMの制御範囲で電源電圧VSよ
りも過充電姫分1一・時のほうが大きくなるように転流
回路定数を設定すれば、転流コンデンサ電圧Vcoは電
動機電流INにほぼ比例することになり、前記した転流
コンデンサ電圧Vcoが一定の場合のように電動機電流
IMの大づ・により大幅に変動することはない。従って
、電動機電流INの最小制御電流(IN)minにおい
て所要の最小通流率yminが得られるよう前記した可
飽和リアクトル型変流器SCTの変流作用時間7Tを定
めればよい。なお、第3図実施例における可飽和リアク
トル型変流器SCTの1次巻線N,は、鉄心磁束の飽和
時に転流コンデンサへの過充電々圧に寄与するインダク
タンスとして作用するので、その巻数を適当に選ぶこと
により所要の転流コンデンサ電圧を得ることができる特
徴がある。
From this, if the commutation circuit constant is set so that the overcharge voltage is larger than the power supply voltage VS within the control range of the motor current IM, the commutation capacitor voltage Vco will be approximately proportional to the motor current IN. Therefore, unlike the case where the commutating capacitor voltage Vco is constant, it does not vary significantly depending on the magnitude of the motor current IM. Therefore, the current transformation action time 7T of the above-mentioned saturable reactor type current transformer SCT may be determined so as to obtain the required minimum conductivity ymin at the minimum control current (IN)min of the motor current IN. Note that the primary winding N of the saturable reactor type current transformer SCT in the embodiment shown in FIG. It has the characteristic that the required commutation capacitor voltage can be obtained by appropriately selecting .

以上に述べた第3図の実施例では、可飽和リアクトル型
変流器SCTの1次巻線N,にチョッパ電流(=電動機
電流)が流れるものとして説明したが、この1次巻線N
.の接続個所はこれに限定されるものではなく、電動機
電流が流れる他の箇所、例えば第6図〜第8図に示した
実施例が考えられる。
In the embodiment shown in FIG. 3 described above, it has been explained that the chopper current (=motor current) flows through the primary winding N of the saturable reactor type current transformer SCT.
.. The connection location is not limited to this, and other locations through which the motor current flows, such as the embodiments shown in FIGS. 6 to 8, are conceivable.

第6図は、可飽和リアクトル型変流器SCTの1次巻線
N,を電動機に直列接続してある。可飽和リアクトル型
変流器SCTに使用した鉄心の角形特性が悪い場合には
、チョツハ℃日のオン直前に可飽和リアクトル型変流器
SCTの鉄心磁束は正の飽和値になく、チョッパCHの
オンにより鉄D磁束が正の飽和値に変化するため、この
間可飽和リアクトル型変流器SCTの1次巻線N,には
ほぼ電源電圧Vsが印加され、この電圧が可飽和リアク
トル型変流器SCTの2次巻線N2に変圧比帯で定まる
電圧(帯‐VS)機織る。
In FIG. 6, the primary winding N of a saturable reactor type current transformer SCT is connected in series with a motor. If the square characteristics of the iron core used in the saturable reactor type current transformer SCT are poor, the iron core magnetic flux of the saturable reactor type current transformer SCT will not be at the positive saturation value just before turning on the chopper CH. Since the iron D magnetic flux changes to a positive saturation value by turning on, almost the power supply voltage Vs is applied to the primary winding N of the saturable reactor type current transformer SCT during this time, and this voltage is applied to the saturable reactor type current transformer SCT. A voltage (band-VS) determined by the transformation ratio band is applied to the secondary winding N2 of the transformer SCT.

このため、第3図回路の場合には転流サイリスタATh
とダイオードDcに、チヨツパCHのオンする毎に転流
コンデンサ電圧に前記した2次巻線N2の議起電圧(=
器‐VS)が加算された電圧が印加されることになり、
電圧耐量の高いものが必要となる欠点を生ずる。第6図
回路は、可飽和リアクトル型変流器SCTの1次巻線N
,を電動機に直列接続し、チョッパCHのオン直前つま
りチョッパCHのオフ時でも1次巻線N,には電動機電
流が引き続き流れて可飽和リアクトル型変流器SCTの
鉄心磁束をほぼ正の飽和値に維持することにより、前記
した欠点を除いたものである。
Therefore, in the case of the circuit shown in Fig. 3, the commutating thyristor ATh
and diode Dc, and each time the chopper CH turns on, the voltage of the secondary winding N2 (=
VS) will be applied,
This results in the disadvantage that a high voltage withstand capacity is required. The circuit in Figure 6 shows the primary winding N of the saturable reactor type current transformer SCT.
, is connected in series with the motor, and the motor current continues to flow through the primary winding N, even when the chopper CH is turned on, that is, even when the chopper CH is turned off, and the iron core magnetic flux of the saturable reactor type current transformer SCT is brought to almost positive saturation. By maintaining this value, the above-mentioned drawbacks are eliminated.

なお、この第6図回路では可飽和リアクトル型変流器S
CTの1次巻線N.の飽和ィンダクタンスを転流コンデ
ンサへの過充電々圧に寄与するィンダクタンスとして使
えない欠点が生ずるが、これは電源からチョッハ℃日ま
での配線長を長くする等の方法により十分にカバーでき
る。第7図の実施例は、第3図及び第6図の夫々の特徴
を生かした箇所に可飽和リアクトル型変流器SCTの1
次巻線N,を接続したもので、1次巻線N,に適当なタ
ップを設け、その1部分を電動機と直列に、他の部分を
チョツパと直列になるようにしてある。また、第8図の
実施例では第7図回路と同様に1次巻線N,に適当なタ
ップを設け、その1部分をチョッパのオフ時に電動機電
流が流れるフリーホイールダイオードDFと直列に、他
の部分をチョッパと直列になるようにしてある。従って
、第7図及び第8図の実施例では、可飽和リアクトル型
変流器SCTの1次巻線N,を転流コンデンサへの過充
電々圧に寄与するィンダクタンスとして利用できると共
にチョッパのオン時に転流サィリスタとダィオードlこ
不必要な電圧を印加させることがない特徴がある。従っ
て、第3図回路によれば転流リアクトルとして可飽和リ
アクトル型変流器SCTを設けることにより、転流パル
ス電流i。
In addition, in this circuit of Fig. 6, the saturable reactor type current transformer S
CT primary winding N. Although there is a drawback that the saturated inductance of 2 cannot be used as the inductance that contributes to the overcharge voltage to the commutating capacitor, this can be sufficiently covered by methods such as increasing the length of the wiring from the power supply to the switch. In the embodiment shown in FIG. 7, one of the saturable reactor type current transformers SCT is installed at a location that takes advantage of the features of FIGS. 3 and 6, respectively.
The secondary winding N, is connected to the primary winding N, with suitable taps, one part of which is in series with the motor, and the other part in series with the chopper. In addition, in the embodiment of FIG. 8, similar to the circuit of FIG. 7, an appropriate tap is provided on the primary winding N, and one part of the tap is connected in series with the freewheel diode DF through which the motor current flows when the chopper is turned off. The part is arranged in series with the chopper. Therefore, in the embodiments shown in FIGS. 7 and 8, the primary winding N of the saturable reactor type current transformer SCT can be used as an inductance that contributes to the overcharge voltage to the commutating capacitor, and also as a chopper. A feature is that unnecessary voltage is not applied to the commutating thyristor and diode when turned on. Therefore, according to the circuit of FIG. 3, by providing a saturable reactor type current transformer SCT as a commutating reactor, the commutating pulse current i can be reduced.

を常に電動機電流IMに見合った値く例えば、母=・と
すれキまi。=IM)に制御されるので、転流サィリス
タAThの電流容量及び転流コンデンサ容量を低減でき
る効果がある。また、可飽和リアクトル型変流器SCT
の変流作用時間7Tを所要のチョッパ最小通流率ymi
nが得られるように設定することにより従釆装置と同様
な広い範囲の電動機制御を行なうことができるものであ
る。なお、以上に述べた実施例は、例えば電気車の電動
機制御の如く負荷が重くて電動機電流の最小制御値が比
較的大きいものに適用でき、この場合にはチョッパCH
の転流サイリスタAThのゲートには従来回路の如く発
振路出力より与えてもよい。
Always set the value commensurate with the motor current IM. =IM), this has the effect of reducing the current capacity of the commutating thyristor ATh and the commutating capacitor capacity. In addition, saturable reactor type current transformer SCT
The current transformation action time 7T is the required chopper minimum flow rate ymi
By setting so that n can be obtained, it is possible to control the electric motor over a wide range similar to that of the slave device. The embodiments described above can be applied to applications where the load is heavy and the minimum control value of the motor current is relatively large, such as the motor control of an electric car, and in this case, the chopper CH
The oscillation path output may be applied to the gate of the commutating thyristor ATh as in the conventional circuit.

つぎに、第3図の回路において、チョッパCHを最小通
流率の状態で間引き制御する、つまりチョッ/べ日の転
流サイリスタAThのゲートに移相器出力の立ち下がり
を微分して与える効果について述べる。
Next, in the circuit shown in Fig. 3, the chopper CH is thinned out in a state of minimum conduction rate, that is, the effect of differentiating the fall of the phase shifter output to the gate of the chopper/be day commutation thyristor ATh. Let's talk about.

例えば、フオークリフト用電動機制御のように非常にノ
ロノロした微速運転が要求される場合には、電動機蟹流
1一の最小制御値(IM)minも非常に小さな値にす
ることが要求され、このときの転流コンデンサ電圧Vc
oには過充電々圧はほとんどなく電源電圧Vs一定値に
充電される。このため、電動機電流INを小さくしよう
としても可飽和リアクトル型変流器SCTの変流作用時
間7Tつまり転流動作時間Toが大きくなって、所要の
最小値制御ができない。第3図の回路では、チョツパC
Hの転流サィリス夕AThのゲートパルスを主サィリス
タMThがオンしている条件つまり転流サィリスタAT
hのゲートパルスを主サィリスタMThのオン比率を変
える移相器出力の立ち下がりを微分したもので与えてあ
る。この場合の動作波形図を第9図に示す。なお、チョ
ッパCHの最4・滝流率yminは通常の運転制御で要
求される最小値制御が可能な値としてある。移相器は、
電流制御系からの出力により電動機電流IMが電流指令
IPに追従するようにその出力幅が制御されるが、もし
チョッハ℃日の最小遠流率yminが大きいため電動機
電流lnが電流指令IPよりも大きい場合には移相器出
力幅が零となり、主サィリスタMTh及び転流サィリス
タAmが共にオンされない。この状態で電動機電流IM
は減少し、電流指令IPよりも小さくなると移出器出力
が生じて主サィリスタMTh及び転流サィリスタATh
が共にオンされ、電動機電流IMがまた電流指令IPよ
りも大きくなる。以後、この動作が繰返され、電動機電
流IMはほぼ電流指令IPに保たれる。つまり、チョッ
パCHは第9図二に示されるようにほぼ最小通流率ym
inの状態が間引かれて制御されることになり、チョツ
ハ℃日の通流率が等価的に最小通流率yminよりも小
さい値に制御できることになる。従って、第3図回路に
よれば従来装置に対して転流サィリスタ電流容量及び転
流コンデンサ容量を低減すると共にチョッパの通流率を
等価的にほぼ零まで連続制御できるので、前記した微速
運転に適した最小電流制御ができる効果がある。以上に
詳細動作を説明したように、第3図回路によれば、転流
IJァクトルとして可飽和リアクトル型変流器を用いて
常に電動機電流に見合った転流動作を行なわせることに
より転流サィリスタ電流容量及び転流コンデンサ容量を
低減できる効果がある。
For example, when extremely slow and slow operation is required, such as when controlling a motor for a forklift, the minimum control value (IM) min of the electric motor 11 is also required to be a very small value. The commutating capacitor voltage Vc when
o is charged to a constant value of the power supply voltage Vs with almost no overcharging pressure. Therefore, even if an attempt is made to reduce the motor current IN, the current transformation operation time 7T of the saturable reactor type current transformer SCT, that is, the commutation operation time To becomes large, and the required minimum value control cannot be performed. In the circuit shown in Figure 3, Chotsupa C
The condition that the main thyristor MTh turns on the gate pulse of the commutating thyristor ATh of H, that is, the commutating thyristor AT
The gate pulse h is given by differentiating the falling edge of the phase shifter output that changes the on-ratio of the main thyristor MTh. An operating waveform diagram in this case is shown in FIG. Note that the maximum flow rate ymin of the chopper CH is set to a value that allows minimum value control required in normal operation control. The phase shifter is
The output width of the motor current IM is controlled by the output from the current control system so that it follows the current command IP, but if the minimum distant current rate ymin of Choch °C day is large, the motor current ln is higher than the current command IP. If it is large, the phase shifter output width becomes zero, and both the main thyristor MTh and the commutating thyristor Am are not turned on. In this state, motor current IM
decreases, and when it becomes smaller than the current command IP, a transfer device output is generated and the main thyristor MTh and commutating thyristor ATh
are both turned on, and the motor current IM also becomes larger than the current command IP. Thereafter, this operation is repeated, and the motor current IM is maintained approximately at the current command IP. In other words, the chopper CH has approximately the minimum conductivity ym as shown in FIG.
The state of "in" is thinned out and controlled, and the conduction rate at a temperature of 100° C. can be equivalently controlled to a value smaller than the minimum conduction rate ymin. Therefore, according to the circuit shown in FIG. 3, the commutating thyristor current capacity and commutating capacitor capacity can be reduced compared to the conventional device, and the chopper conduction rate can be equivalently and continuously controlled to almost zero, so that the above-mentioned slow speed operation can be achieved. This has the effect of enabling suitable minimum current control. As explained above in detail, according to the circuit shown in FIG. 3, a saturable reactor type current transformer is used as a commutating IJ vector to always perform a commutating operation commensurate with the motor current. This has the effect of reducing current capacity and commutation capacitor capacity.

更に本発明の第3図回路によれば、チョッパを最小通流
率の籾態で間引き制御することにより電動機電流を広い
範囲に制御できる特徴がある。本発明の効果について実
験値を示すと、電源電圧Vs=36V、電動機電流制御
範囲5M〜60船のフオークリフト用電動機制御装置に
おいて、第1図の従来回路では転流コンデンサ容量40
0仏F、転流サィリスタ電流容量25帆としていたもの
が、本発明回路(可飽和リアクトル型変流器はケイ素鋼
板でA=6×10‐6〆、N,=3T,N2=51)に
よれば転流コンデンサ容量200〃F、転流サィリスタ
電流容量lo船とほぼ半減することができた。
Further, according to the circuit shown in FIG. 3 of the present invention, the motor current can be controlled over a wide range by controlling the chopper to thin out the paddy state with the minimum conductivity. To show experimental values regarding the effects of the present invention, in a forklift motor control device for a forklift with a power supply voltage Vs = 36V and a motor current control range of 5M to 60 ships, the conventional circuit shown in Fig. 1 has a commutation capacitor capacity of 40V.
The circuit of the present invention (the saturable reactor type current transformer is made of silicon steel plate, A = 6 × 10-6〆, N, = 3T, N2 = 51) According to the results, the commutating capacitor capacity was 200 F, and the commutating thyristor current capacity was approximately half that of the LO ship.

なお、実験において本発明回路には、主サィリスタに流
れる電動機電流を打ち消す転流反転電流が可飽和リアク
トル型変流器の飽和ィンダクタンスのみに制御されて急
峻な電流となるので主サィリスタ電流が打ち消されるま
での時間↑wが従来回路に対して小さくなること、及び
可飽和リアクトル型変流器の磁束が負の飽和値附近から
正の飽和値に戻る過程で転流コンデンサ電圧が1次巻素
に母‐VCOの電圧比で誘起され、この値が転流コンデ
ンサの過充電電圧のために電源電圧Vsよりも大きくな
るので実際に消弧すべき主サィリスタ電流が減少して転
流を楽にしている作用のあることがわかった。これらの
作用が前記した転流コンデンサ容量の半減に少なからず
役立っていることは勿論である。なお、本発明は以上の
実施例に限定されることなく、例えばチョッパ回路とし
て周知の転流サィリスタと転流L−C回路が直列接続さ
れたもの、またチョッパのゲート制御回路として移相器
出力の立ち上がりで転流サィリスタをオンするもの(こ
の場合には移相器出力の立ち下がりで主サイリスタをオ
ンすることになる)、さらに電流制御系として移相器の
前段に制御安定要素(一般的には1次遅れ要素)を設け
たもの等に適用できるものである。
In addition, in the experiment, in the circuit of the present invention, the commutation inversion current that cancels out the motor current flowing through the main thyristor is controlled only by the saturation inductance of the saturable reactor type current transformer, resulting in a steep current, so that the main thyristor current is canceled out. The time ↑w required for the saturable reactor type current transformer to return from around the negative saturation value to the positive saturation value is smaller than that of the conventional circuit, and the commutating capacitor voltage decreases to the primary winding element. is induced by the voltage ratio between the motherboard and the VCO, and this value becomes larger than the power supply voltage Vs due to the overcharge voltage of the commutation capacitor, so the main thyristor current that should actually be extinguished decreases, making commutation easier. It was found that this has a positive effect. Of course, these effects are of no small help in reducing the capacitance of the commutation capacitor by half. Note that the present invention is not limited to the above-described embodiments, and may be applied to, for example, a chopper circuit in which a well-known commutating thyristor and a commutating L-C circuit are connected in series, and a phase shifter output as a chopper gate control circuit. The commutating thyristor is turned on at the rising edge of the phase shifter (in this case, the main thyristor is turned on at the falling edge of the phase shifter output), and the current control system includes a control stabilizing element (generally This can be applied to devices with a first-order delay element).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の回路図、第2図は第1図従来回路の
動作説明図、第3図は本発明の一実施例を示す回路図、
第4図、第5図は第3図の本発明実施例回路の動作説明
図、第6図〜第8図は本発明の別の実施例を示す回路図
、第9図は本発明の動作説明図である。 M……電動機電機子、F……電動機界磁、MSL・・・
・・・平滑リアクトル、DF・・・・・・フリーホイ−
ルダイオード、CH…・・・チョツパ、MTh・・・・
・・主サイリスタ、ATh・・・・・・転流サィリスタ
、Co・…・・転流コンデンサ、L。 ・・・・・・転流リアクトル、SCT・・・・・・可飽
和リアクトル型変流器、N.・・・・・・SCTの1次
巻線、N2・・・・・・SCTの2次巻線。弟′図第2
図 第3図 多4図 第5図 多6図 多7図 第8図 峯?図
FIG. 1 is a circuit diagram of a conventional device, FIG. 2 is an explanatory diagram of the operation of the conventional circuit shown in FIG. 1, and FIG. 3 is a circuit diagram showing an embodiment of the present invention.
4 and 5 are explanatory diagrams of the operation of the circuit according to the embodiment of the invention shown in FIG. 3, FIGS. 6 to 8 are circuit diagrams showing other embodiments of the invention, and FIG. It is an explanatory diagram. M...Motor armature, F...Motor field, MSL...
...Smooth reactor, DF...Freewheel
diode, CH... Chotsupa, MTh...
...Main thyristor, ATh...Commuting thyristor, Co...Commuting capacitor, L. ...Commutation reactor, SCT...Saturable reactor type current transformer, N. ...Primary winding of SCT, N2...Secondary winding of SCT. Younger brother' figure 2
Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Mine? figure

Claims (1)

【特許請求の範囲】[Claims] 1 直流電源、該直流電源より電力を供給される電動機
、前記直流電源と電動機との間に接続されるチヨツパ装
置、該チヨツパ装置の通流率制御装置を備え、前記チヨ
ツパ装置は主として電動機電流を流すための主サイリス
タと該主サイリスタを転流せしめるための転流サイリス
タと転流エネルギーを蓄えるコンデンサと該転流エネル
ギーを反転せしめる手段とから成り、転流コンデンサを
流れる電流路として転流エネルギー反転路と主サイリス
タ消弧路とを有するものにおいて、前記転流エネルギー
反転手段を、電動機電流路内に接続された第1巻線と、
前記転流エネルギー反転路内に接続された第2巻線とを
備え、電動機電流と転流エネルギー反転電流との間に変
流器作用を有する可飽和リアクトル型変流器としたこと
を特徴とする電動機制御装置。
1 A DC power source, a motor supplied with power from the DC power source, a chopper device connected between the DC power source and the motor, and a duty ratio control device for the chopper device, the chopper device mainly controlling the motor current. It consists of a main thyristor for commutating current, a commutation thyristor for commutating the main thyristor, a capacitor for storing commutation energy, and a means for reversing the commutation energy, and the commutation energy is reversed as a current path through the commutation capacitor. a first winding connected in the motor current path;
A saturable reactor type current transformer comprising a second winding connected to the commutation energy reversal path and having a current transformer action between the motor current and the commutation energy reversal current. Electric motor control device.
JP52101643A 1977-08-26 1977-08-26 Electric motor control device Expired JPS6018196B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP52101643A JPS6018196B2 (en) 1977-08-26 1977-08-26 Electric motor control device
US05/936,927 US4209733A (en) 1977-08-26 1978-08-25 Motor control apparatus with an improved thyristor chopper circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52101643A JPS6018196B2 (en) 1977-08-26 1977-08-26 Electric motor control device

Publications (2)

Publication Number Publication Date
JPS5436516A JPS5436516A (en) 1979-03-17
JPS6018196B2 true JPS6018196B2 (en) 1985-05-09

Family

ID=14306047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52101643A Expired JPS6018196B2 (en) 1977-08-26 1977-08-26 Electric motor control device

Country Status (2)

Country Link
US (1) US4209733A (en)
JP (1) JPS6018196B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339701A (en) * 1980-04-11 1982-07-13 Pritchard Eric K Switching frequency stabilization and load fault detection in switching amplifiers
JPS57202871A (en) * 1981-06-05 1982-12-11 Hitachi Ltd Chopper controlling system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3593089A (en) * 1969-11-24 1971-07-13 Westinghouse Electric Corp System for blending dynamic and regenerative braking
US3678360A (en) * 1970-02-02 1972-07-18 Minarik Electric Co Motor speed control with transformer feedback means
US3660738A (en) * 1970-09-21 1972-05-02 Gen Electric Direct current control circuit
US3777237A (en) * 1972-03-03 1973-12-04 Gen Electric Direct current power control circuit
US3757180A (en) * 1972-07-31 1973-09-04 Crown Controls Corp Speed controller for an electric vehicle
US3875486A (en) * 1973-10-12 1975-04-01 William J Barton Motor speed control circuit
US3854076A (en) * 1973-11-19 1974-12-10 Gen Electric Dual level plugging circuit
US4057752A (en) * 1975-10-28 1977-11-08 Towmotor Corporation Firing control oscillator for a solid state switch
JPS5262616A (en) * 1975-11-19 1977-05-24 Hitachi Ltd Electric car braking controller
US4052625A (en) * 1976-04-19 1977-10-04 Cameron George L Motor speed control circuit with overload protection

Also Published As

Publication number Publication date
US4209733A (en) 1980-06-24
JPS5436516A (en) 1979-03-17

Similar Documents

Publication Publication Date Title
US3207974A (en) Inverter circuits
US6236192B1 (en) AC voltage regulator
GB1291455A (en) A static dc converter
US4392172A (en) Reactive snubber for inductive load clamp diodes
Borst et al. Voltage control by means of power thyristors
JPS6018196B2 (en) Electric motor control device
US3496444A (en) Voltage converter circuits
US3466570A (en) Inverter with means for base current shaping for sweeping charge carriers from base region
US3932800A (en) Direct current power control circuit
JPS596584B2 (en) Single stone converter
Dewan et al. Microprocessor-based optimum control for four-quadrant chopper
JP3235755B2 (en) Converter device
RU2189688C1 (en) Multiphase controllable rectifier
US4030021A (en) Inverter
JP2002223568A (en) Dc-to-dc converter
JP2005056277A (en) Electromagnetic equipment
JPH0124644Y2 (en)
Morgan High-frequency time-ratio control with insulated and isolated inputs
JPS5925580A (en) Switching regulator
Hartigan A pulsewidth-modulated DC-to-DC converter that utilizes a small number of components
SU1101996A1 (en) Thyristor pulse d.c.voltage converter
JP2001295042A (en) Sputtering apparatus
Morgan Bridge-chopper inverter for 400 cps sine wave power
SU726640A1 (en) Self-sustained inverter
JPS5830241B2 (en) ozone generator