JPS6018006A - Monolithic mixer of microwave band - Google Patents

Monolithic mixer of microwave band

Info

Publication number
JPS6018006A
JPS6018006A JP12672783A JP12672783A JPS6018006A JP S6018006 A JPS6018006 A JP S6018006A JP 12672783 A JP12672783 A JP 12672783A JP 12672783 A JP12672783 A JP 12672783A JP S6018006 A JPS6018006 A JP S6018006A
Authority
JP
Japan
Prior art keywords
gate
frequency
fet
band
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12672783A
Other languages
Japanese (ja)
Other versions
JPH0584084B2 (en
Inventor
Kazuhiko Honjo
和彦 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12672783A priority Critical patent/JPS6018006A/en
Publication of JPS6018006A publication Critical patent/JPS6018006A/en
Publication of JPH0584084B2 publication Critical patent/JPH0584084B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/12Transference of modulation from one carrier to another, e.g. frequency-changing by means of semiconductor devices having more than two electrodes
    • H03D7/125Transference of modulation from one carrier to another, e.g. frequency-changing by means of semiconductor devices having more than two electrodes with field effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Networks Using Active Elements (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

PURPOSE:To keep a fixed level of signal conversion gain despite use of a resistance capacity coupling circuit by setting the width of a dual gate FET at the value larger than the width of a single gate FET having a gate electrode connected to its output terminal. CONSTITUTION:The width of a dual gate FET26 is set at kW (k>1) which is (k) times as large as the width W of a single gate FET. Therefore the mutual conductance of the FET26 is set at kgm. While the resistance value of a resistance 20 is set at R/k. Thus the voltage gain AV' of an IF band which is decided by the FET26 and its load impedance is shown by an equation I . The high band cut-off frequency fC' of the equation I is shown by an equation II. As a result, the frequency fC' can be set at the value (k) times as much as the conventional value.

Description

【発明の詳細な説明】 この発明は、衛星放送の受信機等において用いられるマ
イクロ波帯モノリシックミキサに関するものである。近
年12GHz 帯直接衛星放送システムが実現される見
通しとなった。このため各家庭に備える受信機において
も、12GHz 桁信号を1〜2GHz 帯中間周波数
に変換するマイクロ波帯ミキサが必要とされる段階にな
った。このようなマイクロ波帯ミキサは、量産し価格の
低減を図るのにモノリシックIC化することが望ましい
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microwave band monolithic mixer used in satellite broadcasting receivers and the like. In recent years, it is expected that a 12 GHz band direct satellite broadcasting system will be realized. For this reason, a microwave band mixer that converts a 12 GHz signal to a 1 to 2 GHz band intermediate frequency is now required in a receiver installed in each home. It is desirable to form such a microwave band mixer into a monolithic IC in order to mass produce it and reduce the cost.

通常マイクロ波帯モノリックICはQaAs基板上に構
成する。しかし、GaAsの比誘′電率は12.7程度
であるから、GaA3基板上のIGHz における波長
は8.4cm程度ある。したがって、チップ寸法が2〜
3mm角であることが要求されるGaAsマイクロ波帯
モノリシックICでは、IGHz帝無損失整合回路をチ
ップ上に構成するのは極めて難かしい。そこで、GaA
3マイクロ波帯モノリックミキサにおいては1周波数の
高い信号周波数帯および局部発−周波数帯の回路には無
損失整合回路を用い周波数の低いIF周波数帯の回路に
は抵抗回路を用いるのが一般である。ところが、IF周
波数帯回路に抵抗回路を用いた従来のQaAsマイクロ
淵洋ノリシックミキサでは、能動素子のもつ入力容量の
影響で、中間周波数の高域遮断周波数が低く中間周波数
の帯域幅が狭いという欠点があった。
Typically, a microwave band monolithic IC is constructed on a QaAs substrate. However, since the dielectric constant of GaAs is about 12.7, the wavelength at IGHz on the GaA3 substrate is about 8.4 cm. Therefore, the chip size is 2~
In a GaAs microwave band monolithic IC that is required to be 3 mm square, it is extremely difficult to construct an IGHz zero-loss matching circuit on the chip. Therefore, GaA
In a 3-microwave monolithic mixer, it is common to use a lossless matching circuit for the high signal frequency band and the local oscillation frequency band, and a resistor circuit for the low frequency IF frequency band circuit. be. However, in the conventional QaAs micro-Fuchyo Norithic mixer that uses a resistor circuit in the IF frequency band circuit, the high cutoff frequency of the intermediate frequency is low and the bandwidth of the intermediate frequency is narrow due to the input capacitance of the active element. There were drawbacks.

第1図は従来例のQaAsマイクロ波帯モノリシックミ
キサの交流等価回路図である。信号入力端子2とデュア
ルゲー)FET16の第一ゲート7との間には伝送線路
3および6から構成された信号周波数帯無損失整合回路
が設けられ、局部発振周波数入力端子1とデュアルゲー
)FET16の第二ゲート8との間には伝送線路4およ
び5から構成された局部発振周波数帯無損失整合回路が
設けられている。デュアルゲートFET16のドレイン
電極9と並列抵抗10(抵抗値R)を備えたシングルゲ
ートFET17のゲート電極11とは接続され、シング
ルゲートFET17のドレイン電極12には並列抵抗1
3が設けられている。14は出力端子である。デュアル
ゲートFET16のゲート幅とシングルゲートFETI
 7のゲート幅とは等しく共にWである。図中にはシン
グルゲー)FET17のもつ入力容量15(容量値CG
)も示されている。
FIG. 1 is an AC equivalent circuit diagram of a conventional QaAs microwave band monolithic mixer. A signal frequency band lossless matching circuit made up of transmission lines 3 and 6 is provided between the signal input terminal 2 and the first gate 7 of the dual-gauge FET 16, A local oscillation frequency band lossless matching circuit composed of transmission lines 4 and 5 is provided between the second gate 8 and the second gate 8 . The drain electrode 9 of the dual gate FET 16 and the gate electrode 11 of the single gate FET 17 having a parallel resistance 10 (resistance value R) are connected, and the drain electrode 12 of the single gate FET 17 has a parallel resistance 1.
3 is provided. 14 is an output terminal. Gate width of dual gate FET16 and single gate FETI
The gate widths of No. 7 and No. 7 are equal and both are W. In the figure, the input capacitance 15 (capacitance value CG
) are also shown.

第1図のモノリシックミキサの信号変換利得の周波数特
性は主として股間回路に工って決まる。
The frequency characteristics of the signal conversion gain of the monolithic mixer shown in FIG. 1 are mainly determined by the crotch circuit.

すなわち、デュアルゲー)FETI 6とその負荷イン
ピーダンスによって決まるIF’帯での電圧利得(2) 1・=2、□。。
In other words, the voltage gain (2) in the IF' band determined by the dual-gauge) FETI 6 and its load impedance is 1.=2, □. .

で表わされる高域遮断周波数fCより高い周波収帯声 ではAv’d 6d13/オクターブの周波数特性を持
A voice with a frequency convergence higher than the high cutoff frequency fC, expressed by , has a frequency characteristic of Av'd 6d13/octave.

第2図に第1図の従来例のモノリシックミキサの信号変
換特性を示す。本図から、第1図の従来のマイクロ波帯
モノリシックミキサは、IF周波数を尺度とすると衛星
放送帯域11.7〜12.7GHzにおいてはは一6d
B/オクターブの周波数特性を持っており、高域遮断周
波数fcが低く、中間周波数帯域幅が狭いことが分る。
FIG. 2 shows the signal conversion characteristics of the conventional monolithic mixer shown in FIG. From this figure, it can be seen that the conventional microwave band monolithic mixer shown in Fig. 1 has a frequency of -6 d in the satellite broadcasting band 11.7 to 12.7 GHz, using the IF frequency as a scale.
It can be seen that it has a frequency characteristic of B/octave, has a low high cutoff frequency fc, and has a narrow intermediate frequency bandwidth.

本発明の目的は、中間周波数の帯域幅が広いマイクロ波
帯モノリシックミキサの提供にある。
An object of the present invention is to provide a microwave band monolithic mixer having a wide intermediate frequency bandwidth.

本発明によるマイクロ波帯モノリシックミキサの構成は
、第1のゲート電極には信号周波数帯無損失整合回路が
接続してあり第2のゲート電極には局部発振周波数帯無
損失整合回路が接続しであるデュアルゲー)FETと、
このデュアルゲートF” E Tの出力端子にゲート電
極が接続しである一シングルゲー)FETと、前記出力
端子と接地間に接続しである抵抗素子とを備えるマイク
ロ波モノリシックミキサにおいて、前記デュアルゲー)
FETのゲート幅が前記シングルゲートFETのゲート
幅より大きいことを特徴とする。
In the configuration of the microwave band monolithic mixer according to the present invention, a signal frequency band lossless matching circuit is connected to the first gate electrode, and a local oscillation frequency band lossless matching circuit is connected to the second gate electrode. A certain dual game) FET,
In a microwave monolithic mixer comprising a single-gate FET whose gate electrode is connected to the output terminal of the dual-gate F"ET, and a resistive element connected between the output terminal and ground, )
The gate width of the FET is larger than the gate width of the single gate FET.

このような本発明によれば、IF帯に抵抗容量結合回路
を用いても、所定周波数範囲内では信号変換利得が周波
数に依らず一定である。すなわち高域遮断周波数が高く
て中間周波数の帯域幅が広いマイクロ波モノリシックミ
キサが得られる。
According to the present invention, even if a resistor-capacitive coupling circuit is used in the IF band, the signal conversion gain remains constant regardless of the frequency within a predetermined frequency range. In other words, a microwave monolithic mixer with a high high cutoff frequency and a wide intermediate frequency bandwidth can be obtained.

以下本発明を図面を参照して詳述する。The present invention will be described in detail below with reference to the drawings.

第3図は本発明の一実施例の交流等価回路図である。こ
の実施例では、デュアルゲー)FET26のゲート幅は
kwであり(k>1)、シングルゲ−)FETのゲート
幅Wよりk倍広くなっている。
FIG. 3 is an AC equivalent circuit diagram of an embodiment of the present invention. In this embodiment, the gate width of the dual-gate FET 26 is kw (k>1), which is k times wider than the gate width W of the single-gate FET.

このためデュアルゲー)FET26の相互コンダクタン
スはkgm となる。また抵抗20の抵抗値はKに設定
されている。そこでこの実施例では、デュアルゲー)F
ET26とその負荷インピーダンスによって決まるIF
帯での電圧利得A′Vは、と表わせる。(3)式におい
て高域遮断周波数f′Cは。
Therefore, the mutual conductance of the dual gate FET 26 is kgm. Further, the resistance value of the resistor 20 is set to K. Therefore, in this embodiment, dual game)
IF determined by ET26 and its load impedance
The voltage gain A'V in the band can be expressed as follows. In equation (3), the high cutoff frequency f'C is:

し と表わせる。(3)式および(4)式の比較から明らか
なように本実施例においては高域遮断周波数を従来例の
ミキサのに倍にすることができる。
It can be expressed as. As is clear from the comparison of equations (3) and (4), in this embodiment, the high cutoff frequency can be doubled as compared to the conventional mixer.

第4図は第3図の周波数特性図である(ただしに=2と
したとき)。本図に示されたように、工F周波数の尺度
で高域遮断周波数は2倍になっているから、衛星放送帯
11.7〜12.7GHzにおいて、変換利得は周波数
に依らずほぼ一定である。
FIG. 4 is a frequency characteristic diagram of FIG. 3 (when =2 is used). As shown in this figure, the high cutoff frequency is doubled on the scale of the engineering F frequency, so in the satellite broadcast band 11.7 to 12.7 GHz, the conversion gain is almost constant regardless of the frequency. be.

以上述べてきたように5本発明においては、デュアルグ
ー)FETのゲート幅を〃グルゲートFETのゲート幅
のに倍(k>1)にするため。
As described above, in the present invention, the gate width of the dual gate FET is twice the gate width of the dual gate FET (k>1).

段間に抵抗回路を用いても広い周波数帯域にわたって変
換利得を周波数に依らず一定とすることができる。そこ
で1本発明によれば、高域遮断周波数が高く、中間周波
数の帯域幅が広いマイクロ波帯モノリシックミキサが提
供できる。
Even if a resistor circuit is used between the stages, the conversion gain can be made constant regardless of the frequency over a wide frequency band. Therefore, according to the present invention, it is possible to provide a microwave band monolithic mixer having a high high cutoff frequency and a wide intermediate frequency bandwidth.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例のマイクロ波帯モノリシックミキサの交
流等価回路図、@2図は第1図のミキサの周波数特性図
、第3図は本発明の一実施例の交流等価回路図、第4図
は第3図の実施例の周波数の特性図である。 3.4,5,6・・・・・・伝送線路。 茅1回 茅2圀
Figure 1 is an AC equivalent circuit diagram of a conventional microwave band monolithic mixer, Figure 2 is a frequency characteristic diagram of the mixer in Figure 1, Figure 3 is an AC equivalent circuit diagram of an embodiment of the present invention, and Figure 4 is an AC equivalent circuit diagram of a conventional microwave band monolithic mixer. The figure is a frequency characteristic diagram of the embodiment of FIG. 3. 3.4,5,6...transmission line. 1 x 2 pieces of grass

Claims (1)

【特許請求の範囲】[Claims] 第1のゲート電極には信号周波数帯無損失整合回路が接
続してあり第2のゲート電極には局部発振周波数帯無損
失整合回路が接続しであるデュアルゲートFETと、こ
のデュアルゲートFETの出力端子にゲート電極が接続
しであるシングルゲー)FETと、前記出力端子と接地
間に接続しである抵抗素子とを備えるマイクロ波帯モノ
リシックミキサにおいて、前記デュアルグー)FETの
ゲート幅が前記シングルゲートFETのゲート幅より大
きいことを特徴とするマイクロ波帯モノリシックミキサ
A dual gate FET with a signal frequency band lossless matching circuit connected to the first gate electrode and a local oscillation frequency band lossless matching circuit connected to the second gate electrode, and an output of the dual gate FET. A microwave band monolithic mixer comprising a single gate FET having a gate electrode connected to a terminal thereof and a resistor element connected between the output terminal and ground, wherein the gate width of the dual gate FET is equal to the single gate FET. A microwave band monolithic mixer characterized by a gate width larger than that of an FET.
JP12672783A 1983-07-12 1983-07-12 Monolithic mixer of microwave band Granted JPS6018006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12672783A JPS6018006A (en) 1983-07-12 1983-07-12 Monolithic mixer of microwave band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12672783A JPS6018006A (en) 1983-07-12 1983-07-12 Monolithic mixer of microwave band

Publications (2)

Publication Number Publication Date
JPS6018006A true JPS6018006A (en) 1985-01-30
JPH0584084B2 JPH0584084B2 (en) 1993-11-30

Family

ID=14942372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12672783A Granted JPS6018006A (en) 1983-07-12 1983-07-12 Monolithic mixer of microwave band

Country Status (1)

Country Link
JP (1) JPS6018006A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079506A (en) * 1989-10-02 1992-01-07 Samsung Electronics Co., Ltd. Checking circuit for checking the normal operation of a sensor
JPH04365207A (en) * 1991-06-13 1992-12-17 Matsushita Electric Ind Co Ltd Frequency conversion circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079506A (en) * 1989-10-02 1992-01-07 Samsung Electronics Co., Ltd. Checking circuit for checking the normal operation of a sensor
JPH04365207A (en) * 1991-06-13 1992-12-17 Matsushita Electric Ind Co Ltd Frequency conversion circuit

Also Published As

Publication number Publication date
JPH0584084B2 (en) 1993-11-30

Similar Documents

Publication Publication Date Title
US4751744A (en) Monolithic distributed mixer
JPH08130419A (en) Amplifier and receiver and communication equipment with the amplifier
WO1993016525A1 (en) Low noise wide dynamic range amplifiers
JPS6248925B2 (en)
US3381244A (en) Microwave directional coupler having ohmically joined output ports d.c. isolated from ohmically joined input and terminated ports
JPS6094514A (en) Gain control high frequency signal amplifying circuit
US4989264A (en) Bandwidth limiting circuit with variable bandwidth
US4754234A (en) Broadband distributed amplifier for microwave frequences
JPH04326206A (en) Power amplifier
JPS6018006A (en) Monolithic mixer of microwave band
US4491809A (en) Matching circuit for a pre-amplifier of SHF band television signal receiver
US5065117A (en) Microwave circuit
US4525680A (en) Microwave/millimeter wave amplifier with RF feedback
Orr A stable 2-26.5 GHz two-stage dual-gate distributed MMIC amplifier
Yishay et al. A millimeter-wave SiGe power amplifier with highly selective image reject filter
US3402361A (en) Integrated microwave signal amplifier circuit
Van Waasen et al. Development of a low-impedance traveling wave amplifier based on InAlAs/InGaAs/InP-HFET for 20 Gb/s optoelectronic receivers
Sugiura et al. 12 GHz-Band GaAs Dual-Gate MESFET Monolithic Mixers
US3179892A (en) Self-oscillating diode down-converter
JPH0315384B2 (en)
Adams et al. Filtering, frequency multiplexing, and other microwave applications with inverted-common-collector transistor circuits
US2988636A (en) Parametric amplifier antenna
Bayar et al. Miniaturised L-band MIC LNA design
JPH0341806A (en) Fet mixer circuit
Lane The comparative performance of FET and bipolar transistors at VHF