JPS60181192A - Production of hydrocarbon from synthesis gas - Google Patents

Production of hydrocarbon from synthesis gas

Info

Publication number
JPS60181192A
JPS60181192A JP59035179A JP3517984A JPS60181192A JP S60181192 A JPS60181192 A JP S60181192A JP 59035179 A JP59035179 A JP 59035179A JP 3517984 A JP3517984 A JP 3517984A JP S60181192 A JPS60181192 A JP S60181192A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
hydrocarbons
oil
liquid medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59035179A
Other languages
Japanese (ja)
Other versions
JPH0460154B2 (en
Inventor
Minoru Koikeda
小池田 稔
Takashi Suzuki
隆史 鈴木
Kotaro Munemura
宗村 廣太郎
Mamoru Tamai
宮入 嘉夫
Masaaki Yanagi
玉井 守
正明 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Petroleum Alternatives Development
Original Assignee
Research Association for Petroleum Alternatives Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Petroleum Alternatives Development filed Critical Research Association for Petroleum Alternatives Development
Priority to JP59035179A priority Critical patent/JPS60181192A/en
Publication of JPS60181192A publication Critical patent/JPS60181192A/en
Publication of JPH0460154B2 publication Critical patent/JPH0460154B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain hydrocarbon within gasoline boiling point range in high yield, by bringing a synthesis gas into contact with a suspension of a specific catalyst in a heavy aromatic hydrocarbon mixture. CONSTITUTION:A composite catalyst of a metal (oxide) having a catalytic activity of hydrogenating CO and crystalline zeolite is suspended in a liquid medium, obtained by hydrogenating and desulfurizing heavy cycle oil formed in a catalytic cracking process as a by-product, and consisting of a heavy aromatic hydrocarbon mixture. A mixed gas of a gaseous carbon oxide, e.g. CO and/or CO2, and H2 is brought into contact with the above-mentioned suspension to produce a hydrocarbon.

Description

【発明の詳細な説明】 本発明は、合成ガス、すなわち−酸化炭素及び/又は二
酸化炭素などのガス状炭素酸化物と水素との混合ガスか
ら炭化水素、特にガソリン沸点範囲の炭化水素を高収率
で得る方法に関する。更に詳しくは、−酸化炭素を水素
化する触媒活性を有する金属又は/及び金属酸化物と結
晶性ゼオライトとの複合か媒を合成ガスと接触させ炭化
水素を製造するに当たシ、該反応を懸濁床で行い、その
際使用する液状媒体に、水素化精製した接触分解プロセ
スの重質サイクル油を使用する方法に関する。自動車ガ
ソリン及びその他の軽質ガスを含むガソリン洲点範囲の
炭化水素は原油の蒸留によって、又はナフサの接触改質
、重質留分の接触分解、水素化分解などの公知のプロセ
スによ)工業的に製造されている。ところが将来の原油
価格の高原、原油供給源の欠乏に対処する必要から、石
油以外の炭素資源から今後特に需要の伸びが予想される
ガソリン沸点範囲の炭化水素を製造する、いわゆる新燃
料油製造技術の開発が試みられている。これまでもエネ
ルギーの開発分野では原油以外の炭素資源を石油に相当
する炭化水素に転換する技術を探求してきておシ、例え
ば石炭の直接液化、タールサンド油又はオイルサンド油
の分解などによる方法が研究されてきた。しかしこれら
の方法は極めて高い圧力を必要とするとともに工程が複
雑であシ、加えて得られる製品の品質が石油と比べ劣る
ことなどから経済的に有効でない。一方、石炭、天然ガ
スなどの炭素源を空気、酸素又は水蒸気の存在下で一酸
化炭素及び/又は二酸化炭素などのガス状炭素酸化物と
水素からなる混合ガスへ転化することはすでに商業的に
確立されている。さらに該混合ガスから反応温度150
〜500℃、反応圧力1000atm以下の条件下で■
族元素を主体とした触媒を用い炭化水素を製造すること
も可能である。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides high yields of hydrocarbons, particularly hydrocarbons in the gasoline boiling range, from synthesis gas, a mixture of hydrogen and gaseous carbon oxides, such as carbon oxides and/or carbon dioxide. Regarding how to get the rate. More specifically, when producing hydrocarbons by bringing a composite catalyst of a metal or/and metal oxide and crystalline zeolite having catalytic activity for hydrogenating carbon oxide into contact with synthesis gas, the reaction is carried out. The present invention relates to a method in which heavy cycle oil from a hydrorefined catalytic cracking process is used as a liquid medium in a suspended bed. Gasoline range hydrocarbons, including motor gasoline and other light gases, are produced industrially by distillation of crude oil or by known processes such as catalytic reforming of naphtha, catalytic cracking of heavy fractions, and hydrocracking. Manufactured in However, due to the need to cope with the future high price of crude oil and the scarcity of crude oil supply sources, so-called new fuel oil production technology is being developed to produce hydrocarbons in the gasoline boiling point range, for which demand is expected to grow particularly in the future, from carbon resources other than petroleum. Attempts are being made to develop Up until now, the field of energy development has been exploring technologies to convert carbon resources other than crude oil into hydrocarbons equivalent to petroleum. has been studied. However, these methods require extremely high pressure, have complicated processes, and are not economically effective because the quality of the resulting product is inferior to that of petroleum. On the other hand, it is already commercially possible to convert carbon sources such as coal and natural gas into gas mixtures consisting of hydrogen and gaseous carbon oxides such as carbon monoxide and/or carbon dioxide in the presence of air, oxygen or water vapor. Established. Furthermore, from the mixed gas, the reaction temperature is 150°C.
Under conditions of ~500℃ and reaction pressure of 1000atm or less■
It is also possible to produce hydrocarbons using catalysts mainly composed of group elements.

例えば最も広く研究されたフィッシャー・トロプシュ法
は合成ガスから軽質ガス、ガソリン及びその他の炭化水
素油を製造するプロセスとして、すでに南アフリカ5A
SOL社で採用され、石炭から各種の炭化水素が商業規
模で製造されている。しかしフィッシャー・トロプシュ
法では生成物は直鎖のパラフィン系炭化水素から主とし
てなるので、ガソリン留分てはリサーチ法オクタン価は
約50と低く、現在の自動車用燃料としては不適当であ
る。また生成物は炭化水素の炭素数が1〜3oと幅広く
分布しておシ、ガソリン沸点範囲の炭化水素の選択性が
悪いという欠点がある。
For example, the most widely studied Fischer-Tropsch process has already been used in South Africa as a process for producing light gas, gasoline and other hydrocarbon oils from syngas.
It has been adopted by SOL Corporation to produce various hydrocarbons from coal on a commercial scale. However, in the Fischer-Tropsch process, the product is mainly composed of linear paraffinic hydrocarbons, so the research process octane number of the gasoline fraction is as low as about 50, making it unsuitable as a fuel for current automobiles. Further, the product has a drawback that the carbon number of the hydrocarbons is widely distributed from 1 to 3 o, and the selectivity for hydrocarbons in the gasoline boiling point range is poor.

一方、合成ガスは銅、亜鉛、クロムなどの金属又は金属
酸化物触媒を用いメタノールなどの含酸素有機化合物に
転化できることもよく知られておシ、さらに、メタノー
ルは結晶性アルミノシリケートと250〜5 n O’
C15n atm以下の条件で接触することによりガソ
リン沸点範囲の炭化水素に選択的に転化できることも公
知である。そのための結晶性ゼオライトとしてはZSM
 −5(4g公昭4’6−10064号、特開昭52−
8005号)のl”J、か、ZSM −4’8 ’Jで
の一連のZSMシリーズの高シリカ結晶性アルミノシリ
ケート、モルデナイトゼオライトなどがある。
On the other hand, it is well known that synthesis gas can be converted into oxygen-containing organic compounds such as methanol using metals such as copper, zinc, and chromium or metal oxide catalysts. n O'
It is also known that hydrocarbons in the gasoline boiling range can be selectively converted by contacting at conditions below C15n atm. ZSM is the crystalline zeolite for this purpose.
-5 (4g Publication No. 4'6-10064, JP-A-52-
ZSM series high silica crystalline aluminosilicate, mordenite zeolite, etc.

最近、合成ガスから直接ガソリン沸点範囲の炭化水素を
製造する効率的な方法が明らかにされた。この方法は、
フィッシャー・トロプシュ触媒又はメタノール合成触媒
のような一酸化炭素を水素化する活性を有する金属又は
金属酸化物と結晶性ゼオライトとの複合融媒を用い合成
ガスから1段で炭′化水素を製造するものである。
Recently, an efficient method for producing gasoline boiling range hydrocarbons directly from synthesis gas has been identified. This method is
Producing hydrocarbons from synthesis gas in one step using a composite melt of a metal or metal oxide having an activity to hydrogenate carbon monoxide and crystalline zeolite, such as a Fischer-Tropsch catalyst or a methanol synthesis catalyst. It is something.

具体的な方法の一つは、−酸化炭素を水素化する活性を
有する金属酸化物と結晶性ゼオライトとを機械的に混合
した融繰であり、他の一つは一酸化炭素を水素化する活
性を有する金、暁を、結晶性ゼオライト又1伐−酸化炭
素を水素化する活性を有する他の金属酸化物と結晶性ゼ
オライI・との複合物に担持させ調製した触媒である。
One of the specific methods is - fusion, in which crystalline zeolite is mechanically mixed with a metal oxide having the activity of hydrogenating carbon oxide, and the other is hydrogenation of carbon monoxide. This catalyst is prepared by supporting active gold, Akatsuki, on a composite of crystalline zeolite I and other metal oxides that have the activity of hydrogenating carbon oxide.

以上に示した複合触媒を用い合成ガスから一段で炭化水
素を製造する方法は末だ開発段階にあり、その反応のす
べてが固定床反応器を用いて行われているが、プロセス
化に当っては触媒寿命、触媒活性・選択性及び′融媒層
反応温度の制御など解決しなければならない問題が残さ
れている。特に、合成ガスから炭化水素やアルコールを
製造する反応の反応熱は表1に示すようにかなシ大きな
発熱であシ、これらの合成反応では、このような反応熱
の除去は反応器の選定における重要な問題でちる。
The method of producing hydrocarbons from synthesis gas in one step using the composite catalyst shown above is still in the development stage, and all of the reactions are carried out using a fixed bed reactor, but in developing the process, However, there are still problems that need to be solved, such as catalyst life, catalyst activity/selectivity, and control of the melting layer reaction temperature. In particular, the reaction heat of the reaction for producing hydrocarbons and alcohols from synthesis gas generates a large amount of heat, as shown in Table 1, and in these synthesis reactions, removal of such reaction heat is an important consideration when selecting a reactor. Let's talk about important issues.

表1 炭素1個当たシの反応熱 △HKcalO)i、
 ’ 、 、−50 C+H11−42 「 C!6H14−39 (!1IH4、−26 06112−34 0H30H−23,9 C2HBr OH29,5 工業的にすでに行われているメタノール合成反応は、固
定床で行われるが、これは−酸化炭素の転化率が低くか
つ大量のガスをリサイクルし反応熱の除去を行っている
故可能である。しかし本発明の反応のように、高b−酸
化炭素転化率が必要とされ、さらに反応中間体がメタノ
ールの場合は、最終生成物の炭化水素はさらに大きな発
熱反応である脱水反応を経て生成されるため、実用化を
想定した場合、反応熱の除去の面から固定床反応器は・
魔めて困難である。
Table 1 Heat of reaction per carbon △HKcalO)i,
' , , -50 C+H11-42 ' C!6H14-39 (!1IH4, -26 06112-34 0H30H-23,9 C2HBr OH29,5 The methanol synthesis reaction that has already been carried out industrially is carried out in a fixed bed. However, this is possible because the conversion rate of -carbon oxide is low and a large amount of gas is recycled to remove the reaction heat.However, as in the reaction of the present invention, a high b-carbon oxide conversion rate is required. Furthermore, when the reaction intermediate is methanol, the final hydrocarbon product is produced through a dehydration reaction, which is an even more exothermic reaction. The bed reactor is
It's difficult to tame.

本発明の反応ではないが、類似の反応プロセスとして知
られるフィッシャm−トロプシュ法ではその大きな発熱
反応のため、熱除去の容易さから気相流動床反応器又は
懸濁床反応器が理想的であるとして、種々の検討が行わ
れておシ、気相流動床については南アフリカ、5ASO
L社で工業化がなされている。ここで気相流動床とは、
反応器内で10〜100μmの粉末触媒が下方から上昇
する反応ガス流体と高められた温度、iKめられた圧力
で流動状態を形成し接触する反応方式をいう。また懸濁
床反応とは、100μm以下の粉末触媒を高沸点パラフ
ィン系炭化水素油からなる液体媒体に懸濁分散しスラリ
ー状化した触媒と反応ガス流体とを上昇流で接触させ反
応を行う方式をいう。
Although not the reaction of the present invention, the Fischer M-Tropsch process, which is known as a similar reaction process, has a large exothermic reaction, so a gas phase fluidized bed reactor or suspended bed reactor is ideal for ease of heat removal. Various studies have been conducted on gas-phase fluidized beds, including South Africa and 5ASO.
Industrialization is being carried out at Company L. Here, what is a gas phase fluidized bed?
It refers to a reaction method in which a powder catalyst of 10 to 100 μm in diameter is brought into contact with a reaction gas fluid rising from below in a reactor at an elevated temperature and a pressure of iK to form a fluid state. Suspended bed reaction is a method in which a powdered catalyst of 100 μm or less is suspended and dispersed in a liquid medium made of high-boiling paraffinic hydrocarbon oil, and the slurry-formed catalyst is brought into contact with a reaction gas fluid in an upward flow to carry out a reaction. means.

気相流動床は反応熱除去については好ましいが、はけし
い流動状態で触媒間での衝突を繰返すだめの触媒の耐摩
耗性が問題であシ、強度の弱い沈殿鉄系フィッシャー・
トロプシュ触媒ニは適用できないとされている。一方懸
濁床は、触媒粒度は細かい方が好ましい為、強度の弱い
流動床より、さらに容易である。通常、フィッシャー・
トロプシュ反応を懸濁床で行うには5μm以下の沈殿鉄
系酸化鉄粉末を沸点300℃以上のパラフィン系鉱油に
分散させスラリー濃度5〜s o vrtチとして用い
る。
Gas-phase fluidized beds are preferable for the removal of reaction heat, but the abrasion resistance of the catalysts is a problem due to repeated collisions between the catalysts in the violently fluidized state, and precipitated iron-based Fischer beds, which have weak strength, have problems.
It is said that the Tropsch catalyst is not applicable. On the other hand, suspended beds are easier to prepare than fluidized beds, which have weaker strength, because the catalyst particle size is preferably finer. Usually, Fisher
To carry out the Tropsch reaction in a suspended bed, precipitated iron oxide powder of 5 μm or less is dispersed in paraffinic mineral oil with a boiling point of 300° C. or higher and used as a slurry with a concentration of 5 to 50°C.

フィッシャー・トロプシュ法のこれまでの知見から、本
発明で取扱う合成ガスからの炭化水素の製造反応を気相
流動床、又は懸濁床で行い、反応熱除去の問題を解決し
ようとすることは自然の流れであろうし、特に、微細粒
子からなシ、かつ強度の比較的弱い結晶性ゼオライトを
触媒の主要成分とする触媒系を取扱う場合、懸濁床は最
も好ましい反応方式であるという類推も極く自然であろ
う。
From the previous knowledge of the Fischer-Tropsch process, it is natural to try to solve the problem of reaction heat removal by performing the reaction for producing hydrocarbons from synthesis gas, which is handled in the present invention, in a gas-phase fluidized bed or suspended bed. In particular, when dealing with a catalyst system in which the main component of the catalyst is crystalline zeolite, which is made up of fine particles and has relatively low strength, it is highly analogous that the suspended bed is the most preferable reaction method. It would be natural.

フィッシャー・トロプシュ法で使用されるパラフィン系
懸濁液は、フィッシャー書トロプシュ反応で合成ガスか
ら生成する炭化水素油の高沸点留分と組成が類似してい
るため、スラリーとして抜き出し分離回収でき、再度リ
サイクルが可能でアシ、また反応条件下では分解などの
軽質留分への転化が起こらないためロスしない。
The paraffin suspension used in the Fischer-Tropsch process has a similar composition to the high-boiling fraction of hydrocarbon oil produced from synthesis gas in the Fischer-Tropsch reaction, so it can be extracted as a slurry, separated and recovered, and recycled again. It is recyclable and does not undergo any decomposition or other conversion to light fractions under the reaction conditions, so there is no loss.

このため、フィッシャー・トロプシュ反応ではパラフィ
ン系炭化水素が好ましい液状媒体とされている。しかし
パラフィン系炭化水素は結晶性ゼオライトの存在下では
容易に分解される午とから、フィッシャー・トロプシュ
法で使用されるパラフィン系炭化水素をそのまま本発明
で実施する反応には使用できない。この理由からフィッ
シャー・トロプシュ合成触媒又はメタノール合成触媒と
結晶性ゼオライトとの複合触媒を用い、合成ガスから炭
化水素を1段で製造する反応を懸濁床で行う試みはこれ
までなされなかった。
For this reason, paraffinic hydrocarbons are preferred liquid media in the Fischer-Tropsch reaction. However, since paraffinic hydrocarbons are easily decomposed in the presence of crystalline zeolite, the paraffinic hydrocarbons used in the Fischer-Tropsch process cannot be used as they are in the reaction carried out in the present invention. For this reason, no attempt has been made to perform a one-stage reaction to produce hydrocarbons from synthesis gas in a suspended bed using a Fischer-Tropsch synthesis catalyst or a composite catalyst of a methanol synthesis catalyst and crystalline zeolite.

しかし、本発明者らは、鋭意検討を重ねた結果、特定の
液状媒体を見出すことにより、結晶性ゼオライトを触媒
成分とする系においても合成ガスから炭化水素を製造す
る反応を懸濁床方式で実施することを可能とするととも
に、本発明の方法が触媒寿命の延長、ガソリン沸点範囲
の炭化水素の収率向上にも好ましい効果を与えることを
見出し、本発明を完成した。
However, as a result of extensive research, the present inventors discovered a specific liquid medium that enabled them to produce hydrocarbons from synthesis gas using a suspended bed method even in a system using crystalline zeolite as a catalyst component. The present invention has been completed based on the discovery that the method of the present invention can be carried out, and that the method of the present invention has favorable effects on extending the life of the catalyst and improving the yield of hydrocarbons in the gasoline boiling point range.

すなわち本発明は、合成ガスを一酸化炭素を水素化する
活性を有する金属及び/又は金属酸化物′と結晶性ゼオ
ライトから複合触媒と接触させ炭化水素、特にガソリン
沸点範囲の炭化水素を高収率で得る方法において、該触
媒を特定の液状媒体に分散しスラリーで使用する懸濁床
反応方式に関するものであり、ここで液状媒体として重
質軽油の接触分解プロセスより副生ずる重質サイクル油
留分を水素化脱硫と好ましくは接触説ろう処理して得ら
れる沸点250’℃以上で芳香族含有量が50 wt%
以上(残゛部アルキル基を有するナンテン系炭化水素と
)くラフイン系炭化水素)の重質芳香族炭化水素混合物
を使用する合成ガスから直接炭化水素を製造する方法に
関するものである。
That is, the present invention brings hydrocarbons, especially hydrocarbons in the gasoline boiling point range, into high yield by contacting synthesis gas with a composite catalyst made of metals and/or metal oxides having an activity for hydrogenating carbon monoxide and crystalline zeolite. The method relates to a suspended bed reaction method in which the catalyst is dispersed in a specific liquid medium and used as a slurry, in which a heavy cycle oil fraction, which is a by-product from the catalytic cracking process of heavy gas oil, is used as the liquid medium. with a boiling point of 250'C or more and an aromatic content of 50 wt% obtained by hydrodesulfurization and preferably catalytic waxing treatment.
The present invention relates to a method for directly producing hydrocarbons from synthesis gas using a mixture of the above-mentioned heavy aromatic hydrocarbons (nanthene hydrocarbons having a residual alkyl group and rough-heavy hydrocarbons).

液状触媒が重質芳香族混合物であるため、合成ガスの転
化反応において、液状媒体は軽質留分に分解されること
がなく、まだ本発明における反応では、触媒成分として
存在する結晶性ゼオライトの形状選択性が発揮され、合
成ガスからは沸点が200℃以上の炭化水素は実質的に
生成せず、この2つの理由から、合成ガスから生成する
炭化水素は沸点の差から容易に液状媒体と分離できる。
Since the liquid catalyst is a heavy aromatic mixture, in the synthesis gas conversion reaction, the liquid medium is not decomposed into light fractions, and the reaction in the present invention is still in the form of crystalline zeolite present as a catalyst component. Selectivity is exhibited, and virtually no hydrocarbons with boiling points above 200°C are produced from synthesis gas.For these two reasons, hydrocarbons produced from synthesis gas can be easily separated from the liquid medium due to the difference in boiling point. can.

さらに、反応の長い期間において液状媒体の補充、抜出
しを行う必要がないため、工程は簡素化され経済的なプ
ロセスとなる。
Furthermore, there is no need to replenish or withdraw the liquid medium during the long reaction period, which simplifies the process and makes it an economical process.

懸濁床反応器で実施する本発明では、反応熱の除去が容
易であるため固定床でしばしば経験するホットスポット
や触媒層の一部での温度暴走を避けることができ触媒1
層の全域に互って均一な温度で運転できる。このため、
高温で進みやすいメタン反応や、生成したガソリン沸点
範囲の炭化水素の2次分解が固定床反応器′と比べ低く
抑えることができるためガソリン沸点範囲の炭化水素を
高い収率で得ることができる。また固定床反応では通常
反応に伴い触媒表面上にコークが付着し、活性が低下す
。るため触媒寿命が短い欠点があるが、本発明では液状
媒体゛が重質芳香族であるため、コークはその前駆体に
おいて液状媒体に溶解除去されるため、触媒の活性低下
の原因となるコーク付着がほとんど起こらず、触媒は長
期に互って安定した活性を保持′Cきるとの驚くべき効
果が得られた。
In the present invention carried out in a suspended bed reactor, the hot spots and temperature runaway in parts of the catalyst bed that are often experienced in fixed beds can be avoided due to the easy removal of the reaction heat.
It is possible to operate at a uniform temperature across the entire layer. For this reason,
Since the methane reaction, which tends to proceed at high temperatures, and the secondary decomposition of generated hydrocarbons in the gasoline boiling point range can be suppressed to a lower level than in the fixed bed reactor', hydrocarbons in the gasoline boiling point range can be obtained in high yield. Furthermore, in fixed bed reactions, coke usually adheres to the catalyst surface as the reaction progresses, reducing activity. However, in the present invention, since the liquid medium is a heavy aromatic, the coke is dissolved and removed by the liquid medium in its precursor, so the coke that causes a decrease in catalyst activity is removed. The surprising effect was that almost no adhesion occurred and the catalyst maintained stable activity for a long period of time.

次に本発明についてさらに詳細に説明する。Next, the present invention will be explained in more detail.

反応原料である合成ガスは特に限定するものでなく、通
常H210’Oモル比が0.5以上あれば良く、触媒ス
ラリーと200〜450℃、好ましくは250〜350
℃の温度、100 kg/ tyi’以下、好ましくは
10〜50 kg/ crlノ圧力、100〜10,0
00h 、好ましくは500〜2,000h のGH8
Vの条件で接触する。この際、高圧分離器にて分離され
る軽質炭化水素と無機ガスから成るガス流体を反応器入
口にリサイクルすることができる。リサイクルガス比は
原料合成ガスに対し容量で0.1〜100.好ましくは
0.5〜10である。触媒は一酸化炭素を水素化する触
媒活性を有する金属又は/及び金属酸化物と結晶性ゼオ
ライトとから成る複合触媒であシ、大別してフイツシ左
−・トロプシュ合成反応を促進するFe、Co、Ruな
どの1種以上の金属又は金属酸化物と結晶性ゼオライト
との複合触娠又はメタノール合成反応を促進するCu、
Zn。
Synthesis gas, which is a raw material for the reaction, is not particularly limited, and usually has a molar ratio of H210'O of 0.5 or more, and is heated to a temperature of 200 to 450°C, preferably 250 to 350°C, with the catalyst slurry.
Temperature in °C, below 100 kg/tyi', preferably 10-50 kg/crl pressure, 100-10,0
00h, preferably 500-2,000h GH8
Contact is made under the condition of V. At this time, the gas fluid consisting of light hydrocarbons and inorganic gas separated by the high-pressure separator can be recycled to the reactor inlet. The recycled gas ratio is 0.1 to 100% by volume to the raw material synthesis gas. Preferably it is 0.5-10. The catalyst is a composite catalyst consisting of a metal or/and metal oxide having catalytic activity to hydrogenate carbon monoxide and crystalline zeolite, and can be broadly classified into Fe, Co, and Ru, which promote the Tropsch synthesis reaction. Cu, which promotes the composite catalysis or methanol synthesis reaction of one or more metals or metal oxides and crystalline zeolite, such as
Zn.

Or、Pdなどの1種以上の金属又は金属酸化物と結晶
性ゼオライトとの複合触媒である。ここで−酸化炭素を
水素化する触媒活性を有する金属の触媒中の含有量は相
持触媒では金属として0.1〜15wt%、酸化物触媒
では金属酸化物として5〜5 D wt%である。結晶
性ゼオライトとは通常シリカとアルミナが酸素を共有し
て三次元網目構造を保ち、アルミニウムとけい素原子と
の合計に対する酸素原子の比は2であシ、これらのS 
i 02 四面体の陰電気性はアルカリ金属陽イオン、
特にナトリウム、カリウム又はある場合には有機窒素陽
イ・オ′ンで平衡がとれている結晶性アルミノシリケー
トを−いう。またアルミニウムの一部又は全部が他の金
属、例えば鉄(特開昭5s−7619q’)、クロム(
特開昭55−115785)、バナジウム−(西ドイツ
特許2851651)、ビスマス(特開昭57−196
718)、ランタン(%開昭57−10684、特開昭
58−194757)、セリウム(特開昭57−106
84.特開昭58−194737)、はう素(特開昭5
3−55500 、。
It is a composite catalyst of one or more metals or metal oxides such as Or or Pd and crystalline zeolite. Here, the content of the metal having catalytic activity for hydrogenating carbon oxide in the catalyst is 0.1 to 15 wt% as metal in the case of a supported catalyst, and 5 to 5 D wt% as metal oxide in the case of an oxide catalyst. Crystalline zeolite is usually a three-dimensional network structure in which silica and alumina share oxygen, and the ratio of oxygen atoms to the total of aluminum and silicon atoms is 2.
The negative electricity of the i 02 tetrahedron is an alkali metal cation,
In particular, it refers to crystalline aluminosilicates which are balanced with sodium, potassium or, in some cases, organic nitrogen cations. In addition, some or all of the aluminum may contain other metals, such as iron (Japanese Patent Application Laid-open No. 5S-7619Q'), chromium (
JP 55-115785), vanadium (West German patent 2851651), bismuth (JP 57-196)
718), lanthanum (% 10684/1984, 194757/1982), cerium (106/1982)
84. JP-A-58-194737), borosilicate (JP-A-58-194737)
3-55500,.

特開昭55−76825)、チタン(特開昭57−1o
6a4)等の三価の金属で置換され合成された結晶性シ
リケートをも含む。通常結晶性ゼオライトは天然に数多
く存在するが、合成によっても製造でき、そのいずれも
使用できる。
JP-A-55-76825), titanium (JP-A-57-1O)
It also includes crystalline silicates synthesized by substitution with trivalent metals such as 6a4). Generally, crystalline zeolites exist in large numbers in nature, but they can also be produced synthetically, and either of these can be used.

また結晶性ゼオライトは結晶構造上、酸素原子の結合の
仕方によシ特定の均一細孔径を有しヤおシ、細孔径が約
5λの小孔径ゼオライトとしてはエリオナイト、オフレ
タイト、フェリエライトが、細孔径が約91の大孔径ゼ
オライトとしてはフォージャサイト型の又又はYゼオラ
イト或いはモルデナイトが、また細孔径が5〜9Aの中
孔径ゼオライトとしては、ZSM −s (特公昭46
−10064)のほかシリカ対アルミす比が12以上の
ZSM −11(特公昭53−23280)、ZSM 
−12(特公昭5w2−16079)、ZSM −21
(特公昭5O−54598)、ZSM −s s (米
国特許願第528061号、1974年11月29日)
、zsM、 −3a (米国特許類第5シ8060号、
1974年11月29E+)などのモーピルオイル社の
開発したZSMシリ・−ズのゼオライトのほか、シェル
・インターナショナル・リサーチ社の開発した鉄シリケ
ート(特開昭53−76199)、さらには製造方法が
異なるがX線回折パターンがZEIM −5と類似する
ZSM −’sタイプの高シリカ結晶性ゼオライト、ま
た上記ゼオライトのアルミナの一部又は全部が他の三価
の金属で代替されたゼオライト、例えばほう素シリケー
ト(特開昭53−55500)、ビスマスシリケート(
特開昭57−196y 1’a )、タンタルシリケー
ト及びセリウムシリケート(以上特開昭57−1068
4、特開昭58−194737)などが含まれる。
In addition, crystalline zeolite has a specific uniform pore size depending on the way oxygen atoms are bonded due to its crystal structure.As small pore size zeolite with a pore size of about 5λ, there are erionite, offretite, and ferrierite. Faujasite type zeolite or Y zeolite or mordenite is used as a large pore size zeolite with a pore size of about 91 mm, and ZSM-s (Japanese Patent Publication Publication No. 46
-10064), ZSM-11 (Special Publication No. 53-23280) with a silica to aluminum ratio of 12 or more, ZSM
-12 (Special Public Sho 5w2-16079), ZSM -21
(Special Publication No. 50-54598), ZSM-s s (U.S. Patent Application No. 528061, November 29, 1974)
, zsM, -3a (U.S. Patent No. 5C8060,
In addition to ZSM series zeolites developed by Mopil Oil Co., Ltd., such as 29E+ (November 1974), iron silicate developed by Shell International Research Co., Ltd. (Japanese Patent Application Laid-open No. 53-76199), and even though the manufacturing method is different, ZSM-'s type high silica crystalline zeolite whose X-ray diffraction pattern is similar to ZEIM-5, and zeolite in which part or all of the alumina of the above zeolite is replaced with other trivalent metals, such as boron silicate. (JP 53-55500), bismuth silicate (
JP-A-57-196y 1'a), tantalum silicate and cerium silicate (JP-A-57-1068)
4, Japanese Unexamined Patent Publication No. 58-194737).

細孔径が約51の小孔後場オライドを複合した触媒を使
用する反応においては、生成する炭化水素は、ゼオライ
トの形状選択性のため、分子サイズが約5λ以下の直鎖
パラフィン、オレフィン又は炭素数が5以下の軽質炭化
水素であシ、との場合は石油化学原料として有用なエチ
レン、プロピレン、ブチレン等の低級オレフィンを得る
ことができる。また必要であればこれらの低級オレフィ
ンはアルキル化、不均化、二景化などの公知の方法によ
シ容易にガソリン沸点範囲の炭化水素に転化できる。
In the reaction using a catalyst composite with a small pore olide with a pore size of about 51, the hydrocarbons produced are linear paraffins, olefins, or carbon atoms with a molecular size of about 5λ or less due to the shape selectivity of zeolite. When the hydrocarbon is a light hydrocarbon having 5 or less, lower olefins such as ethylene, propylene, butylene, etc., which are useful as petrochemical raw materials, can be obtained. Furthermore, if necessary, these lower olefins can be easily converted to hydrocarbons in the gasoline boiling point range by known methods such as alkylation, disproportionation, and dikeification.

細孔径が5〜9λの中孔径ゼオライトを複合した融媒は
、ガソリン沸点範囲の炭化水素を高収率で得るに最も好
ましいゼオライトである。
A melting medium composed of medium pore size zeolite having a pore size of 5 to 9λ is the most preferred zeolite for obtaining hydrocarbons in the gasoline boiling point range in high yield.

炭化水素に芳香族炭化水素を主に得ようとする場合は、
ゼオライト合成時にシリカ源、アルミナ源、アルカリ源
のほかに有機試薬として、テトラプロピルアンモニウム
塩(持分11146−10064で明示されるモーピル
オイル社のZBM−5のほか、特開昭51−67298
で明示されるIC21社のゼータ3など)、有機アミン
(特開昭50−545’9B、特開昭54−99799
など)、アルコールアミン(48i−開昭54−107
499など)、ジグリコールアミン(特開昭56−92
114’)のいずれか又はその前駆物質の存在下で水熱
合成反応を行って得られたシリカ対アルミナ比が12〜
100の結晶性アルミノシリケートが好ましく使用でき
る。また炭化水素にオレフィン炭化水素を主に得ようと
する場合は、前述のアルミナ源の代シに、三価の金属源
を加えて合成したアルミニウムを実質的に含有しない結
晶性遷移金属シリケートが好ましく使用できる。細孔径
が約9Aの大孔径ゼオライトを複合した触媒では生成す
る炭化水素がガンリン沸点範囲以下の炭化水素ばかシで
なく、灯油、軽油留分をも生成するのでそれらを併産す
る必要のある場合選択される。なお、いずれの結晶性ゼ
オライトも本発明の転化反応に使用するには、陽イオン
の少なくとも50%以上を水素イオン、希土類イオン等
で交換し、酸性点を発見したものが好ましい。
When trying to obtain mainly aromatic hydrocarbons from hydrocarbons,
In addition to silica sources, alumina sources, and alkali sources, tetrapropylammonium salts (ZBM-5 from Mopil Oil Co., Ltd., specified as equity 11146-10064, as well as JP-A-51-67298
Zeta 3 of IC21, etc.), organic amines (JP-A-50-545'9B, JP-A-54-99799)
etc.), alcohol amines (48i-Kaisho 54-107
499, etc.), diglycolamine (JP-A-56-92)
The silica to alumina ratio obtained by carrying out a hydrothermal synthesis reaction in the presence of any one of 114') or its precursor is 12 to
100 crystalline aluminosilicate can be preferably used. In addition, when it is intended to mainly obtain olefin hydrocarbons from hydrocarbons, it is preferable to use a crystalline transition metal silicate containing substantially no aluminum, which is synthesized by adding a trivalent metal source in place of the alumina source described above. Can be used. A catalyst composed of large-pore zeolite with a pore diameter of about 9A produces not only hydrocarbons below the Ganlin boiling point range, but also kerosene and gas oil fractions, so if it is necessary to co-produce them. selected. In order to use any crystalline zeolite in the conversion reaction of the present invention, it is preferable that at least 50% of the cations are exchanged with hydrogen ions, rare earth ions, etc., and acidic sites are discovered.

次に本発明において使用する触媒スラリーを調胃lする
上で必領である液状媒体について説明する。すなわちこ
こで使用する重質芳香族から成る炭化水素油は、石油精
製工場においてガソリン製造プロセスとして知られる接
触分解装置で副生ずる重質サイクル油を水素化脱硫処理
して得られる。さらに打首しくけ引続いて接触脱ろうし
て得られる。接触分解プロセスは通常、原油を常圧蒸留
して得られる沸点が250〜400℃の直留重質軽油、
又は重油を減圧蒸留して得られる沸点が350〜550
℃の減圧軽油又はそれらを水素化脱硫装置で(l’li
f黄分、窒素分を減じて得られる脱硫油を原料油として
、450〜550℃(D温度、10 kg / J G
−以下〕圧力テゼオライト、シリカアルミナ、アルミナ
の一つ以上からなる粉末触媒と流動状態で接触すること
によシ、オクタン価の高いガソリン基材を得るプロセス
である。上記条件で原料油は60〜80vot%が分解
を受け、ドライガス、LPGとナフサ沸点以上の留分に
分離される。引続いてナフサ沸点以上の留分は蒸留塔で
沸点が約200℃以下のナフサ、沸点が約200〜30
0℃の軽質サイクル油(Lco )、沸点が約500〜
400℃の重質サイクル油及び残油(スラリーオイル)
に分離される。この内沸点が原料油とほぼ同程度の重質
サイクル油は通常製品とじて一部抜出すほかは大部分が
、反応塔へ再循環される。
Next, a description will be given of the liquid medium that is essential for preparing the catalyst slurry used in the present invention. That is, the heavy aromatic hydrocarbon oil used here is obtained by hydrodesulfurization treatment of heavy cycle oil produced as a by-product in a catalytic cracking unit known as a gasoline production process in an oil refinery. It is obtained by further dewaxing followed by dewaxing. The catalytic cracking process usually involves straight-run heavy gas oil with a boiling point of 250 to 400°C obtained by atmospheric distillation of crude oil;
Or the boiling point obtained by distilling heavy oil under reduced pressure is 350-550
℃ vacuum gas oil or their hydrodesulfurization equipment (l'li
Using the desulfurized oil obtained by reducing the yellow content and nitrogen content as the raw material, it is heated at 450 to 550°C (D temperature, 10 kg / J G
- Below] This is a process for obtaining a gasoline base material with a high octane number by contacting it in a fluidized state with a powdered catalyst consisting of one or more of pressure tezeolite, silica alumina, and alumina. Under the above conditions, 60 to 80 vot% of the feedstock oil undergoes decomposition and is separated into dry gas, LPG, and a fraction having a boiling point of naphtha or higher. Subsequently, the fraction with a boiling point of naphtha or higher is converted into naphtha with a boiling point of about 200°C or less, or a distillate with a boiling point of about 200 to 30°C in a distillation column.
Light cycle oil (Lco) at 0°C, boiling point approximately 500~
400℃ heavy cycle oil and residual oil (slurry oil)
separated into This heavy cycle oil, whose internal boiling point is approximately the same as that of the feedstock oil, is generally recycled to the reaction tower except for a portion that is extracted as a product.

本発明者らはこの重質サイクル油がすでに結晶性ゼオラ
イト系触媒の下で高温で処理されている故、高温での熱
安定性が高く、また本発明で使用するゼオライト含有触
媒下でも安定して存在しうろこと、及び沸点範囲、粘度
が触媒を懸濁させる液状媒体として好ましい性状を有し
ていることに着目した。すなわち代表的な重質サイクル
油は比重(15/4℃)069〜1.0.50℃の動粘
度15〜1センチストークス、流動点+20〜−10℃
、沸点範囲250〜400℃、硫黄分0.1〜2. O
wtチ、窒素分0.01〜0.5wt%の性状を示す。
The present inventors believe that this heavy cycle oil has already been treated at high temperatures under a crystalline zeolite-based catalyst, so it has high thermal stability at high temperatures, and is also stable under the zeolite-containing catalyst used in the present invention. We focused on the fact that the scales present in the catalyst, as well as the boiling point range and viscosity, have favorable properties as a liquid medium in which the catalyst is suspended. In other words, a typical heavy cycle oil has a specific gravity (15/4℃) of 069 to 1.0.50℃, a kinematic viscosity of 15 to 1 centistokes, and a pour point of +20 to -10℃.
, boiling point range 250-400°C, sulfur content 0.1-2. O
It exhibits properties with a nitrogen content of 0.01 to 0.5 wt%.

しかし、この性状かられかるように、触媒の被毒物質と
なる硫黄、窒素が多く存在しておシ、一方これらの被毒
物質は微量であっても本発明で使用する触媒の金属成分
を被毒するため、液状媒体として使用するためには、除
去する必要がある。除去方法は特に限定するものではな
いが、工業的に通常使用される水素化脱硫処理が使用で
きる。
However, as can be seen from this property, there are large amounts of sulfur and nitrogen that poison the catalyst, and even if these poisoning substances are in trace amounts, they can affect the metal components of the catalyst used in the present invention. It is poisonous and must be removed before it can be used as a liquid medium. The removal method is not particularly limited, but a hydrodesulfurization treatment commonly used in industry can be used.

水素化脱硫処理は、重質サイクル油をコバルト・モリブ
デン・アルミナ又はニッケル拳モリブデン・アルミナの
ごとき通例の水素化脱硫触媒の存在下で、300〜40
0℃の温匿、20〜150 kg/ JG (D圧力、
LH8V O,1〜10h1水素対油比50〜1000
0 Nm”/に/+の条件で接触することによシ行b、
硫黄分を0.5 wt%以“下、窒素分を0.1 wt
”%以下、好ましくは硫黄分(L 1 wt%以下、蟹
素分0..05 wt%以下とする必要がある。脱硫重
質サイクル油を引続き接触脱ろう処理を行えばさらに好
ましい液体媒体になる。接触脱ろう処理を行わないで液
状媒体として使用しても触媒活性を損うことはないが、
反応初期に脱硫重質サイクル油中に含有されるパラフィ
ンが触媒成分の結晶ゼオライトによシ分解され、液体媒
体の減少を招くため、脱硫重質サイクル油を接触説ろう
した後水素化脱硫することもできる。
Hydrodesulfurization treatment involves treating heavy cycle oil in the presence of a customary hydrodesulfurization catalyst such as cobalt-molybdenum-alumina or nickel-fisted molybdenum-alumina.
0℃ storage, 20-150 kg/JG (D pressure,
LH8V O, 1~10h1 Hydrogen to oil ratio 50~1000
0 Nm”/ by contacting with the condition of /+ row b,
Sulfur content 0.5 wt% or less, nitrogen content 0.1 wt%
% or less, preferably sulfur content (L 1 wt% or less, crab content 0.05 wt% or less. If the desulfurized heavy cycle oil is subsequently subjected to catalytic dewaxing treatment, it becomes a more preferable liquid medium. Even if it is used as a liquid medium without catalytic dewaxing treatment, the catalytic activity will not be impaired.
At the beginning of the reaction, the paraffin contained in the desulfurized heavy cycle oil is decomposed by the crystalline zeolite catalyst component, resulting in a decrease in the liquid medium. Therefore, the desulfurized heavy cycle oil must be subjected to hydrodesulfurization after catalysis. You can also do it.

接触脱ろう処理は、流動点の改善のためにZSM 75
ゼオライトのようなろう分だけを選択的に分解しうる中
孔径ゼオライトを触媒として使用する反応であり、すで
に工業化された方法としてはZSM −5ゼオライトを
用いるモーピルオイル社のMDDW 法、モルデナイト
ゼオライトを用いるブリティッシュ・ペトロリウム社の
脱ろう法がある。このほか本発明で使用できる結晶性ゼ
オライトとして記述しているも、ののうち、細孔径が5
〜9λの中孔径の結晶性ゼオライトを触媒とすることに
よっても達成できる。接触脱ろうの反応条件は、触媒の
種類によシ異なるが、通常250〜400℃の温度、1
00kg/JG以下の圧力、LHEIV 0.1〜10
 h−”で行う。
Catalytic dewaxing treatment is used to improve the pour point of ZSM 75
This reaction uses medium-pore zeolite, such as zeolite, as a catalyst, which can selectively decompose only the wax content. Already industrialized methods include Mopil Oil's MDDW method using ZSM-5 zeolite, and the British method using mordenite zeolite.・There is a wax removal method by Petroleum. In addition, among the crystalline zeolites that can be used in the present invention, the pore size is 5.
This can also be achieved by using a crystalline zeolite with a medium pore diameter of ~9λ as a catalyst. The reaction conditions for catalytic dewaxing vary depending on the type of catalyst, but are usually at a temperature of 250 to 400°C and a
Pressure below 00kg/JG, LHEIV 0.1~10
Do this with h-”.

得ちれた唖ろう処理油はそのまま液体媒体とすることも
できるが、ろう分の分解によシ生成した沸点300℃以
下の留分を蒸留で除去することが好ましい。
Although the obtained wax-treated oil can be used as a liquid medium as it is, it is preferable to remove the fraction with a boiling point of 300° C. or lower produced by decomposition of the wax component by distillation.

このようにして得た液体媒体は触媒と混合し、スラリー
状態で反応に供する。触媒の混合割合はスラリー中の濃
度で5〜50 wt%であシ、触媒はあらかじめ50μ
m以下の粉末とした後混合するか又は/及び液状媒体と
混合した後、粉砕し、50μm以下、好ましくは5μm
以下とすることが好ましい。
The liquid medium thus obtained is mixed with a catalyst and subjected to the reaction in a slurry state. The mixing ratio of the catalyst is 5 to 50 wt% in concentration in the slurry, and the catalyst is 50 μm in advance.
m or less and then mixed or/and mixed with a liquid medium and then ground to a size of 50 μm or less, preferably 5 μm
The following is preferable.

以下、実施例によシ本発明2を具体的に説明するが、本
発明はその要旨を越えないかぎり、以下に限定されるも
のでない。
Hereinafter, the present invention 2 will be specifically explained using Examples, but the present invention is not limited to the following unless it exceeds the gist thereof.

結晶性ゼオライトの調製 結晶性ゼオライトを次のように製造した。水ガラス、塩
化ランタン、水を36 Nano・L a203・ao
stol・160口H,Oのモル比になるように調合し
、これに塩酸を適当量添加し、上記混合物のpHが9前
後になるようにした後、有機化合物としてトリ・nプロ
ピルアミン、nブロピルプロマイド及びメチルエチルケ
トンをL a20jのモル数の20倍加え、良く混合し
1tのステンレス製オートゲレープに張込んだ。上記混
合物を約50 Orpmにて攪拌し7ながら100℃で
1日、次に1′70℃で3日間反応させた。得られた結
晶物の有機化合物を除外した組成は脱水の形態で表わし
テ0.4 Na2O@La2O3”80810g であ
った。これを結晶性ランタンシリケートと称する。
Preparation of crystalline zeolite Crystalline zeolite was produced as follows. Water glass, lanthanum chloride, water 36 Nano・L a203・ao
stol・160 mouth H, O molar ratio was prepared, an appropriate amount of hydrochloric acid was added to this, the pH of the above mixture was adjusted to around 9, and then tri-n propylamine, n Bropylbromide and methyl ethyl ketone were added in an amount 20 times the number of moles of L a20j, mixed well, and poured into a 1 ton stainless steel autogel. The above mixture was stirred at about 50 rpm and reacted at 100°C for 1 day, then at 1'70°C for 3 days. The composition of the obtained crystal, excluding organic compounds, expressed in dehydrated form, was 80,810 g of Na2O@La2O3. This is called crystalline lanthanum silicate.

次にシリカゾル、アルミン酸ソーダ、苛性ソーダ及び水
を10 Na2O5At20i1 @ 46s102 
’11300H20のモル比になるように調合し、有機
化合物としてジグリコールアミンをA t20sのモル
数の18倍加え良く混合し、1tのステンレス製オート
クレーブに張込んだ。上記混合物を約590rpmにて
攪拌しながら自生圧力下160℃で3日間反応させた。
Next, add silica sol, sodium aluminate, caustic soda, and water to 10 Na2O5At20i1 @46s102
The mixture was prepared to have a molar ratio of '11300H20, and diglycolamine was added as an organic compound to 18 times the number of moles of At20s, mixed well, and the mixture was charged into a 1 ton stainless steel autoclave. The above mixture was reacted at 160° C. for 3 days under autogenous pressure while stirring at about 590 rpm.

得られた白゛色微細結晶物は化学分析の結果、Na1.
8vrt%、NO,B wt%を含有し、シリカ対アル
ミナモル比は27であった。これをDGAゼオライトと
称する。
As a result of chemical analysis, the white fine crystals obtained were found to have Na1.
8 vrt%, NO, B wt%, and the silica to alumina molar ratio was 27. This is called DGA zeolite.

この2つの高シリカゼオライトは次に酸型にかえるため
水洗後板下のイオン交換処理を行った。まず550℃、
で5時間焼成することによシ有機窒素陽イオンを焼成除
去した。次に1N塩酸に浸漬し、80℃で7日間処理し
た後、イオン交換水で洗浄水がpHが6になるまで洗浄
し、110℃で12時間乾燥し、最終的に水素イオン型
の結晶性ゼオライトを得た。
These two high-silica zeolites were then washed with water and subjected to ion exchange treatment under the plate in order to convert them into acid forms. First, 550℃,
The organic nitrogen cations were removed by firing for 5 hours. Next, it was immersed in 1N hydrochloric acid and treated at 80°C for 7 days, washed with ion-exchanged water until the pH of the washing water reached 6, dried at 110°C for 12 hours, and finally the crystalline form of the hydrogen ion type was obtained. Obtained zeolite.

触媒の調製 触媒は次のように製造した。硝酸第2鉄水溶液にアンモ
ニア水を加えることによシ得た沈殿鉄をイオン交換水で
洗浄した後、酸化鉄対結晶性ゼオライト重量比が1:1
となるよう結晶性ゼオライトの調製に示しだ結晶性ラン
タンシリケートと混合した。混合物は130℃で乾燥後
、ルテニウム含有量が1 wt%(でなる及の三塩化ル
テニウム水溶液を含浸し、130℃で3時間乾燥、次い
で500℃で3時間焼成し触媒としだ。
Preparation of catalyst The catalyst was manufactured as follows. After washing the precipitated iron obtained by adding aqueous ammonia to an aqueous ferric nitrate solution with ion-exchanged water, the weight ratio of iron oxide to crystalline zeolite was 1:1.
The preparation of crystalline zeolite was shown to be mixed with crystalline lanthanum silicate. The mixture was dried at 130°C, impregnated with an aqueous ruthenium trichloride solution containing 1 wt% of ruthenium, dried at 130°C for 3 hours, and then calcined at 500°C for 3 hours to serve as a catalyst.

これをSTG −1と称する。This is called STG-1.

又、結晶性ランタンシリケートの代シに結晶性ゼオライ
ト調製に示したDGAゼオライトを用いた以外は全く同
様の方法で製造した触媒をEITG −2と蒜する。
In addition, a catalyst prepared in exactly the same manner except that DGA zeolite shown in the preparation of crystalline zeolite was used instead of crystalline lanthanum silicate was used as EITG-2.

またBA13F社製亜鉛、クロム系メタノール合成触媒
と結晶性ランタンシリケートとを重量比で1:1となる
よう機械混合し、50μm以下の粒度とした触媒を5T
() −5と称する。
In addition, 5T is a catalyst made by mechanically mixing BA13F's zinc and chromium-based methanol synthesis catalyst and crystalline lanthanum silicate at a weight ratio of 1:1, with a particle size of 50 μm or less.
( ) -5.

このほか酸化−バナジウムと結晶性ランタンシリケート
とを重量比で1=1に混合後、ルテニウム含有量が1 
wt%になる量の三塩化ルテニウム水溶液を含浸させ、
130℃で3時間乾燥して得た50μm以下の粉末触媒
をSTG −4と称する。
In addition, after mixing vanadium oxide and crystalline lanthanum silicate in a weight ratio of 1=1, the ruthenium content is 1
Impregnated with a ruthenium trichloride aqueous solution in an amount of wt%,
A powder catalyst of 50 μm or less obtained by drying at 130° C. for 3 hours is referred to as STG-4.

液状媒体の調製 懸濁液は次のように調製した。脱硫減圧軽油を原料油と
した接触分解装置よ砂採取した表1に示す性状の重質サ
イクル油をケッチェン社製KF702コバルト・モリブ
デン・アルミナ系水素化脱硫触媒を予備硫化(水素化脱
硫触媒は脱硫反応に供する場合、触媒中の金属成分の硫
化を行う必要があシこの操作を予備性流という。
Preparation of the liquid medium The suspension was prepared as follows. Heavy cycle oil with the properties shown in Table 1 was collected from a catalytic cracker using desulfurized vacuum gas oil as feedstock, and was pre-sulfurized using Ketjen's KF702 cobalt-molybdenum-alumina hydrodesulfurization catalyst (the hydrodesulfurization catalyst was desulfurized). When the catalyst is subjected to a reaction, it is necessary to sulfurize the metal components in the catalyst, and this operation is called preparatory flow.

すなわち、触媒中のコバルトやモリブデンは硫化処理を
行なわないと、脱硫活性が低くかつ分解などの好ましく
ない副反応が生ずる。このため、上記金属成分を硫化物
に変え最上の活性が得られるようにするための予°漏硫
化を行う。)後、380℃、45 kg/ tyl G
 、 LH8V= 1 h−’ 。
That is, unless cobalt and molybdenum in the catalyst are sulfurized, their desulfurization activity is low and undesirable side reactions such as decomposition occur. For this reason, preliminary sulfurization is performed to change the metal components into sulfides and obtain the best activity. ), 380℃, 45 kg/tyl G
, LH8V=1 h-'.

水素対油比50 () In3/ klの条件で処理し
た。
The treatment was performed at a hydrogen to oil ratio of 50 () In3/kl.

次に、脱硫油の一部は前記の水素型DGAゼオライトを
、ベーマイトアルミナゲルをマトリックスとして重量比
で1:1にて混合成型後550℃で焼成し得た触媒の存
在下、350℃、20に9 / cm” G %LH8
V = 1.5 h−”、水素対油比20ONm” /
 klの条件で接触脱ろう処理した。引続き脱ろう油は
蒸留装置で沸点300℃以下と300℃以上の留分に分
離し、300℃以上の留分を液状媒体として用いた。
Next, a part of the desulfurized oil was mixed and molded with the above-mentioned hydrogen-type DGA zeolite in a weight ratio of 1:1 using boehmite alumina gel as a matrix, and then calcined at 550°C. 9/cm”G%LH8
V = 1.5 h-”, hydrogen to oil ratio 20ONm” /
Catalytic dewaxing treatment was carried out under the conditions of kl. Subsequently, the dewaxed oil was separated into fractions with a boiling point below 300°C and above 300°C in a distillation apparatus, and the fraction with a boiling point above 300°C was used as a liquid medium.

表2に脱硫油及び脱硫脱ろう油の性状を示す。Table 2 shows the properties of the desulfurized oil and the desulfurized and dewaxed oil.

表1 原料重質サイクル油の性状 比 重 (15/4℃) 0.9833動粘度(cat
 50℃) 5.769流動点(℃) −1−15 硫黄分(wtチ) 1.09 窒素分(wt%) 0.os 蒸留性状 IBP 277℃ 10% 505℃ 30% 315℃ 50% 324℃ 70% 352℃ 90% 346℃ EP 358℃ 表2 脱硫重量サイクル油 脱硫脱ろう重質サイクル油比重(
15/4℃) 0.9451 0.9921硫黄分(w
t%) [1,0140,02窒素分(wt%) a0
0& a01 流動点(℃) +0.5 −57.5 動粘度(cat 40℃)−1五99 組成(wtチ)芳香族分7&4 84.0非芳香族分 
23.9 1/i、0 註)脱硫脱ろう重質サイクル油の方が脱硫重質サイクル
油よps、1分が多いのは、脱ろう処理では全く脱硫脱
窒素が起こらないことに加え、脱硫油中のろう分が重質
分に分解され、結果的に重質分中のS、Nが濃縮される
ためである。
Table 1 Specific properties of raw material heavy cycle oil Gravity (15/4℃) 0.9833 Kinematic viscosity (cat
50°C) 5.769 Pour point (°C) -1-15 Sulfur content (wt) 1.09 Nitrogen content (wt%) 0. os Distillation properties IBP 277℃ 10% 505℃ 30% 315℃ 50% 324℃ 70% 352℃ 90% 346℃ EP 358℃ Table 2 Desulfurization heavy cycle oil Desulfurization dewaxing heavy cycle oil specific gravity (
15/4℃) 0.9451 0.9921 Sulfur content (w
t%) [1,0140,02 Nitrogen content (wt%) a0
0 & a01 Pour point (℃) +0.5 -57.5 Kinematic viscosity (cat 40℃) -1599 Composition (wt) Aromatic content 7 & 4 84.0 Non-aromatic content
23.9 1/i, 0 Note) The reason why desulfurization and dewaxing heavy cycle oil has more ps and 1 minute than desulfurization and dewaxing heavy cycle oil is that in addition to the fact that desulfurization and denitrification do not occur at all in the dewaxing treatment, This is because the wax content in the desulfurized oil is decomposed into heavy content, and as a result, S and N in the heavy content are concentrated.

このI’sか触媒への液状媒体中の硫黄分の影響を検討
するために、水素化脱硫処理において反応温度を360
℃としたほかは同一の処理を行い硫黄分[107it%
の脱硫重質サイクル油を調整した。
In order to examine the influence of the sulfur content in the liquid medium on this I's catalyst, the reaction temperature was set at 360°C during the hydrodesulfurization process.
The sulfur content [107 it%] was carried out in the same manner except that the temperature was
A desulfurized heavy cycle oil was prepared.

液状媒体中の8分の影響 固定床流通りアクタ−を用い、STG −2触媒に対す
る液状媒体中の硫黄分の影響を検討した。
Effect of 8 minutes in liquid medium The effect of sulfur content in liquid medium on STG-2 catalyst was investigated using a fixed bed flow actor.

馬/Co モル比2の原料ガスを520℃、20に9 
/ ctl G 、 GH8V =1000 h−” 
(D条件で5TG−2触媒と接触させた所CO転化率9
1.5%であった。その後、硫黄分1.09 wtチの
重質サイクル油を320℃、20 kg/ m’ G 
、 LH,、SV =1000 h”−”の条件で合成
ガス流通下で2時間通油した後、再び同一条件で触媒活
性を試験した結果、CO転化率は7%まで低下した。別
に同様の実験を硫黄分の異なる脱硫重質サイクル油を用
い行ったところ、表3・に示すように活性の低下はなく
、脱硫処理を行うことによシ本発明の液状媒体として使
用できるようになる。
Horse/Co raw material gas with a molar ratio of 2 was heated to 520°C and 20 to 9
/ ctl G, GH8V = 1000 h-”
(When contacted with 5TG-2 catalyst under D conditions, CO conversion rate was 9.
It was 1.5%. After that, heavy cycle oil with a sulfur content of 1.09 wt was heated at 320°C and 20 kg/m'G.
, LH,, SV = 1000 h"-" after passing through the oil for 2 hours under the flow of syngas, the catalyst activity was tested again under the same conditions, and as a result, the CO conversion rate decreased to 7%. Separately, similar experiments were conducted using desulfurized heavy cycle oil with different sulfur content, and as shown in Table 3, there was no decrease in activity. become.

表 3 1.09 91.5 7 0.07 91.8 ’89 0.014 90.6 B? 実施例1,2 液状媒体の調製の項で製造した硫黄分0.02vt%の
液状媒体530fに、結晶性ゼオライトの項で調製した
5TG−1触媒1902を混合し、触媒粒径が平均で5
 pm 以下になるまで粉砕した後、下部に孔径30μ
m の多孔板を備えた容量1tのステンレスM懸濁床反
応管に充填した。
Table 3 1.09 91.5 7 0.07 91.8 '89 0.014 90.6 B? Examples 1 and 2 The 5TG-1 catalyst 1902 prepared in the crystalline zeolite section was mixed into the liquid medium 530f with a sulfur content of 0.02 vt% prepared in the section of preparation of liquid medium, and the catalyst particle size was 5 on average.
After grinding until it becomes less than pm, the hole diameter is 30μ at the bottom.
A stainless steel M suspension bed reaction tube with a capacity of 1 t and equipped with a perforated plate of m2 was filled.

このスラリー触媒はHv/COモル比2の合成ガスを用
い、300℃、常圧、ガス流量s OL/Hで6時間前
処理した後、H2100モル比2又は比重合成ガスを原
料とし反応を行った。
This slurry catalyst was pretreated using synthesis gas with a Hv/CO molar ratio of 2 at 300°C, normal pressure, and a gas flow rate of sOL/H for 6 hours, and then reacted using H2100 molar ratio of 2 or specific gravity synthesis gas as a raw material. Ta.

反応条件及び反応成績は表4に示す通シであ1)、co
及びH2は高い転化率を以って炭化水素へ転化し、特に
ガソリン沸点範囲の炭化水素の収率が高い結果が得られ
た。さらに大き外特徴は反応を行った全期間を通じて触
媒層は均一な温度を保持し、固定床反応器で見られる局
部発熱はなかった。また50時間の反応期間においてス
ラリー層高の変化は11とんどなく、反応終了後スラリ
ー触媒抜出し重量を測定した結果、液状媒体は95%回
収された。したがって本発明の液状操体は本発明に適用
する反応で使用する触媒の性能を損うことなく、また自
らも分解されることなく、懸濁床反応に使用できること
がわかる。
The reaction conditions and reaction results are shown in Table 4.
and H2 were converted to hydrocarbons with a high conversion rate, and particularly high yields of hydrocarbons in the gasoline boiling point range were obtained. Another major feature was that the catalyst bed maintained a uniform temperature throughout the reaction period, and there was no local heat generation that is seen in fixed bed reactors. Further, during the reaction period of 50 hours, there was almost no change in the height of the slurry layer, and as a result of measuring the weight of the slurry catalyst taken out after the reaction, 95% of the liquid medium was recovered. Therefore, it can be seen that the liquid mass of the present invention can be used in a suspended bed reaction without impairing the performance of the catalyst used in the reaction applied to the present invention, and without being decomposed itself.

表 4 実施例3 実施例2において液状媒体に液状媒体の調製の項で調製
した脱硫重質サイクル油を用いかつ9時速度を変えた以
外は全く同様な方法で反応を行った場合の結果を表4に
併せて示す。
Table 4 Example 3 The results were obtained when the reaction was carried out in exactly the same manner as in Example 2, except that the desulfurized heavy cycle oil prepared in the liquid medium preparation section was used and the 9 o'clock speed was changed. It is also shown in Table 4.

ここで使用した液状媒体は接慰税ろう処理を受けていな
いため、反応条件でSTG −1触媒中のゼオライト成
分によシろう分が分解を受け、ガソリン沸点範囲以下の
炭化水素を副生じ、反応開始から約10時間にわたって
反応管内の液状媒体レベルの減少が認められた。しかし
その後は触媒層レベルの変化はなくなシ実流側2五同様
、均一な反応温度を保って、合成ガスから炭化水素への
転化反応のみが効果的に進行した。
Since the liquid medium used here has not been subjected to the wax treatment, the wax content is decomposed by the zeolite component in the STG-1 catalyst under the reaction conditions, producing by-products hydrocarbons below the gasoline boiling point range. A decrease in the level of the liquid medium in the reaction tube was observed over about 10 hours from the start of the reaction. However, after that, there was no change in the catalyst layer level, and as in the case of the actual flow side 25, a uniform reaction temperature was maintained, and only the conversion reaction from synthesis gas to hydrocarbons proceeded effectively.

反応終了後液状媒体を回収した結果83wt%の回収率
であった。したがって脱硫重質サイクル油も使用開始時
に分解による損失はあるが、触媒活性を損うことなく本
発明の液状媒体として使用できる。
After the reaction was completed, the liquid medium was recovered and the recovery rate was 83 wt%. Therefore, desulfurized heavy cycle oil can also be used as the liquid medium of the present invention without impairing the catalytic activity, although there is some loss due to decomposition at the beginning of use.

実施例4 液状媒体の調製の項で製造した硫黄分0.02wt%の
液状媒体400fに触媒の調製の項で調製したSTG 
−2触媒110fを混合し、触媒粒径が平均で5μm以
下になるまで粉砕して得たスラリー触媒を用いて合成ガ
スの転化反応を行った結果が実施例4である。実験装置
及び方法は実施例2と同様であシ、反応結果を後記の表
5に示す。この方法においても24時間の反応時間にお
いて触媒活性の低下及び触媒スラリー層高の変化はほと
んどなく、反応終了後における液状媒体の回収率は96
%であった。
Example 4 STG prepared in the catalyst preparation section was added to the liquid medium 400f with a sulfur content of 0.02 wt% produced in the liquid medium preparation section.
Example 4 is the result of carrying out a synthesis gas conversion reaction using a slurry catalyst obtained by mixing 110f of -2 catalysts and pulverizing the catalyst until the catalyst particle size became 5 μm or less on average. The experimental equipment and method were the same as in Example 2, and the reaction results are shown in Table 5 below. Even in this method, there was almost no decrease in catalyst activity or change in the height of the catalyst slurry layer during the 24-hour reaction time, and the recovery rate of the liquid medium after the reaction was 96.
%Met.

実施例5 実施例4において、STG −2触碌の代シに触媒の調
製の項に示したSTG −3触媒を用いて得たスラリー
触媒を充填し、I(2/coモル比2の合成ガスを用い
、反応温度380℃、反応圧力40kg/c、?a、空
時速度1oo(z/触媒z−h)の条件で反応を行わせ
た結果を表5に実施例5として示す。ここで使用した液
状媒体は亜鉛、クロムからなるメタノール合成触媒成分
をも被毒することなく、反応期間において触媒スラリー
全層は±5℃の均一な温度分布を保ちつつ、安定した活
性を示した。また液状媒体自体も380℃の比較的高い
温度においても分解による容量の損失はほとんど認めら
れず反応終了後の回収率は96 Wtチであった。
Example 5 In Example 4, the slurry catalyst obtained using the STG-3 catalyst shown in the section of catalyst preparation was filled into the STG-2 catalyst, and the synthesis of I(2/co molar ratio 2) Using a gas, the reaction was carried out under the conditions of a reaction temperature of 380°C, a reaction pressure of 40 kg/c, ?a, and a space-time velocity of 1oo (z/catalyst z-h). The results are shown in Table 5 as Example 5.Here The liquid medium used did not poison the methanol synthesis catalyst component consisting of zinc and chromium, and during the reaction period, the entire layer of the catalyst slurry maintained a uniform temperature distribution of ±5°C and exhibited stable activity. In addition, even at a relatively high temperature of 380° C., there was almost no loss in capacity due to decomposition of the liquid medium itself, and the recovery rate after the reaction was 96 Wt.

表 5 実施例6 実施例5においてSTG −3触媒の代シに5TG−4
触媒を用い反応温度を28cloにするりなかは、すべ
て同一条件で反応を行った結果を前記表5実施例6とし
て併記する。この場合も高いCO転化率と馬←化率が得
られ、またガソリン留分の収率は74.2 wt%に達
するとともに、触媒スラリー層での異常発熱はなく、安
定した運転ができた。
Table 5 Example 6 In Example 5, 5TG-4 was used instead of STG-3 catalyst.
All of the reactions were carried out under the same conditions using a catalyst at a reaction temperature of 28 clos, and the results are also listed as Example 6 in Table 5 above. In this case as well, high CO conversion and CO conversion were obtained, the yield of gasoline fraction reached 74.2 wt%, and there was no abnormal heat generation in the catalyst slurry layer, allowing stable operation.

代理人 内 1) 明 代理人 萩 原 亮 −Among agents: 1) Akira Agent Ryo Hagi Hara -

Claims (1)

【特許請求の範囲】[Claims] 一酸化炭素を水素化する触媒活性を有する金属又は/及
び金属酸化物と結晶性ゼオライトとの複合触媒を、合成
ガスと接触させ炭化水素を製造する方法において、接触
分解プロセスで副生ずる重質サイクル油を水素化脱硫処
理して得られる重質芳香族炭化水素混合物よシなる液状
媒体に前記触媒を懸濁させ、該懸濁液に合成ガスを接触
させることを特徴とする炭化水素の製造方法。
In a method for producing hydrocarbons by contacting a composite catalyst of a metal or/and metal oxide and crystalline zeolite with catalytic activity for hydrogenating carbon monoxide with synthesis gas, a heavy cycle is generated as a by-product in the catalytic cracking process. A method for producing hydrocarbons, which comprises suspending the catalyst in a liquid medium such as a heavy aromatic hydrocarbon mixture obtained by hydrodesulfurizing oil, and bringing synthesis gas into contact with the suspension. .
JP59035179A 1984-02-28 1984-02-28 Production of hydrocarbon from synthesis gas Granted JPS60181192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59035179A JPS60181192A (en) 1984-02-28 1984-02-28 Production of hydrocarbon from synthesis gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59035179A JPS60181192A (en) 1984-02-28 1984-02-28 Production of hydrocarbon from synthesis gas

Publications (2)

Publication Number Publication Date
JPS60181192A true JPS60181192A (en) 1985-09-14
JPH0460154B2 JPH0460154B2 (en) 1992-09-25

Family

ID=12434623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59035179A Granted JPS60181192A (en) 1984-02-28 1984-02-28 Production of hydrocarbon from synthesis gas

Country Status (1)

Country Link
JP (1) JPS60181192A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195773A (en) * 2007-02-09 2008-08-28 Nippon Gas Gosei Kk Method for producing liquefied petroleum gas and/or gasoline from synthesis gas
JP2016117029A (en) * 2014-12-22 2016-06-30 国立研究開発法人産業技術総合研究所 Method for producing hydrocarbon from carbon dioxide using organic group-modified zeolite catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086262A (en) * 1976-09-20 1978-04-25 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US4096163A (en) * 1975-04-08 1978-06-20 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US4139550A (en) * 1976-09-10 1979-02-13 Suntech, Inc. Aromatics from synthesis gas
US4252736A (en) * 1979-06-01 1981-02-24 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures utilizing dual reactors
US4298695A (en) * 1978-12-18 1981-11-03 Mobil Oil Corporation Conversion of synthesis gas with iron-containing catalyst
JPS5712093A (en) * 1980-06-26 1982-01-21 Mitsubishi Heavy Ind Ltd Preparation of mixture aromatic hydrocarbon
US4423265A (en) * 1982-12-01 1983-12-27 Mobil Oil Corporation Process for snygas conversions to liquid hydrocarbon products

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096163A (en) * 1975-04-08 1978-06-20 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US4139550A (en) * 1976-09-10 1979-02-13 Suntech, Inc. Aromatics from synthesis gas
US4086262A (en) * 1976-09-20 1978-04-25 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US4298695A (en) * 1978-12-18 1981-11-03 Mobil Oil Corporation Conversion of synthesis gas with iron-containing catalyst
US4252736A (en) * 1979-06-01 1981-02-24 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures utilizing dual reactors
JPS5712093A (en) * 1980-06-26 1982-01-21 Mitsubishi Heavy Ind Ltd Preparation of mixture aromatic hydrocarbon
US4423265A (en) * 1982-12-01 1983-12-27 Mobil Oil Corporation Process for snygas conversions to liquid hydrocarbon products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195773A (en) * 2007-02-09 2008-08-28 Nippon Gas Gosei Kk Method for producing liquefied petroleum gas and/or gasoline from synthesis gas
JP4558751B2 (en) * 2007-02-09 2010-10-06 日本ガス合成株式会社 Method for producing liquefied petroleum gas and / or gasoline from synthesis gas
JP2016117029A (en) * 2014-12-22 2016-06-30 国立研究開発法人産業技術総合研究所 Method for producing hydrocarbon from carbon dioxide using organic group-modified zeolite catalyst

Also Published As

Publication number Publication date
JPH0460154B2 (en) 1992-09-25

Similar Documents

Publication Publication Date Title
KR100702191B1 (en) Zeolite ssz-53
US4035285A (en) Hydrocarbon conversion process
US4309275A (en) Hydrocarbon conversion with crystalline silicates to produce olefins
CA1123412A (en) Crystalline silicates
JPS6058164B2 (en) Crystalline silicates, their preparation and their use as adsorbents, extractants or desiccants, as ion exchangers or as molecular sieves
JPH02504263A (en) New zeolite SSZ-26
JPH05506044A (en) Dehydrocyclization or catalytic reforming using sulfur-resistant zeolite catalysts
NZ516823A (en) Zeolite SSZ-52
JPS6160787A (en) Dehydrocyclization method
JPH0118013B2 (en)
US8288303B2 (en) Hydrocracking catalyst and process for producing fuel base material
JPS58192834A (en) Preparation of hydrocarbon
US4961836A (en) Synthesis of transition metal alumino-silicate IOZ-5 and use of it for hydrocarbon conversion
US3394074A (en) Single reactor hydrocracking process with mixed nonnoble metal catalyst for full boiling raw feed
JPH05500650A (en) Low Aluminum Boron Beta Zeolite
KR100893537B1 (en) Zeolite ssz-57
JPS60181192A (en) Production of hydrocarbon from synthesis gas
CA1140161A (en) Hydrocarbon conversion with crystalline silicates
JPH06199707A (en) Catalytic cracking of light hydrocarbon
KR900000895B1 (en) Dewaxing process of hydrocarbon remains (dregs)
JP4838104B2 (en) Method for producing high octane gasoline base material
CN101410181B (en) Hydrocracking catalyst, and method for production of fuel base material
EP0051326A1 (en) Process for the preparation of hydrocarbons
CN111073684A (en) Process for producing clean gasoline
JPH06346062A (en) Catalytic conversion of light hydrocarbon

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term