JPS60180910A - Manufacture of silicon hydride - Google Patents

Manufacture of silicon hydride

Info

Publication number
JPS60180910A
JPS60180910A JP59034830A JP3483084A JPS60180910A JP S60180910 A JPS60180910 A JP S60180910A JP 59034830 A JP59034830 A JP 59034830A JP 3483084 A JP3483084 A JP 3483084A JP S60180910 A JPS60180910 A JP S60180910A
Authority
JP
Japan
Prior art keywords
acid
silicon hydride
solvent
reaction
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59034830A
Other languages
Japanese (ja)
Other versions
JPH0328368B2 (en
Inventor
Hiroji Miyagawa
博治 宮川
Masayoshi Ito
正義 伊藤
Toshihiro Abe
智弘 安部
Kenji Iwata
健二 岩田
Kiyougo Koizumi
鏡悟 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59034830A priority Critical patent/JPS60180910A/en
Priority to US06/686,893 priority patent/US4610859A/en
Priority to EP84309133A priority patent/EP0149363A3/en
Priority to AU37224/84A priority patent/AU3722484A/en
Priority to KR1019840008531A priority patent/KR890001968B1/en
Publication of JPS60180910A publication Critical patent/JPS60180910A/en
Publication of JPH0328368B2 publication Critical patent/JPH0328368B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture high purity silicon hydride by reacting an alloy contg. Si with an acid in a solvent capable of dissolving silicon hydride, separating the solvent phase from the squeous acid soln. phase, and distilling the solvent phase. CONSTITUTION:An aqueous soln. of an inorg. acid such as HCl, H2SO4 or H3PO4 or an org. acid such as formic acid, acetic acid or oxalic acid adjusted to 1-50wt% concn. is poured into a vessel. A solvent having -60 deg.C-100 deg.C b.p. such as an ether compound, hydrocarbon or halogenated hydrocarbon and powder of an Si-Mg alloy such as Mg2Si are added to the aqueous soln., and they are brought into a reaction by stirring in a reducing atmosphere. Since produced silicon hydride represented by a general formula SinH2n+2 is dissolved in the solvent, the liq. reaction product is allowed to stand to separate the solvent phase contg. dissolved silicon hydride from the aqueous acid soln. phase. High purity silicon hydride such as silane is recovered in a high yield by distilling the solvent phase by heating.

Description

【発明の詳細な説明】 本発明はケイ素を含む合金と酸とを反応させることによ
り一般式S in H2n+2(nは正の整数)で表わ
される水素化ケイ素を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing silicon hydride represented by the general formula S in H2n+2 (n is a positive integer) by reacting an alloy containing silicon with an acid.

さらに詳しくは水素化ケイ素を溶解できる少くとも一種
以上の溶媒を共存させて上記反応を行ないかつ反応終了
後に溶媒層と酸水溶液を機械的に分離した後該溶媒層を
蒸留して水素化ケイ素を回収する水素化ケイ素の製造方
法に関する。
More specifically, the above reaction is carried out in the coexistence of at least one kind of solvent capable of dissolving silicon hydride, and after the reaction is completed, the solvent layer and the acid aqueous solution are mechanically separated and the solvent layer is distilled to dissolve the silicon hydride. The present invention relates to a method for producing recovered silicon hydride.

近年、エレクトロニクス工業の発展に伴ない、半導体用
シリコンの需要が急激に増加している。
In recent years, with the development of the electronics industry, the demand for silicon for semiconductors has increased rapidly.

かかる半導体用シリコンの製造用原料として水素化ケイ
素S in Hz n十gが最近重要性を増している。
Recently, 10 g of silicon hydride S in Hz has been gaining importance as a raw material for producing silicon for semiconductors.

特にモノシラン(SiH4)、ジシラン(Si2Ha)
は太陽電池用原料としても今後大幅な需要増加が見込ま
れている。水素化ケイ素の製造方法としては、以下に例
示するようにいくつかの方法が公知である。
Especially monosilane (SiH4), disilane (Si2Ha)
Demand is expected to increase significantly in the future as a raw material for solar cells. Several methods are known for producing silicon hydride, as exemplified below.

■ケイ化マグネシウムと酸水溶液の反応による製造 (反応式のm個;Mり2Si + 4HC19−一−→
n n ■液化アンモニア溶媒中でケイ化マグネシウムとハロゲ
ン化アンモニウムの反応による製造(反応式のm個;M
り2S i + 4NH4CA’ −−→in L 1
yNH。
■Production by reaction of magnesium silicide and acid aqueous solution (m reaction formula; M2Si + 4HC19-1-→
n n ■Production by reaction of magnesium silicide and ammonium halide in liquefied ammonia solvent (m reaction formulas; M
ri2S i + 4NH4CA' --→in L 1
yNH.

■ハロゲン化ケイ素化合物の還元による製造(反応式の
一例; S iCA’、+L 1AllH4−−一→S
 iH4+L iCA’t−AlCA’s )■触媒を
用いてケイ素金属と塩素化ケイ素、水素ガスから一部水
素化して塩素化ケイ素を製造し、これを不均化してシラ
ンを製造する方法。
■Production by reduction of a silicon halide compound (an example of a reaction formula; S iCA', +L 1AllH4--1→S
iH4+L iCA't-AlCA's) ■ A method of partially hydrogenating silicon metal, chlorinated silicon, and hydrogen gas using a catalyst to produce chlorinated silicon, and disproportionating this to produce silane.

(反応式; S i+S iC4+H,、−→S i 
HCl 3+HCl)281)1cz3 ;=テS 1
H2C4+s lCl。
(Reaction formula; S i+S iC4+H,, -→S i
HCl3+HCl)281)1cz3;=TeS1
H2C4+s lCl.

2 S 1H2C4□5IHC13+51H3Clτ−
一一一 2SiH3Ct=ヨS i H4−1−81H2C12
これらの中で本発明に係わるケイ素合金、特にケイ化マ
グネシウムと酸水溶液を反応させる■の方法は古くから
最も簡便な製造法として知られている。
2 S 1H2C4□5IHC13+51H3Clτ-
1112SiH3Ct=yoS i H4-1-81H2C12
Among these methods, method (2) in which the silicon alloy according to the present invention, particularly magnesium silicide, is reacted with an acid aqueous solution has long been known as the simplest manufacturing method.

又、もう一つの特徴としてモノシラン(SiH,)だけ
でなくジシラン(Si2Ha)以上の高級7ランの製造
法としても公知である。しかし乍ら、従来、この方法で
は水素化ケイ素の収率がきわめて低いという欠点があっ
た。又この方法では、副反応によるシロキサン結合を有
するケイ素化合物の副生を避けられずケイ素合金中のケ
イ素の水素化ケイ素への転化率には限界があるとされて
いる(Z。
Another feature is that it is known as a method for producing not only monosilane (SiH) but also higher-grade 7-ranes higher than disilane (Si2Ha). However, conventionally, this method has had the drawback that the yield of silicon hydride is extremely low. Furthermore, in this method, the by-product of silicon compounds having siloxane bonds due to side reactions cannot be avoided, and it is said that there is a limit to the conversion rate of silicon in silicon alloys to silicon hydride (Z).

Anatg 、 AIJp−yc、 Cムm、303.
283(1060)。
Anatg, AIJp-yc, Cmm, 303.
283 (1060).

J、A、C,S、 571349(1935))。その
為原理的には簡便な方法にもかかわらず実際の工業的プ
ロセスの開発が遅れていた。すなわち、■の方法で水素
化ケイ素の収率向上が図れれば簡便な方法で安価な水素
化ケイ素の製造が可能となり工業的意義はきわめて大き
い。
J, A, C, S, 571349 (1935)). For this reason, although the method is simple in principle, the development of an actual industrial process has been delayed. That is, if the yield of silicon hydride can be improved by the method (2), silicon hydride can be produced easily and inexpensively, which is of great industrial significance.

本発明者らは、上記■の一方法について水素化ケイ素の
収率の向上を図るべく鋭意検討した結果、本発明に至っ
た。すなわち、本発明は、ケイ素を含む合金と酸水溶液
とを反応せしめて一般式5in112n+2(nは1以
上の正の整数)で表わされる水素化ケイ素を製造する方
法において、生成する水素化ケイ素を溶解できかつ酸水
溶液との二層分離が可能な少なくとも一種以上の溶媒を
共存させて上記反応を行ない、更に反応終了後に生成水
素化ケイ素を溶解せる溶媒層と核酸水溶液層とを機械的
に分離し該溶媒層を蒸留して水素化ケイ素を得る工程を
含むことを特徴とする水素化ケイ素の製造方法に関する
The present inventors have conducted intensive studies to improve the yield of silicon hydride using method (1) above, and as a result, they have arrived at the present invention. That is, the present invention provides a method for producing silicon hydride represented by the general formula 5in112n+2 (n is a positive integer of 1 or more) by reacting an alloy containing silicon with an acid aqueous solution, in which the produced silicon hydride is dissolved. The above reaction is carried out in the coexistence of at least one kind of solvent that can be separated into two layers from the acid aqueous solution, and further, after the reaction is completed, the solvent layer in which the produced silicon hydride can be dissolved and the nucleic acid aqueous solution layer are mechanically separated. The present invention relates to a method for producing silicon hydride, which includes a step of distilling the solvent layer to obtain silicon hydride.

本発明により簡便な手段で水素化ケイ素の収率を大幅に
増加することができる。
According to the present invention, the yield of silicon hydride can be significantly increased by simple means.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において用いられるケイ素を含む合金とは、ケイ
素を含む2成分以上の金属からなる合金であり、具体例
としてはMり、 S i 、 CaSi 、Ca5Si
2゜LeS 12 、 M92S r Nr 、 M 
92 S IA 11Mg2 S 12B a 、Ce
Mg2S 129Mg6 S 17Cul(11Mり、
5i6A18Fe 等が好ましいものとして挙げられる
。これらの中ではマグネシウムを含むケイ素合金、特に
ケイ化マグネシウムMi;!2Si が最も好ましい。
The silicon-containing alloy used in the present invention is an alloy consisting of two or more metals containing silicon, and specific examples include M, Si, CaSi, and Ca5Si.
2゜LeS 12, M92S r Nr, M
92 S IA 11Mg2 S 12B a , Ce
Mg2S 129Mg6S 17Cul (11M,
Preferred examples include 5i6A18Fe and the like. Among these, silicon alloys containing magnesium, especially magnesium silicide Mi;! 2Si is most preferred.

またこれらの2種以上のケイ素合金を混合物の形で用い
ることもできる。
Furthermore, two or more of these silicon alloys can also be used in the form of a mixture.

合金の粒度については特に制限はないが細かいほど好ま
しい。
There is no particular restriction on the particle size of the alloy, but the finer the particle size, the better.

しかし乍ら経済上あるいは取扱い上20乃至300メツ
シユの範囲であることが望ましい。
However, for economical and handling reasons, it is desirable that the number of meshes be in the range of 20 to 300 meshes.

酸としては水に可溶なものであればいかなるものでもよ
いが、通常塩化水素酸、臭化水素酸、フッ化水素酸、硫
酸、リン酸などの無機酸、および蟻酸、酢酸、蓚酸、プ
ロピオン酸などの有機酸が用いられる。これらのうち塩
化水素酸、硫酸が最も好ましいものとして挙げられる。
Any acid can be used as long as it is soluble in water, but it usually includes inorganic acids such as hydrochloric acid, hydrobromic acid, hydrofluoric acid, sulfuric acid, and phosphoric acid, as well as formic acid, acetic acid, oxalic acid, and propionic acid. Organic acids such as acids are used. Among these, hydrochloric acid and sulfuric acid are most preferred.

また酸昏水溶液の酸濃度は本発明において特に制限する
ものてはないが、酸濃度1乃至50wt%の範囲である
ことが水素化ケイ素の収率上好ましい。
Further, the acid concentration of the acid coagulation solution is not particularly limited in the present invention, but it is preferable for the acid concentration to be in the range of 1 to 50 wt% from the viewpoint of yield of silicon hydride.

本発明においては、上記のごとき合金と酸水溶・液との
反応な、生成する水素化ケイ素を溶解でき酸水溶液との
二層分離が可能な溶媒を共存させて行うものである。酸
―水溶液中に共存させて用いられる溶媒とは、かくのご
とく水素化ケイ素を溶閉が一60℃乃至100℃であり
、かつ反応条件下でそのもの自体が反応により変化した
り又は系に存在するほかの成分と化学変化を起こさず安
定に存在する不活性な成分であるところの単−成分又は
2成分以上の混合物質であることが好ましい。
In the present invention, the reaction between the above alloy and an acid aqueous solution/liquid is carried out in the coexistence of a solvent that can dissolve the produced silicon hydride and allow two-layer separation from the acid aqueous solution. The solvent used coexisting in the acid-aqueous solution is one that melts silicon hydride at a temperature of 160°C to 100°C, and that itself is changed by the reaction or exists in the system under the reaction conditions. It is preferable to use a single component or a mixture of two or more components, which is an inert component that stably exists without chemical change with other components.

かかる反応条件下で安定でかつ水素化ケイ素を溶解する
能力をもつものとしてエーテル化合物、炭化水素、ハロ
ゲン化炭化水素、水素化ケイ素及び有機ケイ素化合物が
好ましいものとして挙げられる。これらを更に具体的に
説明すると、エーテル化合物とは少くとも一個のC−O
−C結合を分子内に有するもので例としてジメチルエー
テル、ジエチルエーテル、エチルメチルエーテル、ジロ
ープロピルエーテル、シフチルエーテル、エチル−1−
クロルエチルエーテル、テトラヒドロピランなどが挙げ
られる。又、炭化水素としてはエタン、プロパン、n−
フリン、l−ブタン、n−ペンタン、2−メチルブタン
、n−へキサン、2−メチルペンタン、3−メチル−ペ
ンタン、2.2−ジメチルブタン、n−へブタン、n−
オクタンが例として挙げられる。ハロゲン化炭化水素と
しては沸化物カ最モ望ましくモノクロルペンタフルオロ
エタン、ジクロロジフルオロメタン、オクタフルオロシ
クロブタン、ジクロロテトラフルオロエタン、ジクロロ
モノフルオロメタン、トリクロロフルオロメタン、トリ
クロロトリフルオロエタン、テトラクロロジフルオロエ
タンなどがある。シラン化合物としては水素化ケイ素で
あるジシラン、トリシラン、又水素化ケイ素の水素の少
なくとも一個をアルキル基、アルコキシ基又はハロゲン
で置換した有機シラン化合物、有機ハロシラン化合物、
又S i −0−8i 結合を有するシロキサン化合物
の上記誘導体があり、例としてモノメチルシラン、ジメ
チルシラン、トリメチルシラン、テトラメチルシラン、
ジエチルシラン、トリエチルシラン、テトラエチルシラ
ン、トリメチルエチルシラン、トリメチルブチルシラン
、ジメチルジエチルシラン、ヘキサメチルジシラン、モ
ノメチルジフルオロシラン、モノメチルトリフルオロシ
ラン、ジメチルジフルオロシラン、トリメチルフルオロ
シラン、エチルトリフルオロシラン、ジエチルジフルオ
ロシラン、トリエチルフルオロシラン、ジエチルフルオ
ロクロロシラン、トリメチルメトキシシラン、トリメチ
ルエトキシシラン等が好ましいものとして挙げられる。
Ether compounds, hydrocarbons, halogenated hydrocarbons, silicon hydrides, and organosilicon compounds are preferred as those that are stable under such reaction conditions and have the ability to dissolve silicon hydride. To explain these more specifically, an ether compound is an ether compound containing at least one C-O
-C bonds in the molecule, examples include dimethyl ether, diethyl ether, ethyl methyl ether, diropropyl ether, cyphthyl ether, ethyl-1-
Examples include chloroethyl ether and tetrahydropyran. In addition, examples of hydrocarbons include ethane, propane, n-
Furin, l-butane, n-pentane, 2-methylbutane, n-hexane, 2-methylpentane, 3-methyl-pentane, 2,2-dimethylbutane, n-hebutane, n-
Octane is an example. The most preferred halogenated hydrocarbons include fluorides, such as monochloropentafluoroethane, dichlorodifluoromethane, octafluorocyclobutane, dichlorotetrafluoroethane, dichloromonofluoromethane, trichlorofluoromethane, trichlorotrifluoroethane, and tetrachlorodifluoroethane. . Examples of silane compounds include silicon hydride such as disilane and trisilane, and organic silane compounds and organic halosilane compounds in which at least one hydrogen of silicon hydride is replaced with an alkyl group, an alkoxy group, or a halogen.
There are also the above-mentioned derivatives of siloxane compounds having S i -0-8i bonds, such as monomethylsilane, dimethylsilane, trimethylsilane, tetramethylsilane,
Diethylsilane, triethylsilane, tetraethylsilane, trimethylethylsilane, trimethylbutylsilane, dimethyldiethylsilane, hexamethyldisilane, monomethyldifluorosilane, monomethyltrifluorosilane, dimethyldifluorosilane, trimethylfluorosilane, ethyltrifluorosilane, diethyldifluorosilane Preferred examples include triethylfluorosilane, diethylfluorochlorosilane, trimethylmethoxysilane, and trimethylethoxysilane.

以上の溶媒は単なる例示にすぎないものであり、要する
に酸水溶液との相互溶解度がある程度小さく二相を形成
し、たとえば反応後の系を静置することにより二層分離
が可能なもつであればいかなるものも使用可能である。
The above solvents are merely examples, and in short, any solvent that has a certain degree of mutual solubility with the acid aqueous solution and forms two phases and can be separated into two phases by, for example, leaving the system still after the reaction. Anything can be used.

なお、常温常圧でガス状のものたとえば上記したジメチ
ルエーテル、エタン、ジシラン等を用いる場合には、低
温あるいは加圧下で行なう。また、これらの物質を2種
以上混合した状態でも用いられることはすでに述べた通
りである。また、酸水溶液に対する溶媒の使用量は、酸
水溶液層と溶媒層を形成する量以上であれば特に制限は
ない。
In addition, when using gaseous substances such as the above-mentioned dimethyl ether, ethane, disilane, etc. at normal temperature and normal pressure, the reaction is carried out at low temperature or under pressure. As already mentioned, a mixture of two or more of these substances can also be used. Further, the amount of solvent used for the acid aqueous solution is not particularly limited as long as it is at least the amount that forms an acid aqueous solution layer and a solvent layer.

本発明においては、以上のごとき溶媒共存下に反応を行
い、反応終了後に生成水素化ケイ素を溶解せる溶媒層と
酸水溶液を機械的に分離し該溶媒層を蒸留して水素化ケ
イ素を得るのである。
In the present invention, the reaction is carried out in the presence of a solvent as described above, and after the reaction is completed, the solvent layer in which the produced silicon hydride is dissolved and the acid aqueous solution are mechanically separated, and the solvent layer is distilled to obtain silicon hydride. be.

以下この操作について説明する。ここで反応終了後とは
溶媒の共存下でケイ素を含む合金を酸水溶液と反応せし
めて実質的に合金および/′又は酸が消費された時点以
降を称する。この時点は反応液の状態を観、察して判定
できる。即ち合金と酸を反応させると反応中は著しく発
泡するが反応終了とはこの発泡現象がはgなくなった時
点なのである。又反応は強度の発熱を伴うので反応温度
の変化状態即ち反応温度が急激に低下しはじめる点から
も判断できる。溶媒層と酸水溶液を機械的忙分離すると
は、加熱蒸発分離を行なうことなし忙、反応液を反応温
度を越えない温度で静置して二相分離させた後、傾斜分
離等で溶媒層と酸水溶液層を分離する操作である。この
場合、分離効率又は/′および分離速度をあげるため、
例えば超音波を該反応液にあてる方法、該反応液を多孔
性フィルターを通過させる方法又は遠心分離機を用いる
等の通常の手段を用いることもできる。以上の操作で分
離した溶媒層側には水素化ケイ素の殆んど全てが移行し
ており、酸水溶液層側妊分配残留する水素化ケイ素は微
量である。
This operation will be explained below. Here, "after the reaction is completed" refers to the time after the silicon-containing alloy is reacted with an acid aqueous solution in the presence of a solvent and the alloy and/or the acid are substantially consumed. This point can be determined by observing and observing the state of the reaction solution. That is, when an alloy is reacted with an acid, it foams significantly during the reaction, but the reaction is complete when this foaming phenomenon stops. Furthermore, since the reaction is accompanied by strong heat generation, it can be judged from the state of change in the reaction temperature, that is, the fact that the reaction temperature begins to drop rapidly. Mechanical separation of the solvent layer and the acid aqueous solution means that the reaction solution is allowed to stand still at a temperature not exceeding the reaction temperature to separate the two phases, and then the solvent layer is separated by gradient separation, etc. This is an operation to separate the acid aqueous solution layer. In this case, in order to increase the separation efficiency or /' and the separation speed,
For example, conventional means such as applying ultrasonic waves to the reaction solution, passing the reaction solution through a porous filter, or using a centrifuge can also be used. Almost all of the silicon hydride has migrated to the solvent layer separated by the above operation, and only a small amount of silicon hydride remains on the acid aqueous solution layer side.

本発明においては、この分離した溶媒層に溶解している
水素化ケイ素を通常の蒸留操作で回収するために分解の
原因となる酸水溶液がなく生成水素化ケイ素が水と反応
してシロキサン結合を生成することなく高収率、高純度
の水素化ケイ素をすべて回収することができる。
In the present invention, silicon hydride dissolved in this separated solvent layer is recovered by a normal distillation operation, so there is no acid aqueous solution that causes decomposition, and the silicon hydride produced reacts with water to form siloxane bonds. All silicon hydride can be recovered in high yield and high purity without any generation.

次に更に具体的に反応様式についで述べる。Next, the reaction mode will be described in more detail.

本発明は上記したごとくケイ素合金を酸水溶液とを作用
させるにあたり、水素化ケイ素を溶解する溶媒を共存さ
せて反応を行ないかつ反応終了後に溶媒層と酸水溶液層
を機械的に分離し、該溶媒層を蒸留して水素化ケイ素を
得る製造法を要旨とするものであり、これをいかなる反
応態様で行なってもよい。すなわち回分式、半回分式、
連続式反応のいずれの反応態様も可能であり、又各成分
の反応器への装入方法についても種々の方式が採用でき
る。例えば回分式操作を例にとると酸水溶液と溶媒とを
反応器に仕込んで強攪拌下合金な徐々に装入する方法;
酸水溶液をまず仕込んで合金と溶媒をそのままで、ある
いは合金を溶媒に懸濁させた状態で装入する方法;逆に
合金と溶媒を反応器に仕込み強攪拌下で酸水溶液を徐々
に装入する方法等いずれの方法も採用できる。また、連
続式操作の場合も同様にして種々の組合せが可能である
As described above, the present invention involves reacting a silicon alloy with an acid aqueous solution in the coexistence of a solvent that dissolves silicon hydride, and mechanically separating the solvent layer and the acid aqueous solution layer after the reaction is completed. The gist of this is a production method for obtaining silicon hydride by distilling a layer, and this may be carried out in any reaction mode. i.e. batch type, semi-batch type,
Any mode of continuous reaction is possible, and various methods can be adopted for charging each component into the reactor. For example, taking a batch operation as an example, a method in which an aqueous acid solution and a solvent are charged into a reactor and the alloy is gradually charged under strong stirring;
A method in which the acid aqueous solution is first charged and then the alloy and solvent are charged as they are, or the alloy is suspended in the solvent; conversely, the alloy and solvent are charged into a reactor and the acid aqueous solution is gradually charged under strong stirring. Any method can be adopted, such as the method of Similarly, various combinations are possible in the case of continuous operation.

反応は通常、常圧下又は加圧下で行なうが、減圧下でも
行ない得る。反応温度は一60℃乃至100℃、好まし
くは一40℃乃至50℃である。収率の面では反応は低
温で行うほど好ましいが設備価格、用役コスト面から上
記範囲が好ましい。なお、単−成分又は2成分以上の混
合溶媒を適当に選択して沸騰下で反応を実施した場合に
は反応熱を溶媒の気化熱として除去できるので、気化し
た溶媒を凝縮器で凝縮し、反応器に速流することにより
、反応温度の制御が極めて容易となる。
The reaction is usually carried out under normal pressure or increased pressure, but may also be carried out under reduced pressure. The reaction temperature is from -60°C to 100°C, preferably from -40°C to 50°C. From the viewpoint of yield, it is preferable to carry out the reaction at a lower temperature, but from the viewpoint of equipment cost and utility cost, the above range is preferable. In addition, when a single component or a mixed solvent of two or more components is appropriately selected and the reaction is carried out under boiling, the reaction heat can be removed as the heat of vaporization of the solvent, so the vaporized solvent is condensed in a condenser. The rapid flow into the reactor makes it extremely easy to control the reaction temperature.

反応が終結したら、反応液を反応温度を越えない温度で
静置させ溶媒層と酸水溶液層を2層分離させる。この操
作で分離効率又は/゛および分離速度をあげるため種々
の通常の手段が使用できる。
After the reaction is completed, the reaction solution is allowed to stand at a temperature not exceeding the reaction temperature to separate the solvent layer and the acid aqueous solution layer into two layers. Various conventional means can be used to increase separation efficiency and/or speed in this operation.

例え゛ば単に静置させるだけでは該二層の分離が充分で
ない場合、先に述べたように超音波を反応液にあてる方
法、該反応液を多孔性フィルターを通オ方法、又、界面
活性剤を用(・る方法、及び遠心分離機を用いる方法等
の手段で分散している液滴の合一を促進することができ
る。
For example, if simply allowing the reaction solution to stand still is not sufficient to separate the two layers, methods such as applying ultrasonic waves to the reaction solution as described above, passing the reaction solution through a porous filter, or using surface-activated Coalescence of dispersed droplets can be promoted by methods such as using a liquid agent or using a centrifugal separator.

上記の方法により、2相分離した反応液を傾斜分離して
溶媒層と酸水溶液層な得る。得られた溶媒層には生成し
た水素化ケイ素の殆んど全てを溶解して含んでおり酸水
溶液中に残る水素化ケイ素は微量である。この溶媒層を
通常の方法で蒸留して水素化ケイ素と溶媒を分離する。
By the above method, the two-phase separated reaction solution is subjected to gradient separation to obtain a solvent layer and an acid aqueous solution layer. The resulting solvent layer contains almost all of the produced silicon hydride dissolved, and only a small amount of silicon hydride remains in the acid aqueous solution. This solvent layer is distilled in a conventional manner to separate the silicon hydride and the solvent.

又、酸水溶液は加熱処理され、溶解している溶媒及び微
量の水素化ケイ素が回収される。
Further, the acid aqueous solution is heat-treated to recover the dissolved solvent and a trace amount of silicon hydride.

以上のごとくして本発明による溶媒の共存下反応かつ溶
媒層のみの蒸留操作により、ケイ素合金中のケイ素の水
素化ケイ素への収率は大幅に増加する。なお、沸騰下で
反応を行なえば反応温度の制御も極めて容易になる。反
応時の溶媒の共存効成した水素化ケイ素の分解をおさえ
ていること、(ii)又生成した水素化ケイ素を溶媒が
溶解捕集して分解の原因となる酸水溶液から保護してく
れること、(iii )さらに又溶媒がケイ素合金の反
応表面で生成した水素化ケイ素を洗滌溶解して常に反応
表面を更新して酸との反応を容易にしているため等によ
るものと考えられる。なお、分離1−だ溶媒層のみの蒸
留分離操作により分解の原因となる酸水溶液に接触する
ことなく分離操作が行なえるため、この効果は著しい。
As described above, by the reaction in the presence of a solvent and the distillation operation of only the solvent layer according to the present invention, the yield of silicon hydride from silicon in a silicon alloy is significantly increased. Note that if the reaction is carried out under boiling, the reaction temperature can be controlled extremely easily. The coexistence of the solvent during the reaction suppresses the decomposition of silicon hydride, and (ii) the solvent dissolves and collects the silicon hydride produced, protecting it from the acid aqueous solution that causes decomposition. , (iii) Furthermore, this is thought to be due to the fact that the solvent washes and dissolves the silicon hydride generated on the reaction surface of the silicon alloy, constantly renewing the reaction surface and facilitating the reaction with the acid. Note that this effect is remarkable because separation 1 can be carried out by distilling and separating only the solvent layer without coming into contact with the acid aqueous solution that causes decomposition.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

〈実施例1〉 −容量41のセパラブルフラスコに、濃度20wt%の
塩酸水溶液21、ジエチルエーテル1000 gを装入
した。水素ガス雰囲気中、上記混合液が還流している条
件下(反応温度35℃)で更にケイ化マグネシウム60
ノ(粒度100乃至200メツシユ、782mmol 
−8i )を攪拌しながら200分かけて、0.3 g
/’min の一定速度で加え続げた。反応終了後(ケ
イ化マグネシウム投入終了後)、反応液を0℃に冷却し
、静置して二層分離後、ジエチルエーテル要約11を分
離し反応器外−\取り出した。反応器中の酸水溶液層は
80℃にまで昇温し、溶解している少量のジエチルエー
テルを留出せしめて取出し、上記二層分離したジエチル
エーテル層と混合した。なお、反応中、二層分離および
酸水溶液の加熱処理の操作の間忙生成したガスは液体チ
ッ素温度で冷却したトラップ(トラップ(■))中に捕
集した。
<Example 1> - A separable flask with a capacity of 41 was charged with 21 of an aqueous solution of hydrochloric acid having a concentration of 20 wt% and 1000 g of diethyl ether. In a hydrogen gas atmosphere, under conditions where the above mixture is refluxing (reaction temperature 35°C), 60% of magnesium silicide is added.
(particle size 100 to 200 mesh, 782 mmol
-8i) over 200 minutes while stirring, 0.3 g
The addition was continued at a constant rate of /'min. After the reaction was completed (after the addition of magnesium silicide), the reaction solution was cooled to 0° C., left to stand, and separated into two layers. Diethyl ether summary 11 was separated and taken out of the reactor. The temperature of the acid aqueous solution layer in the reactor was raised to 80° C., and a small amount of dissolved diethyl ether was distilled off and mixed with the diethyl ether layer separated into two layers. During the reaction, the gas generated during the two-layer separation and heating treatment of the acid aqueous solution was collected in a trap (trap (■)) cooled at the temperature of liquid nitrogen.

次に二層分離後のジエチルエーテル層を、実段数約3段
の蒸留塔妊て蒸留し、SiH,、(b、p、−112℃
) Si□He (b、p、−14,5℃)を液収チッ
素温度で冷却したトラップ(トラップω))中に捕集し
た。
Next, the diethyl ether layer after the two-layer separation was distilled in a distillation column with about 3 plates, and SiH, (b, p, -112°C
) Si□He (b, p, -14,5°C) was collected in a trap (trap ω)) cooled at the liquid nitrogen temperature.

トラップ(I)、(It’)および蒸留後のジエチルエ
ーテルに溶存しているSiH4,5i21−1.、 、
8皿、I48の量をガスクロマトグラフにより分析、定
量した。
SiH4,5i21-1. dissolved in traps (I), (It') and diethyl ether after distillation. , ,
The amount of I48 in 8 dishes was analyzed and quantified by gas chromatography.

結果を第1表に示す。The results are shown in Table 1.

〈実施例2乃至8〉 実施例1において、ジエチルエーテルのかわりに第1表
に示す種々の溶媒を用い、それぞれの反応温度で反応を
行なった以外は実施例1と同様に実験を行なった。結果
を第1表棹示す。
<Examples 2 to 8> Experiments were conducted in the same manner as in Example 1, except that various solvents shown in Table 1 were used instead of diethyl ether, and the reactions were conducted at the respective reaction temperatures. The results are shown in Table 1.

〈比較例J〉 実施例1において、反応終了後ジエチルエーテル層の分
離をせずに、ジエチルエーテルを含む酸水溶液からSi
n、 、5i2H,を蒸留分離した以外は、実施例1と
同様忙行なった。
<Comparative Example J> In Example 1, Si was removed from an acid aqueous solution containing diethyl ether without separating the diethyl ether layer after the reaction was completed.
The procedure was carried out in the same manner as in Example 1, except that n, , 5i2H, was separated by distillation.

〈比較例2〉 実施例Jにおいて、ジエチルエーテルを用いずに反応を
行ない、反応終了後80℃にて加熱処理した以外は実施
例】と同様に行なった。
<Comparative Example 2> The same procedure as in Example J was carried out except that the reaction was carried out without using diethyl ether and the reaction was heated at 80° C. after the reaction was completed.

結果を第1表に示す。The results are shown in Table 1.

Claims (5)

【特許請求の範囲】[Claims] (1)ケイ素を含む合金と酸水溶液とを反応せしめて一
般式S in H2n+2(nは1以上の正の整数)で
表わされる水素化ケイ素を製造する方法において、生成
する水素化ケイ素を溶解でき、かつ該酸水溶液との二層
分離が可能な少なくとも一種以上の溶媒を共存させて上
記反応を行ない、更に反応終了後に生成水素化ケイ素を
溶解せる溶媒層と核酸水溶液層とを機械的に分離し該溶
媒層を蒸留して水素化ケイ素を得る工程を含む。 ことを特徴とする水素化ケイ素の製造方法。
(1) In a method for producing silicon hydride represented by the general formula S in H2n+2 (n is a positive integer of 1 or more) by reacting an alloy containing silicon with an acid aqueous solution, the produced silicon hydride cannot be dissolved. , and carrying out the above reaction in the coexistence of at least one or more solvents capable of two-layer separation from the acid aqueous solution, and further mechanically separating the solvent layer in which the produced silicon hydride can be dissolved and the nucleic acid aqueous solution layer after the reaction is completed. and distilling the solvent layer to obtain silicon hydride. A method for producing silicon hydride, characterized by:
(2)該ケイ素合金がマグネシウム及びケイ素を含む合
金であることを特徴とする特許請求の範囲第(])項に
記載の方法。
(2) The method according to claim 1, wherein the silicon alloy is an alloy containing magnesium and silicon.
(3)酸水溶液がハロゲン化水素酸、硫酸、リン酸、有
機酸の水溶液である特許請求の範囲第(1)項に記載の
方法。
(3) The method according to claim (1), wherein the acid aqueous solution is an aqueous solution of hydrohalic acid, sulfuric acid, phosphoric acid, or organic acid.
(4)溶媒が単独又は二種以上の混合物の状態で一60
℃乃至100℃の沸点範囲を有する特許請求の範囲第(
1)項に記載の方法。
(4) 160 in the form of a single solvent or a mixture of two or more
Claim No. 1 having a boiling point range of 100°C to 100°C
The method described in section 1).
(5)溶媒がエーテル化合物、炭化水素、ハロゲン化炭
化水素、水素化ケイ素もしくは有機ケイ素化合物である
特許請求の範囲第(1)項に記載の方法。
(5) The method according to claim (1), wherein the solvent is an ether compound, a hydrocarbon, a halogenated hydrocarbon, a silicon hydride, or an organosilicon compound.
JP59034830A 1983-12-29 1984-02-25 Manufacture of silicon hydride Granted JPS60180910A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59034830A JPS60180910A (en) 1984-02-25 1984-02-25 Manufacture of silicon hydride
US06/686,893 US4610859A (en) 1983-12-29 1984-12-27 Process for producing silicon hydrides
EP84309133A EP0149363A3 (en) 1983-12-29 1984-12-28 Process for producing silicon hydrides
AU37224/84A AU3722484A (en) 1983-12-29 1984-12-28 Producing silicon hydrides
KR1019840008531A KR890001968B1 (en) 1983-12-29 1984-12-29 Process for producing sillicon hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59034830A JPS60180910A (en) 1984-02-25 1984-02-25 Manufacture of silicon hydride

Publications (2)

Publication Number Publication Date
JPS60180910A true JPS60180910A (en) 1985-09-14
JPH0328368B2 JPH0328368B2 (en) 1991-04-18

Family

ID=12425112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59034830A Granted JPS60180910A (en) 1983-12-29 1984-02-25 Manufacture of silicon hydride

Country Status (1)

Country Link
JP (1) JPS60180910A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196734A (en) * 2007-02-09 2008-08-28 Sharp Corp Cooker
JP2011520754A (en) * 2008-05-22 2011-07-21 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Silane production by acid hydrolysis of alloys of silicon and alkaline earth metals or alkaline earth metal silicides.
JP2022501305A (en) * 2018-10-11 2022-01-06 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Process for Producing Liquid Polysilanes and Isomeric Enriched Higher Silanes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196734A (en) * 2007-02-09 2008-08-28 Sharp Corp Cooker
JP2011520754A (en) * 2008-05-22 2011-07-21 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Silane production by acid hydrolysis of alloys of silicon and alkaline earth metals or alkaline earth metal silicides.
JP2022501305A (en) * 2018-10-11 2022-01-06 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Process for Producing Liquid Polysilanes and Isomeric Enriched Higher Silanes

Also Published As

Publication number Publication date
JPH0328368B2 (en) 1991-04-18

Similar Documents

Publication Publication Date Title
JP4465961B2 (en) Method for producing disilicon hexachloride
US4610859A (en) Process for producing silicon hydrides
KR102572540B1 (en) Triphenylgermylsilane and trichlorosilyl-trichlorogermane for the production of germanium-silicon layers, and method for the production thereof from trichlorsilyl-triphenylgermane
JPH0575691B2 (en)
CN112041324B (en) Method for producing halosilane compounds
JP2914781B2 (en) Method for preparing silacycloalkane
JPS6340714A (en) Manufacture of silicon tetrafluoride
JPS60180910A (en) Manufacture of silicon hydride
US7355060B2 (en) Method for producing organosilane
CN109384233B (en) Method for treating silicon polymers
JPH04300206A (en) Purification of silicon chloride
CN109503646B (en) Method for treating high-boiling point polymer as byproduct of polysilicon and organic silicon
JPH0223571B2 (en)
JPS58156522A (en) Preparation of disilane
JPH0480850B2 (en)
JP3419153B2 (en) Method for producing 1,3-dimethoxy-1,1,3,3-tetramethyldisiloxane
JP3582983B2 (en) Purification method of alkylsilanes
TWI726508B (en) Method for reducing the content of boron compounds in a halosilane-containing composition
JP2020503236A (en) Oligosilanes and methods for increasing the purity of oligosilane compounds
JPS59121110A (en) Continuous preparation of silane compound
JP4192031B2 (en) Method for recovering solvent and method for producing hydrogenated organosilane using the same
JPS60264318A (en) Preparation of silicon hydride
CN115974907A (en) Preparation method of electronic-grade tetramethylsilane
JPS639519B2 (en)
JPH034486B2 (en)