JPS60178519A - Phase controller - Google Patents

Phase controller

Info

Publication number
JPS60178519A
JPS60178519A JP59032506A JP3250684A JPS60178519A JP S60178519 A JPS60178519 A JP S60178519A JP 59032506 A JP59032506 A JP 59032506A JP 3250684 A JP3250684 A JP 3250684A JP S60178519 A JPS60178519 A JP S60178519A
Authority
JP
Japan
Prior art keywords
winding
series
current
magnetic flux
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59032506A
Other languages
Japanese (ja)
Inventor
Motoyasu Ichikawa
市川 元保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59032506A priority Critical patent/JPS60178519A/en
Publication of JPS60178519A publication Critical patent/JPS60178519A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To prevent a tank wall from being overheated owing to leak magnetic flux from a winding easily at low cost by dividing a series winding and an exciting winding coaxially and equally by two in a specific shape. CONSTITUTION:A series transformer is constituted by providing the exciting winding 6 and series winding 7 around its iron core leg 9 successively from inside. This exciting winding 6 is divided coaxially and equally by two to form upper and lower windings 6a and 6b, which are connected in parallel so that their polarities are equalized. The series winding 7 is also divided coaxially and equally by two to form upper and lower windings 7a and 7b, and a terminal X is lead out of their connection point and connected to the shunt winding of an adjusting transformer having the corresponding phase; and the upper and lower terminals are connected to a primary terminal U and a secondary terminal (u). Then, a magnetic shield 3 is fitted on the tank wall 10 to form a magnetic path for leak magnetic flux due to a current in phase with the current of the exciting winding 6, and the magnetic flux is prevented from entering the tank wall 10 to prevent its overheating.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電力用の位相調整器に係り、特に1次側と2次
側の電圧比が常に同一となるように調整し、タンク壁に
侵入するもれ磁束の分布の改良に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a phase adjuster for power, and in particular adjusts the voltage ratio between the primary side and the secondary side to be always the same, and prevents penetration into the tank wall. This paper relates to improving the distribution of leakage magnetic flux.

(発明の技術的背景とその問題点〕 位相調整器は1次側と2次側の電圧位相を変化させて電
力の系統の潮流制御を行う装置であるが、このような位
相調整方式によっては、1次側と2次側の電圧比が位相
角によって変化してしまうことが起り、系統運転上好ま
しくない場合がある。
(Technical background of the invention and its problems) A phase adjuster is a device that controls power flow in a power system by changing the voltage phase on the primary and secondary sides. , the voltage ratio between the primary side and the secondary side may change depending on the phase angle, which may be unfavorable for system operation.

このため、1次側と2次側の電圧比を変えないようにし
て、位相角を調整する方式として第1俵に示すような位
相調整方式が提案されている。
For this reason, a phase adjustment method as shown in the first straw has been proposed as a method for adjusting the phase angle without changing the voltage ratio between the primary side and the secondary side.

(P 247〜252 、 pHr)C,IBE、 V
ol4.120 、No、 2FEBRJJAI’LY
 1973参照)第1図において位相調整器は調整変圧
器1と直列変圧器2とから構成される。調整変圧器1に
は各相の分路巻線3.タップ巻線4.安定巻線′5が鉄
心上に巻装される。安定巻線5は三角結線されるととも
に、タップ巻線42分路巻線3はそれぞれ星形結線され
る。
(P247-252, pHr)C, IBE, V
ol4.120, No, 2FEBRJJAI'LY
1973) In FIG. 1, the phase adjuster is composed of a regulating transformer 1 and a series transformer 2. The regulating transformer 1 has shunt windings 3 for each phase. Tap winding 4. A stable winding '5 is wound on the core. The stabilizing winding 5 is connected in a triangular configuration, and the tap winding 42 and the shunt winding 3 are each connected in a star configuration.

一方直列変圧器2には各相の励磁巻線6及び直列巻線7
が巻線されており、励磁巻線6は三角結線された後、タ
ップ切換器(図示しない)を介してタップ巻線4に接続
され、タップ位置に応じた電圧で直列巻線7を励磁する
。そして直列巻線7はその中央の中間電圧点から端子を
引出して、自相と直角成分の電圧を有する分路巻線3の
線路端側に接続するとともに両端はそれぞれ1次、2次
端子に接続する。
On the other hand, the series transformer 2 includes an excitation winding 6 and a series winding 7 for each phase.
After the excitation winding 6 is triangularly connected, it is connected to the tap winding 4 via a tap changer (not shown), and the series winding 7 is excited with a voltage according to the tap position. . Then, the series winding 7 has a terminal drawn out from the intermediate voltage point in the center, and is connected to the line end side of the shunt winding 3 which has the voltage of the self-phase and quadrature components, and both ends are connected to the primary and secondary terminals, respectively. Connecting.

上述の構成における電圧のベクトル図は第2図に示すよ
うに、1次端子電圧8−1及び2次端子電圧8−2は分
路巻線電圧31に、これと直角成分の直列巻線誘起電圧
7−1の172をベクトル的に加減した電圧となるため
、電圧絶対値は等しく、位相差はほぼ直列巻線誘起電圧
7−1に比例する。従ってタップ切換器を操作して直列
巻線誘起電圧’Llを変化させることにより、電圧絶対
値を等しくしたまま、1次端子電圧8−1及び2次端子
電圧8−2間の位相差を変化させることができる。
As shown in FIG. 2, the vector diagram of the voltage in the above-mentioned configuration shows that the primary terminal voltage 8-1 and the secondary terminal voltage 8-2 are connected to the shunt winding voltage 31 and the series winding induced component at right angles thereto. Since the voltage is obtained by vectorially adding or subtracting 172 of the voltage 7-1, the voltage absolute values are equal and the phase difference is approximately proportional to the series winding induced voltage 7-1. Therefore, by operating the tap changer to change the series winding induced voltage 'Ll, the phase difference between the primary terminal voltage 8-1 and the secondary terminal voltage 8-2 can be changed while keeping the voltage absolute values the same. can be done.

上述の回路構成とした時の具体的な直列変圧器の巻線構
成としては一般的に第3図に示す構成が考えられる。す
なわち鉄心脚9に内側から励磁巻線6.直列巻線7の順
に巻装し、直列巻線7は同軸かつ上下に2分割して、直
列巻線7a、7bを形成し、直列巻線7の中央の中間点
電圧点から端子Xを引出して対応する相の分路巻線(図
示しない)に接続するとともに上下端はそれぞれ1広端
子U。
The configuration shown in FIG. 3 is generally considered as a specific winding configuration of a series transformer when the above-mentioned circuit configuration is adopted. That is, the excitation winding 6. is connected to the core leg 9 from the inside. The series winding 7 is wound in this order, and the series winding 7 is coaxially divided into two parts vertically to form series windings 7a and 7b, and the terminal X is drawn out from the midpoint voltage point at the center of the series winding 7. The terminals are connected to the shunt windings (not shown) of the corresponding phases, and the upper and lower ends are each connected to one wide terminal U.

2次端子Uに接続して構成する。Configure by connecting to secondary terminal U.

そして、各巻線に流れる電流及びこの電流によって生ず
るもれ磁束について考えてみる。各巻線に流れる電流は
第4図の電流のベクトル図に示す゛ように、直列巻線7
の上側の直列巻線7aには1次線路電流I、が流れ、直
列巻線7の下側の直列巻線7bには1次線路電流■、と
調整角αだけ位相が異なり、大きさは等しい電流I、が
流れる。1次線路電流I、は電流11と電流11に分け
られる。また電流I2は電流■tと電流ISに分けられ
る。電流Iτと電流11、は大きさが等しく方向が反対
のため打消される。
Next, consider the current flowing through each winding and the leakage magnetic flux caused by this current. The current flowing through each winding is as shown in the current vector diagram in Figure 4.
The primary line current I flows in the upper series winding 7a, and the primary line current ■ flows in the lower series winding 7b of the series winding 7.The phase differs by the adjustment angle α, and the magnitude is An equal current I flows. The primary line current I, is divided into current 11 and current 11. Further, the current I2 is divided into a current ■t and a current IS. The current Iτ and the current 11 are equal in magnitude and opposite in direction, so they cancel each other out.

1η さらに電流”I 1 I’mは大きさが等しく僧方向で
あって、電流”I t ”tの和と次に記した電流rm
ど打消し合う。
1η Furthermore, the current "I 1 I'm has the same magnitude and is directed in the direction, and the sum of the current "I t "t and the current rm written below
They cancel each other out.

また、励磁巻線6には電流によるアンペアターンな打消
すための電流IIが流れる。ここで励磁巻線電流と同位
相成分の電流及び直角位相成分の電流に分離して、各々
の電流によるもれ磁束分布を考えると、同位相成分の電
流によるもれ磁束分布は第5図(al 、 (b)に示
すように通常の変圧器と同一の分布となり、タンク壁上
下で打消し合う。しかし直角位相成分の電流によるもれ
磁束は直列巻線の上下でアンペアターンが打消し合う形
となるため第6図(a) r (b+に示すようにタン
ク上下で打消されず、タンク壁10.タンク底11.鉄
心脚9の順の経路、及びタンク壁10.タンクカバー1
2.鉄心脚9の順の経路で循環する。そして第5図(a
)。
Further, a current II flows through the excitation winding 6 to cancel the ampere turn caused by the current. If we separate the excitation winding current into a current with the same phase component and a current with a quadrature phase component and consider the leakage flux distribution due to each current, the leakage flux distribution due to the current with the same phase component is shown in Figure 5 ( al, as shown in (b), the distribution is the same as that of a normal transformer, and they cancel each other out at the top and bottom of the tank wall.However, the leakage magnetic flux due to the quadrature component current is caused by the ampere turns canceling each other out at the top and bottom of the series winding. As shown in Figure 6 (a) r (b+), the upper and lower parts of the tank do not cancel each other out, and the tank wall 10. tank bottom 11. iron core leg 9, and the tank wall 10. tank cover 1.
2. It circulates in the order of the iron core legs 9. And Figure 5 (a
).

(b)に示すように同位相成分のもれ磁束に対してタン
ク壁10の側面に磁気シールド13を取付けて上下の磁
束の通路をつくり、タンク壁10への磁束の侵入を防止
してタンク壁10の過熱を容易に防ぐことができる。
As shown in (b), a magnetic shield 13 is attached to the side surface of the tank wall 10 to prevent leakage magnetic flux of the same phase component to create an upper and lower magnetic flux path to prevent the magnetic flux from entering the tank wall 10. Overheating of the wall 10 can be easily prevented.

しかし、第6図(a) 、 (b)に示すようにタンク
上下で打消し合わないもれ磁束に対しては、それがタン
ク底11あるいはタンクカバー12に侵入することを防
止するのは極めて困難であることから、タンクを非磁性
部材で製作してタンクの過熱防止などをする必要がある
。しかしながらこのような対策は機器のコストが極端に
高価になるという解決すべき問題点があった。
However, as shown in FIGS. 6(a) and 6(b), it is extremely difficult to prevent leakage magnetic flux that does not cancel each other out at the top and bottom of the tank from entering the tank bottom 11 or tank cover 12. Since this is difficult, it is necessary to make the tank from a non-magnetic material to prevent the tank from overheating. However, such measures have the problem that the cost of the equipment becomes extremely high.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点を考慮してなされたもので、その目的
とするところは、位相調整器の直列変圧器における巻線
のもれ磁束によるタンク壁の過熱を容易かつ安価に防止
することのできる位相調整器を提供することにある。
The present invention has been made in consideration of the above points, and its purpose is to easily and inexpensively prevent overheating of the tank wall due to leakage magnetic flux of the winding in the series transformer of the phase adjuster. The objective is to provide a phase adjuster that can

〔発明の概要〕[Summary of the invention]

かかる目的を達成するため本発明によれば、位相調整器
が変圧比を一定とした調整変圧器と直列変圧器とからな
り、直列変圧器には励磁巻線、直列巻線を巻装し、直列
巻線を同軸上下に2分割して中間電圧点を調整変圧器の
対応する相の分路巻線に接続するとともに、直列巻線の
両端を別々の線路端子に接続し、励磁巻線も同軸かつ上
下に2分割して、この2分割した励磁巻線を並列接続し
、この並列接続した励磁巻線をそれぞれ対応する相のタ
ップ巻線に接続したことにより、直列変圧器の巻線のも
れ磁束によるタンク壁の過熱を容易に、かつ安価に防止
することを特徴とする。
In order to achieve such an object, according to the present invention, the phase adjuster is composed of an adjustment transformer with a constant transformation ratio and a series transformer, and the series transformer is wound with an excitation winding and a series winding, The series winding is coaxially divided into two parts, top and bottom, and the intermediate voltage point is connected to the shunt winding of the corresponding phase of the regulating transformer, and both ends of the series winding are connected to separate line terminals, and the excitation winding is also connected to the shunt winding of the corresponding phase of the regulating transformer. The excitation windings are coaxially divided into upper and lower halves, these two halves of the excitation windings are connected in parallel, and the parallel-connected excitation windings are connected to the tap windings of the corresponding phases. It is characterized by easily and inexpensively preventing overheating of the tank wall due to leakage magnetic flux.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の位相調整器の一実施例を第7図ないし第9
図を参照して説明する。第1図ないし第6図と同一部分
は同符号を付しである。位相調整器は図示しないが調整
変圧器と直列変圧器とを備える。調整変圧器には各相の
分路巻線、タップ巻線及び安定巻線が鉄心上に巻装され
る。
An embodiment of the phase adjuster of the present invention will be described below with reference to FIGS. 7 to 9.
This will be explained with reference to the figures. The same parts as in FIGS. 1 to 6 are designated by the same reference numerals. Although not shown, the phase adjuster includes an adjustment transformer and a series transformer. The regulating transformer has shunt windings, tap windings, and stabilizer windings for each phase wound on an iron core.

直列変圧器は第7図に示すように鉄心を構成する鉄心脚
9に内側から励磁巻線6及び直列巻線7を順に巻装する
。この励磁巻線6は同軸に上下2分割して励磁巻線6a
 、 6bを形成し、この分割された各々の巻線を同一
極性側相互を接続して並列接続するとともに、直列巻線
7も同軸かつ上下に2分割した直列巻線7a 、 7b
の中央の接続点となる中間電圧点から端子Xを引出して
、対応する相の調整変圧器の分路巻線に接続し、直列巻
線7の上下端をそれぞれ1次端子U、2次端子Uに接続
;自≠榛して構成する。
In the series transformer, as shown in FIG. 7, an excitation winding 6 and a series winding 7 are sequentially wound around core legs 9 constituting an iron core from the inside. This excitation winding 6 is coaxially divided into upper and lower halves, and an excitation winding 6a
, 6b are formed, and the respective divided windings are connected in parallel by connecting the same polarity sides, and the series winding 7 is also coaxial and divided into upper and lower halves to form series windings 7a and 7b.
Terminal X is drawn out from the intermediate voltage point, which is the central connection point of Connect to U; self≠configure.

次に本発明の作用効果について説明する。上述したよう
に構成した時に各巻線に流れる電流のベクトル図は第8
図に示すようになる。上側の直列巻線7aには1次線路
電流■、が流れ、下側の直列巻線7bには1次線路電流
I、と調整角αだけ位相が異なり、大きさは等しい電流
I、が流れる。また上下の励磁巻線にはそれぞれのL下
の直列巻線7a。
Next, the effects of the present invention will be explained. The vector diagram of the current flowing through each winding when configured as described above is shown in the eighth figure.
The result will be as shown in the figure. A primary line current ■, flows through the upper series winding 7a, and a current I, which differs in phase from the primary line current I by the adjustment angle α but has the same magnitude, flows through the lower series winding 7b. . Further, the upper and lower excitation windings have respective L lower series windings 7a.

7bの電流i、 、 I、によるアンペアターンな打消
すための電流111+11!2が流れる。
A current 111+11!2 flows to cancel the ampere turn due to the currents i, , I of 7b.

そして励磁巻線6a、6bの電流Ill r IB2は
それぞれ電流I’m1+、 I%1及びI&z 、 I
’l12によって合成されていっている。同位相成分の
電流G + ”Iによるもれ磁束は前述した第5図(a
) 、 (b)と同一分布となる。しかし励磁巻線6a
、6bの電流111 + 11!2の直角位相成分の電
流I’m 1 、 IS2ニよるもれ磁束は第9図fa
) 、 (b)に示すようになる。すなわち、励磁巻線
6に直夕1」巻線7の励磁電流111+IE2の直角位
相成分の電流1’++2+ISzが電流I’l r”t
を打消すように循環して流れているから、タンク壁のも
れ磁束は上部と中央及び下部と中央で互に打消し合うよ
うになる。
And the currents Ill r IB2 in the excitation windings 6a and 6b are respectively the currents I'm1+, I%1 and I&z, I
It is being synthesized by 'l12. The leakage magnetic flux due to the current G + "I of the same phase component is shown in Fig. 5 (a
) and (b) have the same distribution. However, the excitation winding 6a
, 6b current 111 + 11!2 quadrature phase component current I'm 1 , leakage magnetic flux due to IS2 is shown in Figure 9 fa
), as shown in (b). That is, the current 1'++2+ISz of the quadrature phase component of the excitation current 111+IE2 of the excitation winding 6 is the current I'l r"t.
Since the leakage magnetic flux on the tank wall cancels out each other at the top and center and between the bottom and center, the leakage magnetic flux from the tank wall cancels out each other.

従ってこの場合には励磁巻線の電流と同位相成分の電流
によるもれ磁束及び直角成分の電流によるもれ磁束の両
者に対して、タンク壁10の面に磁気シールド13を取
付けて磁束の通路をつくり、タンク壁損への磁束の侵入
を防止してタンク壁の過熱を容易に防止することができ
る。
Therefore, in this case, a magnetic shield 13 is installed on the surface of the tank wall 10 to prevent leakage magnetic flux due to a current having the same phase component as the current of the excitation winding and leakage magnetic flux due to a current having a right angle component. This makes it possible to easily prevent overheating of the tank wall by preventing magnetic flux from entering the tank wall.

なお、上述した実施例では励磁巻線を内側に配置して説
明したが、励磁巻線は直列巻線の外側に配置しても同様
な効果が得られることは明らかである。
Although the above-described embodiment has been described with the excitation winding arranged inside, it is clear that similar effects can be obtained even if the excitation winding is arranged outside the series winding.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の実施例によれば、タンクを
非磁性部材で形成するような高価な対策をとることなく
、直列変圧器の巻線もれ磁束によるタンクの過熱を防止
することができる。
As explained above, according to the embodiments of the present invention, overheating of the tank due to magnetic flux leakage from the windings of the series transformer can be prevented without taking expensive measures such as forming the tank with a non-magnetic material. can.

【図面の簡単な説明】[Brief explanation of drawings]

筑11循り寸恋I−F千−市の打を平の待才目=固帖残
の枯鏑図、第2図は第1図の原理を示す電圧のベクトル
図、第3図は第1図の直列変圧器の巻線の配置を示す構
成図、第4図は第3図の直列変圧器の各巻線に流れる電
流のベクトル図、第5図(al l (bl及び第6図
(al 、 (b)はそれぞれ第3図に示した直列変圧
器の励磁巻線電流と同位相成分の電流による磁束分布及
び直角位相成分の電流による磁束分布を示し、(alは
それぞれ構成図、(1))はそれぞれ磁束分布図、第7
図は本発明による位相調整器の直列変圧器の巻線構成図
、第8図は第7図の巻線構成とした時の各巻線に流れる
電流のベクトル図、第9図(a)、、67図の巻線構成
とした時の磁束分布を示し、(a)は励磁巻線の電流と
直角位相成分の電流を示し、(blはその磁束分布図で
ある。 1・・・ial整変圧変圧器 2・・・直列変圧器。 3・・・分路巻線、 4・・・タップ巻線。 5・・・安定巻線、 6,6a、6b・・・励磁巻線。 7.7a、7b・・・直列巻線、 9・・・鉄心脚。 10.11.i2・・・タンク壁、3−1・・・分路巻
線′ra圧。 7−1・・・直列巻線電圧、8−1・・1次喘子電圧。 8−2・・・2次端子電圧。 第 1 図 第 2 図
Chiku 11 Circulation Senkoi I-F Sen-Ichi no Uchiwo Taira's machizaime = Kochozan's kasubakuzu, Figure 2 is a voltage vector diagram showing the principle of Figure 1, Figure 3 is a voltage vector diagram showing the principle of Figure 1. Figure 1 is a configuration diagram showing the arrangement of the windings of the series transformer, Figure 4 is a vector diagram of the current flowing through each winding of the series transformer in Figure 3, Figure 5 (al l (bl) and Figure 6 ( al and (b) respectively show the magnetic flux distribution due to the same phase component current and the quadrature phase component current as the excitation winding current of the series transformer shown in FIG. 1)) are the magnetic flux distribution diagrams and the seventh
The figure is a winding configuration diagram of the series transformer of the phase adjuster according to the present invention, Figure 8 is a vector diagram of the current flowing through each winding when the winding configuration is as shown in Figure 7, and Figure 9 (a). 67 shows the magnetic flux distribution when the winding configuration is used, (a) shows the current of the excitation winding and the quadrature phase component current, (bl is the magnetic flux distribution diagram. 1... ial rectifying transformer Transformer 2... Series transformer. 3... Shunt winding, 4... Tap winding. 5... Stability winding, 6, 6a, 6b... Excitation winding. 7.7a , 7b... Series winding, 9... Iron core leg. 10.11.i2... Tank wall, 3-1... Shunt winding'ra pressure. 7-1... Series winding Voltage, 8-1... Primary terminal voltage. 8-2... Secondary terminal voltage. Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 分路巻線とタップ巻線を備えた調整変圧器と、直列巻線
と励磁巻線を備えた直列変圧器とからなる位相調整器に
おいて、直列変圧器の直列巻線を同軸かつ上下に2分割
して、中間電圧点を調整変圧器の対応する相の分路巻線
に接続するとともに、前記直列巻線の両端を別々の線路
端子に接続し、励磁巻線も同軸かつ上下に2分割して、
この2分割した励磁巻線を並列接続し、この並列接続し
た励磁巻線をそれぞれ対応する相の前記タップ巻線に接
続したことを特徴とする位相調整器。
In a phase regulator consisting of a regulating transformer with a shunt winding and a tap winding, and a series transformer with a series winding and an excitation winding, the series windings of the series transformer are arranged coaxially and vertically in two directions. The intermediate voltage point is connected to the shunt winding of the corresponding phase of the regulating transformer, and both ends of the series winding are connected to separate line terminals, and the excitation winding is also coaxial and divided into upper and lower halves. do,
A phase adjuster characterized in that the two divided excitation windings are connected in parallel, and each of the parallel connected excitation windings is connected to the tap winding of a corresponding phase.
JP59032506A 1984-02-24 1984-02-24 Phase controller Pending JPS60178519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59032506A JPS60178519A (en) 1984-02-24 1984-02-24 Phase controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59032506A JPS60178519A (en) 1984-02-24 1984-02-24 Phase controller

Publications (1)

Publication Number Publication Date
JPS60178519A true JPS60178519A (en) 1985-09-12

Family

ID=12360870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59032506A Pending JPS60178519A (en) 1984-02-24 1984-02-24 Phase controller

Country Status (1)

Country Link
JP (1) JPS60178519A (en)

Similar Documents

Publication Publication Date Title
CA2729421C (en) Power conversion using controllable transformers
US3521147A (en) Regulated voltage supply circuit
JP4411460B2 (en) Voltage regulation transformer
US1863936A (en) Transformer system and apparatus
JPS60178519A (en) Phase controller
US1357197A (en) Electric transformer
JP5520613B2 (en) Magnetic flux control type variable transformer
US4378522A (en) Adjustable current source
JP2010192813A (en) Three-phase voltage-controlling transformer assembly
US1719892A (en) Transformer for feeding polyphase rectifiers
JPS60169114A (en) Phase adjustor
US1866345A (en) Current transformer with primary parallel resistance and flux leakage path
JPH065444A (en) Phase shifter
US1743752A (en) Current transformer
JPS60178518A (en) Phase controller
SU69775A1 (en) Single phase three pole transformer
JPH07231655A (en) Phase regulator
JPS5937900A (en) Saturable current transformer for control circuit of self-excited ac generator
JPS6356169A (en) Three-phase phase regulator
GB1194151A (en) Improvements in or relating to Voltage Stabilising Arrangements.
US1875020A (en) Electric controlling apparatus
JPH02109311A (en) Current transformer
JP2004187374A (en) Single phase three wire type voltage regulator
US2534931A (en) Current transformer
GB507755A (en) Improvements in or relating to polyphase transformers and polyphase choking coils