JPS60179130A - Granulation process and device - Google Patents

Granulation process and device

Info

Publication number
JPS60179130A
JPS60179130A JP3497184A JP3497184A JPS60179130A JP S60179130 A JPS60179130 A JP S60179130A JP 3497184 A JP3497184 A JP 3497184A JP 3497184 A JP3497184 A JP 3497184A JP S60179130 A JPS60179130 A JP S60179130A
Authority
JP
Japan
Prior art keywords
rotor
impact
stirring
granulation
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3497184A
Other languages
Japanese (ja)
Other versions
JPS6327050B2 (en
Inventor
Shinji Moriya
守屋 信治
Koichi Kimura
公一 木村
Shintaro Tokunaga
徳永 真太郎
Takahiro Shiomi
塩見 隆弘
Tatsumi Kitagawa
北川 辰美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Paudal Co Ltd
Original Assignee
Fuji Paudal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Paudal Co Ltd filed Critical Fuji Paudal Co Ltd
Priority to JP3497184A priority Critical patent/JPS60179130A/en
Publication of JPS60179130A publication Critical patent/JPS60179130A/en
Publication of JPS6327050B2 publication Critical patent/JPS6327050B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce granules having specified grain size with high yield by providing a cage-shaped stirring rotor arranged concentrically with a housing vessel and an impact rotor to the inside of the stirring rotor, in a cylindrical vessel, and repeating mixing, stirring, granulation, crushing, and classification. CONSTITUTION:A charging port 4 of raw material and a discharging port 6 are provided to a cylindrical vessel 1 having a horizontal axial line with one end closed with an end plate 2 and another end closed with a cover plate 3. Further, a cage-shaped stirring rotor 10 arranged concentrically with the body 1 is provided in the body 1, and an impact rotor 11 having an axial line held horizontally is provided to the inside of the rotor 10. Plural numbers of stirring element 14 inscribed to an internal cylindrical peripheral surface of the body 1 are provided protrudingly to the external periphery of the rotor 10, and plural numbers of impactor 18 and plural pins extending toward outside from the impactors 18, are provided to the external periphery of the rotor 11 protrudingly. The rotors 10, 11 are revolved with respectively necessary number of revolution. With this device, granules, particularly having 0.7-0.1mm. grain size are produced with high yield by repeating mixing, stirring, granulation, crushing, and classification.

Description

【発明の詳細な説明】 この発明は、一種または数種の粒体を混合したのち、水
またはバインダ溶液を加えることによシ粒度の揃った細
かい顆粒を製造する湿式造粒方法とその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wet granulation method and apparatus for producing fine granules with uniform particle size by mixing one or more types of granules and then adding water or a binder solution. .

従来のこの種の顆粒湿式造粒方法として、材料溶液を噴
庭乾燥して造粒する噴霧造粒法、多孔板上で粒体を流動
させ々から加湿し成長させて乾燥し、顆粒とする流動層
造粒法、加水混練された粒体を破砕造粒機によシ解砕し
て顆粒を作り、乾燥後篩分けする破砕造粒法、高速で回
転する回転羽根を有する器体内に粉体を投入混合し、加
液して顆粒とする攪拌造粒法等が知られているが、何れ
も顆粒の粒度分布のバラツキが大きく、希望する粒径の
歩留りが50%前後、又はそれ以下しか得られず、きわ
めて非能率的であって、粒子径の均一化が著しく困難で
あるという欠点があった。
Conventional wet granulation methods of this type include the spray granulation method, in which the material solution is dried in a jet garden and granulated, and the granules are flowed on a perforated plate, then humidified, grown, and dried to form granules. Fluidized bed granulation method, crushing granulation method in which granules that have been mixed with water are crushed by a crushing granulator to create granules, dried and then sieved; Agitation granulation methods are known, in which particles are added and mixed, and a liquid is added to form granules, but in either case, the particle size distribution of the granules varies widely, and the yield of the desired particle size is around 50% or less. However, it is extremely inefficient, and it is extremely difficult to make the particle size uniform.

この発明は以上のような湿式造粒方法において、特に0
.7助(24メツシユ)〜0.1吠(145メツシユ)
程度の直径の顆粒を歩留りよく生産することができ、か
つ二種以上の粉体を混合する場合において、きわめて高
能率に混合したのちこれを造粒することのできる造粒方
法とその装置を提供することを目的とするものである。
This invention is particularly applicable to the wet granulation method as described above.
.. 7 assistants (24 meals) ~ 0.1 bark (145 meals)
To provide a granulation method and device that can produce granules with a diameter of about 100 to 100 cm with a good yield, and can granulate the mixture after mixing with extremely high efficiency when two or more types of powder are mixed. The purpose is to

この発明の造粒方法は、水平軸線のまわシを回転する粉
体流の上方より水またはバインダ溶液を供給して粉・液
の均一分散相を作り、この分散相で成長する混合粉体を
一前記の回転粉体流の内側中央または偏心位置で高速回
転する衝撃体の作用で解砕して分離し、或いは衝撃体の
作用で飛ばして他の粉体との結合をはかり所要粒径の細
粒とする一方、前記衝撃体より少し外側に延びる衝撃体
と一体の複数のピンによシ、衝撃体の回転域を含む所定
空間へ粉体が過密に侵入するのを制限して、衝撃体によ
る混合粉体の分離および結合作用を促進し、またこの衝
撃体の分離および結合作用の一部を前記ピンに分担させ
るようにして、造粒効率をさらに高めるようにしたこと
を特徴とするものである。
In the granulation method of the present invention, water or a binder solution is supplied from above the powder flow rotating through a rotary wheel on a horizontal axis to create a uniformly dispersed phase of powder and liquid, and the mixed powder that grows in this dispersed phase is First, the powder is crushed and separated by the action of an impacting body rotating at high speed at the center or eccentric position inside the rotating powder flow, or the powder is blown off by the action of the impacting body and combined with other powder to obtain the required particle size. While the particles are made fine, a plurality of pins integrated with the impacting body extending slightly outward from the impacting body restrict the overcrowding of the powder into a predetermined space including the rotation range of the impacting body, thereby reducing the impact. The granulation efficiency is further improved by promoting the separation and binding action of the mixed powder by the impacting body, and by having the pins share a part of the separation and binding action of the impacting body. It is something.

また・この発明の造粒装置は、上記の造粒方法の実施に
直接使用される装置であって、軸線を水平にし一端を端
板で、他端を蓋板でそれぞれ閉塞した円筒状器体に材料
投入口と排出口とを設け、該器体内に、器体と同心に配
置した管形の攪拌ロータと、攪拌ロータのさらに内側に
軸線を水平にして配置した衝撃ロータとを設け\攪拌ロ
ータの外周に、器体の円筒形内周面に近接する複数の攪
拌素子を突設するとともに、衝撃ロータの外周に複数の
@器体と該衝撃体より外側に延びる複数のピンとを突設
し、攪拌ロータと&L”ロータとをそれぞれ所要の回転
速度で回転させる駆動手段を設けてなり、材料投入口よ
り円筒状器体内に投入される粉体材料を前記攪拌ロータ
で器体内壁に沿つて回転させる一方、衝撃ロータの衝撃
体で加液混合粉体の分離および結合をはかり、また衝撃
ロータのピンによシ衝撃体の回転域へ粉体が過密に侵入
するのを制限して、衝撃体の分離および結合作用を促進
するとともに、ピンにも分離および結合作用の一部を分
担させるようにしたことを特徴とするものである。
In addition, the granulation device of the present invention is a device that is used directly to carry out the above granulation method, and has a cylindrical container whose axis is horizontal and whose one end is closed with an end plate and the other end with a cover plate. A material input port and a material discharge port are provided in the container, and a tubular stirring rotor is arranged concentrically with the container body, and an impact rotor is arranged with its axis horizontally inside the stirring rotor. A plurality of stirring elements protruding from the outer periphery of the rotor are provided close to the cylindrical inner circumferential surface of the container body, and a plurality of @ container bodies and a plurality of pins extending outward from the impactor body are provided protruding from the outer periphery of the impact rotor. A driving means is provided for rotating the stirring rotor and the &L'' rotor at respective required rotational speeds, and the stirring rotor moves the powder material introduced into the cylindrical container from the material input port along the inner wall of the container. At the same time, the impact body of the impact rotor separates and combines the liquid-added mixed powder, and the pin of the impact rotor restricts the powder from entering the rotation range of the impact body in a dense manner. The present invention is characterized in that it promotes the separation and connection functions of the impact bodies, and also allows the pins to share a part of the separation and connection functions.

実施例について説明すれば、第1図、第2図において、
符号1は軸線を水平に配し、一端が端板2で\他端が蓋
板3でそれぞれ閉塞された円筒状器体である。該器体1
の上部に材料投入口4が\下部に蓋5で開閉される製品
排出口6が設けられる。蓋板3は、器体l内の洗浄、清
掃等のために器体1に着脱を可能罠することが望ましい
0材料投入口4には第2図示のように、造粒作業中、該
投入口4を閉塞する蓋7を設けるとよい。8は材料投入
用のホッパ、9は排出口6の蓋5を図示しない開閉機構
で開閉するだめの連結杆である。
To explain the embodiment, in FIGS. 1 and 2,
Reference numeral 1 denotes a cylindrical vessel whose axis is horizontal and whose one end is closed by an end plate 2 and the other end is closed by a lid plate 3. The vessel 1
A material input port 4 is provided at the top of the machine, and a product discharge port 6, which is opened and closed by a lid 5, is provided at the bottom. It is preferable that the lid plate 3 is removably attached to the container body 1 for washing and cleaning the interior of the container l.As shown in the second diagram, the material input port 4 is provided with a material input port 4 for the purpose of washing, cleaning, etc. It is preferable to provide a lid 7 that closes the mouth 4. 8 is a hopper for feeding materials, and 9 is a connecting rod for opening and closing the lid 5 of the discharge port 6 by an opening/closing mechanism (not shown).

器体1内に、攪拌素子14をもつロータ10と、中心軸
部に衝撃ロータ11とがそれぞれ可回転に設けられる。
A rotor 10 having a stirring element 14 and an impact rotor 11 are rotatably provided in the container body 1, respectively.

攪拌ロータ10は第3図にその詳細を示すように、第1
駆動軸12の軸端に設けた置版13の端面に支持される
管形に形成され、その外周に器体lの円筒形内周面に近
接する複数の腕木状攪拌素子14を突設してなるもので
ある。
As shown in detail in FIG. 3, the stirring rotor 10 has a first
It is formed into a tubular shape supported by the end face of a plate 13 provided at the shaft end of the drive shaft 12, and a plurality of arm-like stirring elements 14 protruding from the outer periphery of the plate 13 are protruding from the cylindrical inner circumferential surface of the vessel l. That's what happens.

第3図の場合、攪拌ロータ10の矢印A方向の回転にお
いて器体1内の材料を器体1の軸方向の両端部から中央
部に向って矢印a 、 a’軸方向に移動させる如く攪
拌素子14の方向に攪拌ロータ10の軸線に対する適度
の傾きを与える。さらに攪拌ロータ10の両端に配した
攪拌素子14には、端板2及び蓋板3に1寸着した粉体
を、攪拌ロータlOの回転によシ掻き落とすスクレーパ
15が形成される。第1駆動軸12ii、軸受16を介
して端板2に支持フレームで可回転に支持されたチェン
駆動機構(チェンホイル17のみを図示した)に−より
例えば円筒状容器の直径205闘φの場合、1〇−5O
R,P、 M、の速度で回転させる。
In the case of FIG. 3, when the stirring rotor 10 rotates in the direction of arrow A, the material in the container 1 is stirred so as to move from both axial ends of the container 1 toward the center in the axial directions of arrows a and a'. An appropriate inclination is given to the direction of the element 14 with respect to the axis of the stirring rotor 10. Further, the stirring elements 14 disposed at both ends of the stirring rotor 10 are formed with scrapers 15 that scrape off the powder that has adhered to the end plate 2 and the lid plate 3 by one inch through the rotation of the stirring rotor 10. For example, in the case of a cylindrical container having a diameter of 205 mm, a first drive shaft 12ii is rotatably supported by a support frame on the end plate 2 via a bearing 16. , 10-5O
Rotate at speeds R, P, M.

衝撃ロータ11には放射状に等配置に、その一端から他
端に達する細長い板状体からなる衝撃体18が突設され
る。また、衝撃体18とは別に、各衝撃体18.18間
に、衝撃体18よシ少し外方に延びるビン24が複数突
設される。例えば円筒状容器1の直径205賜φの場合
、衝撃ロータ11の直径は58簾、衝撃体18の高さは
9Mであって、この衝撃体18は蓋板3のフレーム部分
に軸受19で可回転に支持された第2駆動軸20により
3000〜8000 R,P、M、の速度で第2図矢印
Bに示す如く高速駆動される。21は衝撃ロータ駆動用
モータであって、コンバータ(周波数変換機)を使用し
てモータの回転数を変速する。
Impact bodies 18, which are elongated plate-shaped bodies extending from one end to the other end, are protrudingly provided on the impact rotor 11 at equal radial locations. In addition to the impact bodies 18, a plurality of bottles 24 are protruded between each of the impact bodies 18, 18 and extend slightly outward from the impact bodies 18. For example, if the diameter of the cylindrical container 1 is 205 mm, the diameter of the impact rotor 11 is 58 mm, and the height of the impact body 18 is 9 m. The second drive shaft 20, which is rotatably supported, is driven at a high speed of 3,000 to 8,000 R, P, M, as shown by arrow B in FIG. Reference numeral 21 denotes an impact rotor driving motor, and the rotation speed of the motor is changed using a converter (frequency converter).

図示しない変速装置等を内蔵するもの、或いは速度可変
モータを使用してもよい。
A device with a built-in transmission device (not shown) or a variable speed motor may also be used.

衝撃ロータエ1の衝撃体18を第4図示の如く構成する
と、攪拌ロータ10の回転に関連して、該衝撃ロータ1
1の矢印B方向の回転により、器体1内の材料を矢印b
Xまたはb′の一方向、または矢印b −b’に示す如
く中央部から器体工の両側に向って軸方向に移動させる
ことができる。
When the impact body 18 of the impact rotor 1 is constructed as shown in the fourth figure, the impact rotor 1
1 in the direction of arrow B, the material inside the vessel body 1 is rotated in the direction of arrow B.
It can be moved in one direction of X or b', or axially from the center to both sides of the bodywork as shown by arrows b-b'.

また第5図(a)に示す如く、衝撃体18aを、衝撃ロ
ータ11の長さを複数に分割した長さの板状体とするこ
ともでき、この場合も同様に攪拌ロータ10の回転に関
連して、矢印すまたはb′の一方向、或いはb −b’
の二方向に材料を移動させつる。
Further, as shown in FIG. 5(a), the impact body 18a may be a plate-shaped body having a length obtained by dividing the length of the impact rotor 11 into a plurality of parts. Relatedly, one direction of arrow s or b', or b - b'
The material is moved in two directions.

第5図(b)は、衝撃体18’bが、衝撃ロータ11の
軸線に対して傾けられた場合を示す。その傾きによりb
方向に材料を移動させ、或いは逆の傾きとしてbとは反
対の方向に移動させることができさらに中央部から左右
対称に傾ければ、中央部から両側に向って移動させつる
FIG. 5(b) shows a case where the impact body 18'b is tilted with respect to the axis of the impact rotor 11. Due to its slope, b
The material can be moved in the direction b, or the material can be moved in the direction opposite to b as a reverse inclination.Furthermore, if the material is tilted symmetrically from the center, it can be moved from the center to both sides.

第5図(C)は衝撃体18Cの長さを短くしたもので、
この場合は左右対称にらせん状配置Sとし、衝撃ロータ
11のB矢印方向の回転で、器体1内の材料をb −b
’の二方向に移動させるようにしたものを示している。
Figure 5 (C) shows the impact body 18C with a shorter length.
In this case, the left-right symmetrical spiral arrangement S is used, and by rotating the impact rotor 11 in the direction of the arrow B, the material inside the vessel body 1 is moved b - b.
' The figure shows a model that moves in two directions.

衝撃ロータ11のピン24は、衝撃体18の配置匠対応
させて、第1図、第2図、第4図、第5図(a)、(c
)に示す如く、衝撃ロータ11に対して十字状に放射す
るような配置としたり、第5図(b)に示す如く、衝グ
)70−タ11の一直径方回へのみ放射するように配置
することができる。
The pins 24 of the impact rotor 11 are arranged in accordance with the arrangement of the impact body 18 in FIGS.
) as shown in FIG. 5(b), or as shown in FIG. can be placed.

ビン24の一部周域には、第6図に示す如くナイフェツ
ジ25が形成される。このナイフェツジ25の向きは、
前述の材料の移動方向すまたはb′と対向するように、
ピン24の突設場所に応じて定められる。
A knife ridge 25 is formed in a part of the circumference of the bottle 24, as shown in FIG. The orientation of this knife 25 is
so as to be opposite to the direction of movement of the aforementioned material s or b';
It is determined according to the protruding location of the pin 24.

第1図、第2図において、22は水またはその他の液体
を粉体に加液するためのスプレーであつて、水等を加液
するに当シ噴霧するもの、或いは大量に急激に加液する
もの等任意のものを使用す・ることかできる。23は器
体1を支持するフレームである。
In Figures 1 and 2, 22 is a spray for adding water or other liquid to powder, and is a spray that is sprayed at the same time as adding water or the like, or a spray that is used to add a large amount of liquid rapidly. You can use or do anything you like. 23 is a frame that supports the container body 1.

第7図!第8図は、この発明の第2の実施例を示す図で
あって、この場合、衝撃ロータ11の回転軸線は器体1
及び攪拌ロータ1oの軸線より下方に偏心させ、水平に
設けられている。第1図。
Figure 7! FIG. 8 is a diagram showing a second embodiment of the present invention, in which the rotational axis of the impact rotor 11 is
The stirring rotor 1o is eccentrically located below the axis of the stirring rotor 1o and is provided horizontally. Figure 1.

第2図と同一の部分には同一の符号を付しである。The same parts as in FIG. 2 are given the same reference numerals.

このように衝撃ロータ11を偏心させて設けると、衝撃
ロータ11による強制流動を強化する場合、或いは1回
の処理量が少ない場合等に効果的である。また衝撃ロー
タ11の衝撃体18による過大粒子の解砕効果も大きく
なる。
Providing the impact rotor 11 eccentrically in this manner is effective when the forced flow by the impact rotor 11 is strengthened, or when the amount of processing at one time is small. Further, the effect of crushing oversized particles by the impact body 18 of the impact rotor 11 is also increased.

第9図は、この発明の第3の実施例を示す図であって、
材料投入口4、排出口6、その開閉蓋5が蓋体3に設け
られ、攪拌ロータ10.衝撃ロータ11の各駆動軸12
.20ijf:二重軸として同心に互に異なる回転速度
で回転しつるようにされており、この駆動機構を端板2
側に設けた場合が示されている。捷だ攪拌ロータ1oの
攪拌素子14aは、リボン状の板材をらせん状にひねっ
て器体1の円筒内周面に近接させ、器体1内の材料が矢
印aに示す如く一方向に移動するようにされている。
FIG. 9 is a diagram showing a third embodiment of the present invention,
A material input port 4, a discharge port 6, and an opening/closing lid 5 are provided on the lid body 3, and a stirring rotor 10. Each drive shaft 12 of the impact rotor 11
.. 20ijf: It has a double shaft that rotates concentrically at different rotational speeds, and this drive mechanism is connected to the end plate 2.
The case where it is installed on the side is shown. The stirring element 14a of the shunted stirring rotor 1o is a ribbon-shaped plate material that is spirally twisted to bring it close to the cylindrical inner circumferential surface of the vessel body 1, so that the material inside the vessel body 1 moves in one direction as shown by arrow a. It is like that.

衝撃ロータ11も、その衝撃体18cを、材料が矢印す
に示す一方向に移動するようらせん状配置に突設させで
ある。
The impact rotor 11 also has its impact body 18c projecting in a spiral arrangement so that the material moves in one direction as shown by the arrow.

第10図、第11図は、前記第9図に示す実施例の変形
例であって、この場合は衝撃体18cを左右対称にらせ
ん状配置とし、衝撃ロータ1工のB矢印方向の回転で、
器体1内の材料をb −b’の二方向に移動させるよう
にしたものを示している。
10 and 11 show a modification of the embodiment shown in FIG. 9. In this case, the impact body 18c is arranged symmetrically in a spiral shape, and the impact rotor 1 is rotated in the direction of the arrow B. ,
This shows an arrangement in which the material inside the vessel 1 is moved in two directions b-b'.

また攪拌素子14aも、左右対称にらせん状にひねって
、材料が矢印a −a’に示すように二方向に移動する
ようにされている。
Further, the stirring element 14a is also twisted symmetrically in a spiral shape so that the material moves in two directions as shown by arrows a-a'.

なお以上の実施例は攪拌ロータ10と衝撃ロータ11と
を互に逆方向に回転させ、その回転速度差を大きくする
場合について示したが、これは同方向に回転させてもよ
く、また衝撃ロータ11の衝撃体の各種、例えば第1図
と第5図に示される18+18a、18b+18cは既
述の構成のほか、ハンマーヘッド状のものであってもよ
い。
In addition, although the above embodiment has shown the case where the stirring rotor 10 and the impact rotor 11 are rotated in opposite directions to increase the difference in rotational speed, they may also be rotated in the same direction. Various types of impact bodies 11, for example 18+18a and 18b+18c shown in FIGS. 1 and 5, may have a hammerhead shape in addition to the configuration described above.

次に、以上の構成よりなる装置を用いて行なう、この発
明の造粒方法の一実施例について説明する。
Next, an embodiment of the granulation method of the present invention, which is carried out using the apparatus configured as described above, will be described.

攪拌ロータ10と衝撃ロータ11をそれぞれ低速と高速
で駆動するとともて1数種の粉体または一種の粉体を器
体1内に投入し、必要があれば適量のバインダを投入し
て数十秒〜数分間運転することにより、粉体とバインダ
或いは数種の粉体が、衝撃ロータ11の衝撃体と、攪拌
ロータ1oの攪拌素子とにより器体1の軸方向に移動さ
せられながら効率よく混合、攪拌されて均一に分散させ
られる。
The stirring rotor 10 and the impact rotor 11 are driven at low and high speeds, respectively, and one or more types of powder or one type of powder is charged into the container 1, and if necessary, an appropriate amount of binder is added and several dozen By operating for seconds to several minutes, the powder and binder or several types of powder are efficiently moved in the axial direction of the container 1 by the impact body of the impact rotor 11 and the stirring element of the stirring rotor 1o. Mix and stir to ensure uniform distribution.

そこで水または液を、滴下するか捷たはスプレー22に
より噴霧状態で所要量を供給して、その状態で各ロータ
の回転を続行することにより、既述の粒度範囲内の細粒
を効率よく製造することができる。
Therefore, by supplying the required amount of water or liquid in a spray state by dripping, breaking, or spraying 22, and continuing the rotation of each rotor in this state, fine particles within the particle size range described above can be efficiently produced. can be manufactured.

器体1内でよく混合された粉体に上記の如く水等を供給
すると、先ず液を核として粉体が凝集し成長して湿潤し
たもぐさ状の粉・液混合物が形成される。この混合物は
第2図、第8図、第11図に示す如く攪拌ロータ10の
A矢印方向の回転で攪拌素子により下方から上方に持ち
上げられてから衝撃ロータ11に向って落下する。すな
わち前記混合物は高速回転する衝撃体に衝突して破砕さ
れながら遠心的に移動し、再び攪拌素子により持ち上げ
られて落下し衝撃η−夕11に向って衝撃体に衝突させ
られる。この間も器体1内の材料は各ロータ10111
の回転により、その攪拌素子と衝撃体の配置によシ各ロ
ータ10,11の回転速度に見合った速さで器体1内を
軸方向に移動させられ、混合攪拌作用を受ける。こうし
た過程において、微粉末は、液により湿潤した混合物と
しである大きさに成長し、過大に成長した混合物はそれ
自体の重力で衝撃ロータ11の上方から落下してその衝
撃体に衝突し、小さな粒は、高速回転する衝撃体の風圧
によりはね飛ばされて直接該衝撃体に衝突しない。
When water or the like is supplied to the well-mixed powder in the vessel 1 as described above, the powder first aggregates and grows using the liquid as a core, forming a moist moxa-like powder/liquid mixture. As shown in FIGS. 2, 8, and 11, this mixture is lifted from below to above by the stirring element as the stirring rotor 10 rotates in the direction of arrow A, and then falls toward the impact rotor 11. That is, the mixture collides with a high-speed rotating impactor, is crushed, and moves centrifugally, is again lifted up by the stirring element and falls, and is caused to collide with the impactor toward the impact η-11. During this time, the material inside the vessel body 1 is
Due to the rotation of the stirring element and the impact body, the stirring element and the impact body are moved in the axial direction within the container body 1 at a speed commensurate with the rotational speed of each rotor 10, 11, thereby receiving a mixing and stirring action. In this process, the fine powder grows to a certain size as the mixture moistened with the liquid, and the overgrown mixture falls from above the impact rotor 11 under its own gravity and collides with the impact body, causing small The particles are blown away by the wind pressure of the impactor rotating at high speed and do not directly collide with the impactor.

以上のように、攪拌ロータ10の回転は、器体1の下部
に集まる粉体および湿潤した混合物を攪拌し、その湿潤
の度合いに応じて成長させるとともに、これらを器体1
の上方に移動させて衝撃ロータ11に向かって落下させ
る。
As described above, the rotation of the stirring rotor 10 stirs the powder and wet mixture that collects at the bottom of the container 1, causes them to grow depending on the degree of wetness, and also causes them to move into the container 1.
and drop it toward the impact rotor 11.

一方、衝撃ロータ11の回転は、器体1内の上方から落
下する混合物を衝撃体によって解砕して所要径の顆粒を
形成させる作用を行なう。また、所要径以下の小さな顆
粒は衝撃体の回転により生ずる風圧により吹き飛ばされ
るので、解砕されるのを回避され、これにより粒子の分
級が行なわれる。
On the other hand, the rotation of the impact rotor 11 has the effect of crushing the mixture falling from above in the container body 1 with the impact body to form granules of a desired diameter. In addition, small granules with a required diameter or less are blown away by the wind pressure generated by the rotation of the impactor, so they are prevented from being crushed, and the particles are thereby classified.

上記の造粒過程において、衝撃ロータ11に突 ・設さ
れたビン24の回転は、衝撃体の回転域を含む所定空間
へ粉体あるいは湿潤した混合物が過密に侵入するのをあ
る程度制限するので、衝撃体による如上の解砕および顆
粒形成作用が大幅に促進される。また、ピン24自体に
も、衝撃体と同様の解砕および顆粒形成作用があるので
、その作用の一部をビン24が分担することになり、一
層効果的に造粒が行なわれる。
In the above granulation process, the rotation of the bottle 24 protruding from the impact rotor 11 restricts to some extent the intrusion of powder or wet mixture into a predetermined space including the rotation area of the impact body. The above-mentioned disintegration and granule-forming action by the impactor is greatly promoted. Further, since the pin 24 itself has the same crushing and granule forming function as the impactor, part of the function is shared by the bottle 24, and granulation is performed more effectively.

このような混合、攪拌、造粒、解砕、分級作用が繰り返
されることにより、器体内の粉体は、その品質、物性、
バインダの物性、加液量等により異なるが、衝撃ロータ
の回転速度に一応見合った大きさの顆粒として造粒され
るのである。
By repeating such mixing, stirring, granulation, crushing, and classification actions, the powder inside the container improves its quality, physical properties,
Although it varies depending on the physical properties of the binder, the amount of liquid added, etc., it is granulated into granules of a size commensurate with the rotational speed of the impact rotor.

本発明の造粒方法と装置は上記の作用により目的の粒度
に対する過大顆粒、過小顆粒の発生がきわめて少なく、
所望する粒度範囲内の細粒を、短時間にきわめて効率よ
く造粒することができる。
Due to the above-mentioned effects, the granulation method and apparatus of the present invention extremely rarely produce granules that are too large or too small for the desired particle size.
Fine particles within a desired particle size range can be granulated very efficiently in a short period of time.

なお、衝撃ロータの回転速度、或いは衝撃ロータと攪拌
ロータとの相対回転速度を適宜選択することにより、ま
た粉体の物性、バインダの種類、液の種類、混合量等を
適宜定めることにより、任意の粒度範囲の顆粒を得るこ
とができる。
By appropriately selecting the rotational speed of the impact rotor or the relative rotational speed between the impact rotor and the stirring rotor, and by appropriately determining the physical properties of the powder, the type of binder, the type of liquid, the amount of mixture, etc. It is possible to obtain granules with a particle size range of .

また、同一材料でも衝撃ロータの回転数および運転時間
を変化させることによって、顆粒の粒子径、その歩留り
、嵩密度を、希望する値に近づけることができる。
Further, even if the material is the same, by changing the rotation speed and operating time of the impact rotor, the particle size, yield, and bulk density of the granules can be brought close to desired values.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の実施例の縦断正面図、第2図は横断側面
図、第3図は攪拌ロータの正面図、第4図は@撃ロータ
の斜面図、第5図(a) 、 (b) 、 (0)はそ
れぞれ衝撃ロータの変形例の斜面図、第6図はビンの部
分拡大斜面図、第7図は第2の実施例の縦゛断正面図、
第8図は横断側面図、第9図は第3の実施例の縦断正面
図、第10図は第4の実施例の縦断正面図、第11図は
横断側面図である。 1・・・器体、2・・・端板、3・・・蓋板、4・・・
材料投入口、5・・・蓋、6・・・排出口、10・・・
攪拌ロータ、11・・・衝撃ロータ、12120・・・
駆動軸、14.14a・・・攪拌素子、18+18a+
18b+18c”’衝撃体、22・・・スプレー、24
・・・ビン、25・・・ナイフエッジ 第5図 (α)(b) 第6図 第7図 (C) 第8図
Fig. 1 is a longitudinal sectional front view of the first embodiment, Fig. 2 is a transverse side view, Fig. 3 is a front view of the stirring rotor, Fig. 4 is a slope view of the percussion rotor, Fig. 5 (a), (b) and (0) are respectively slope views of modified examples of the impact rotor, FIG. 6 is a partially enlarged slope view of the bottle, and FIG. 7 is a longitudinal sectional front view of the second embodiment.
8 is a cross-sectional side view, FIG. 9 is a vertical cross-sectional front view of the third embodiment, FIG. 10 is a vertical cross-sectional front view of the fourth embodiment, and FIG. 11 is a cross-sectional side view. 1... Vessel body, 2... End plate, 3... Lid plate, 4...
Material input port, 5...lid, 6...discharge port, 10...
Stirring rotor, 11...Impact rotor, 12120...
Drive shaft, 14.14a... Stirring element, 18+18a+
18b+18c'' Impact body, 22...Spray, 24
...Bin, 25...Knife edge Fig. 5 (α) (b) Fig. 6 Fig. 7 (C) Fig. 8

Claims (1)

【特許請求の範囲】 (1)水平軸線のまわシを回転する粉体流の上方よりバ
インダ液を供給して粉・液の均一分散相を作シ、この分
散相で成長する混合粉体を、前記粉体流の内側で高速回
転する衝撃体によシ分離しかつ結合する一方、前記衝撃
体よシ少し外側に延びる衝撃体と一体の複数のビンによ
シ衝撃体回転域を含む所定空間への粉体の侵入を少し制
限して、衝撃体による混合粉体の分離および結合を促進
することを特徴とする造粒方法 (2)軸線を水平にし一端を端板で、他端を蓋板でそれ
ぞれ閉塞した円筒状器体に材料投入口と排出口とを設け
、該器体内に、器体と同心に配置した箱形の攪拌ロータ
と、攪拌ロータのさらに内側に軸線を水平にして配置し
た衝撃ロータとを設け、攪拌ロータの外周に〜器体の円
筒形内1可面に近接する複数の攪拌素子を突設するとと
もに、衝撃ロータの外周に複数の衝撃体と該衝撃体よシ
外側に延びる複数のピンとを突設し、攪拌ロータと衝撃
ロータとをそれぞれ所要の回転速度で回転させる駆動手
段を設けたことを特徴とする造粒装置(3)衡撃ロータ
を、円筒状器体及び攪拌ロータと同心に配置した特許請
求の範囲(2)記載の造粒装置 (4)衝撃ロータの回転軸線を、円筒状器体及び攪拌ロ
ータの軸線位置より偏心させて配置した特許請求の範囲
(2)記載の造粒装置 (5)攪拌ロータの駆動手段を円筒状器体の一端部外側
に、衝撃ロータの駆動手段を円筒状器体の他端部外側に
それぞれ配置した特許請求の範囲(2)記載の造粒装置 (6)衝撃ロータと攪拌ロータとを互に反対方向に回転
させるようにした特許請求の範囲(1)記載の造粒装置 (力 衝撃ロータに突設した衝撃体が、該ロータの一端
から他端まで連続した板状体からなり、該ロータに円周
上等配置に設けられている特許請求の範囲(2)記載の
造粒装置 (8)衝撃ロータに突設した衝撃体が、該ロータの軸方
向に複数個に分割された長さの板状体からなり、衝撃ロ
ータの回転によ)材料を該ロータの軸方向に移動させる
配置で設けられている特許請求の範囲(2)記載の造粒
装置 (9)衝撃ロータに突設した衝撃体が、該ロータの表面
にらせん状配遣で設けられている特許請求の範囲(8)
記載の造粒装置 00)衝撃ロータに突設した衝撃体が、−らせん状方向
に衝撃ロータの軸線に対して傾けられて該ロータ表面に
突設されている特許請求の範囲(7)記載の造粒装置 (]I)heロータの回転により器体内を移動する材料
を、攪拌ロータの回転により反対向きに移動させる如く
攪拌ロータの攪拌素子を傾けた特許請求の範囲(2)記
載の造粒装置 0功衝撃ロータの回転で器体内の材料を器体の軸方向の
中央部から両側に向って移動させる如く衝撃体を配置し
、攪拌ロータの回転でそれとけ反対の向きに材料を移動
させる如く攪拌素子を設けた特許請求の範囲の)記載の
造粒装置 0■ 衝撃ロータの回転で器体内の材料を器体の軸線に
沿って一方向に移動させる如く衝撃体を配置し、攪拌ロ
ータの回転でそれとは反対の向きに材料を移動させる如
く攪拌素子を設けた特許請求の範囲(11)記載の造粒
装置
[Scope of Claims] (1) A binder liquid is supplied from above the powder flow rotating with a rotary wheel on a horizontal axis to create a uniformly dispersed phase of powder and liquid, and the mixed powder that grows in this dispersed phase is , a plurality of bins integral with the impact body extending slightly outward from the impact body are separated and combined by the impact body rotating at high speed inside the powder flow, and a predetermined area including the impact body rotation area is provided. A granulation method characterized by slightly restricting the intrusion of the powder into the space and promoting the separation and combination of the mixed powder by an impactor (2) The axis is horizontal, one end is an end plate, and the other end is A cylindrical vessel body each closed with a lid plate is provided with a material input port and a material discharge port, and inside the vessel body is a box-shaped stirring rotor arranged concentrically with the vessel body, and further inside the stirring rotor, the axis line is set horizontally. A plurality of stirring elements are provided protruding from the outer periphery of the stirring rotor in close proximity to the cylindrical surface of the vessel body, and a plurality of impacting bodies and the impacting bodies are provided on the outer periphery of the stirring rotor. (3) A granulating device characterized by having a plurality of protruding pins extending outwardly and driving means for rotating the stirring rotor and the impact rotor at respective required rotational speeds. A granulation device according to claim (2), which is arranged concentrically with the cylindrical container and the stirring rotor.(4) A patent in which the rotational axis of the impact rotor is eccentric from the axis of the cylindrical container and the stirring rotor. Granulation device (5) according to claim (2) A patent in which the driving means for the stirring rotor is arranged outside one end of the cylindrical container, and the driving means for the impact rotor is arranged outside the other end of the cylindrical container. Granulation device (6) according to claim (2) Granulation device according to claim (1), in which the impact rotor and the stirring rotor are rotated in opposite directions (force protruding from the impact rotor) The granulating device (8) impact according to claim (2), wherein the impact body is a continuous plate-like body from one end of the rotor to the other end, and is provided on the rotor at equal positions on the circumference. The impact body protruding from the rotor is composed of a long plate-like body divided into a plurality of pieces in the axial direction of the rotor, and is arranged so that the material is moved in the axial direction of the rotor by rotation of the impact rotor. A granulating device (9) according to claim (2), wherein the impact body protruding from the impact rotor is provided in a spiral arrangement on the surface of the rotor (8)
Granulation apparatus 00) according to claim (7), wherein the impact body protruding from the impact rotor is tilted in a -helical direction with respect to the axis of the impact rotor and protrudes from the surface of the rotor. Granulation device (I)he Granulation according to claim (2), wherein the stirring element of the stirring rotor is tilted so that the material moving inside the container by the rotation of the rotor is moved in the opposite direction by the rotation of the stirring rotor. The impact body is arranged so that the rotation of the impact rotor moves the material in the container from the center in the axial direction of the container toward both sides, and the rotation of the stirring rotor moves the material in the opposite direction. The granulation device according to claim 0, which is provided with a stirring element, is arranged so that the material inside the container is moved in one direction along the axis of the container by rotation of the impact rotor, A granulation device according to claim (11), wherein a stirring element is provided so that the material is moved in the opposite direction by rotation of the granulator.
JP3497184A 1984-02-24 1984-02-24 Granulation process and device Granted JPS60179130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3497184A JPS60179130A (en) 1984-02-24 1984-02-24 Granulation process and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3497184A JPS60179130A (en) 1984-02-24 1984-02-24 Granulation process and device

Publications (2)

Publication Number Publication Date
JPS60179130A true JPS60179130A (en) 1985-09-13
JPS6327050B2 JPS6327050B2 (en) 1988-06-01

Family

ID=12429022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3497184A Granted JPS60179130A (en) 1984-02-24 1984-02-24 Granulation process and device

Country Status (1)

Country Link
JP (1) JPS60179130A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655701A (en) * 1986-02-19 1987-04-07 Fuji Paudal Kabushiki Kaisha Granulating apparatus
US4897029A (en) * 1986-06-07 1990-01-30 Porzellanfabrik Schirnding Ag Device for preparing a very homogeneous and finely divided fine-ceramics mass
JP2017100103A (en) * 2015-12-04 2017-06-08 トヨタ自動車株式会社 Apparatus and method for producing granulated body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655701A (en) * 1986-02-19 1987-04-07 Fuji Paudal Kabushiki Kaisha Granulating apparatus
US4897029A (en) * 1986-06-07 1990-01-30 Porzellanfabrik Schirnding Ag Device for preparing a very homogeneous and finely divided fine-ceramics mass
JP2017100103A (en) * 2015-12-04 2017-06-08 トヨタ自動車株式会社 Apparatus and method for producing granulated body
CN106955640A (en) * 2015-12-04 2017-07-18 丰田自动车株式会社 Granule manufacturing equipment and method
US10258949B2 (en) 2015-12-04 2019-04-16 Toyota Jidosha Kabushiki Kaisha Granulated body manufacturing apparatus and method
CN106955640B (en) * 2015-12-04 2019-12-03 丰田自动车株式会社 Granule manufacturing equipment and method

Also Published As

Publication number Publication date
JPS6327050B2 (en) 1988-06-01

Similar Documents

Publication Publication Date Title
JP2003010711A (en) Mill
GB2130504A (en) Granulating and coating machine
CN206935293U (en) The continuous powder high efficient mixer of pressure sensitive adhesive production
JPH078816A (en) Crushing and pelletizing machine
US3345683A (en) Inclined-dish granulator and separator
JPS6055175B2 (en) Mixer/granulator
US3397067A (en) Flour product and method of making
JPH0727476A (en) Treatment apparatus of moistened granular material
CN209934541U (en) Solid fertilizer mixing arrangement
JPS60179130A (en) Granulation process and device
JP4028121B2 (en) Granulator
JPH05236A (en) Stirring granulator
JP2002126561A (en) Shredding device
CN212232583U (en) Light cat litter apparatus for producing
RU2181664C2 (en) Vibrating mixer
JPH0338239A (en) Granule processing apparatus having mixing and granulating function
JPH0975703A (en) Rotary blade type agitating granulator
JP2002079072A (en) Method for granulating incinerated poultry manure
JP3521192B2 (en) Continuous granulator and continuous granulation method
JPS5921651B2 (en) Granulation method and equipment
JPS5921649B2 (en) Granulation method and equipment
JP3338523B2 (en) Granule processing equipment and granule storage tank
JPS6333900B2 (en)
JP2566503B2 (en) Powder mixing method and granulation method
SU1662667A1 (en) Granulator