JPS60178408A - Optical waveguide - Google Patents

Optical waveguide

Info

Publication number
JPS60178408A
JPS60178408A JP3640484A JP3640484A JPS60178408A JP S60178408 A JPS60178408 A JP S60178408A JP 3640484 A JP3640484 A JP 3640484A JP 3640484 A JP3640484 A JP 3640484A JP S60178408 A JPS60178408 A JP S60178408A
Authority
JP
Japan
Prior art keywords
light
optical waveguide
film
thin film
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3640484A
Other languages
Japanese (ja)
Inventor
Shinichiro Ishihara
伸一郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3640484A priority Critical patent/JPS60178408A/en
Publication of JPS60178408A publication Critical patent/JPS60178408A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths

Abstract

PURPOSE:To reduce cost by covering a material to be formed as an optical waveguide which allows transmission of light at a low loss with a material which reflects light at low loss without using a costly semiconductor single crystal wafer. CONSTITUTION:For example, blue sheet glass, white sheet glass, molten quartz or the like is used for a substrate 1 and a metallic film 2 deposited by evaporation is selectively formed on the part of the substrate 1 to be used as the bottom of an optical guide. A material which does not change in the stage of forming a material 4 to be used as an optical waveguide, for example, Ni, Cr, W, Mo, Ti, N, Ta or the like which does not change at the forming temp. of SiO2 or during glow discharge if the material 4 is SiO2 is used for the film 2. Another metallic film 15 to be deposited by evaporation is formed on the film 2 so as to overlap partly or wholly thereon. A material which is liable to diffuse during or after the formation of the material 4 is selected for the film 15 and is diffused into the material 4, by which a diffused layer 5 to serve as a wall of the optical waveguide is formed. A metallic film 3 deposited by evaporation so as to be used as a cap is then formed. The optical waveguide which can transmit efficiently light is thus manufactured inexpensively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光を利用した集積回路、特に単一基板上に組
み込捷れた回路に用いる光導波路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an integrated circuit using light, and particularly to an optical waveguide used in a circuit integrated on a single substrate.

従来例の構成とその問題点 光を利用した集積回路は、電気信号を利用したものに比
べ、高速演算、低雑音等の利点があるため、低コストで
の製造法の開発に達する要望が高1っている。従来一般
に、光集積回路の基板は、InPやGaAs等の単結晶
ウェハが用いられていた。
Conventional configurations and their problems Integrated circuits that use light have advantages such as high-speed calculations and low noise compared to those that use electrical signals, so there is a high demand for the development of low-cost manufacturing methods. 1 is there. Conventionally, single crystal wafers such as InP and GaAs have been used as substrates for optical integrated circuits.

これらの基板は高価であシ、一般に普及させることは困
難であった。
These substrates are expensive and difficult to popularize.

発明の目的 本発明は、このような従来例の問題点を鑑み、高価な半
導体単結晶ウェハを用いず、安価な光導波路を提供する
ことを目的とする。
OBJECTS OF THE INVENTION In view of the problems of the conventional example, an object of the present invention is to provide an inexpensive optical waveguide without using an expensive semiconductor single crystal wafer.

発明の構成 本発明は、光を損失少なく透過させる光導波路となる物
質を、光を損失少なく反射する物質でおおうことKJ:
17安価方臀道姑蕗冬側冶■台すふ手るものである。
Structure of the Invention The present invention is to cover a material that becomes an optical waveguide that transmits light with little loss with a material that reflects light with little loss.KJ:
17 The cheapest option is to get the buttock, the mother-in-law, and the winter side.

実施例の説明 以下本発明の1実施例を図に基づいて詳しく説明する。Description of examples An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の第1の実施例における光導波路の断面
を示すものである。
FIG. 1 shows a cross section of an optical waveguide in a first embodiment of the present invention.

1は基板で本実施例では青板ガラス、白板ガラス、溶融
石英等を用いた。2および3は光を損失少なく反射させ
る金属蒸着膜で、原理的には金属蒸着膜2は光を透過さ
せる物質4を形成さもる際、変質、変形しないものでな
ければならない。例えば、光を透過させる物質4がグロ
ー放電分解法によってSiH4と02とを分解形成した
Sio2であれば、S 102の形成温度またはグロー
放電中に変化しないNi、Cr、W、Mo、Ti、Mn
、Ta等を用いれば良い。金属蒸着膜3には、その制限
はない。5は物質4中に形成された拡散層で光を損失少
なく反射するもので例えばS s O2中に拡散しゃす
い物質、たとえば金属であればCu 、 Zn 、 P
d 、 Ag 、Au 。
Reference numeral 1 denotes a substrate, and in this example, blue plate glass, white plate glass, fused silica, etc. were used. 2 and 3 are metal vapor deposited films that reflect light with little loss; in principle, the metal vapor deposit film 2 must not be altered or deformed during the formation of a substance 4 that transmits light. For example, if the material 4 that transmits light is Sio2, which is formed by decomposing SiH4 and 02 by a glow discharge decomposition method, Ni, Cr, W, Mo, Ti, Mn, which does not change at the formation temperature of S102 or during glow discharge.
, Ta, etc. may be used. The metal vapor deposited film 3 has no such limitations. Reference numeral 5 denotes a diffusion layer formed in the substance 4, which reflects light with little loss, such as a substance that easily diffuses into S s O 2 , such as metals such as Cu, Zn, and P.
d, Ag, Au.

Al、In、Sn等が拡散された拡散層である。この構
成によって物質4からなる光導波路6が構成される。
This is a diffusion layer in which Al, In, Sn, etc. are diffused. With this configuration, an optical waveguide 6 made of the substance 4 is configured.

この光導波路を用いた光集積回路の1構成例を第2図に
示す。第2図の1〜6は第1図と同じものを示す。1と
は別の基板1oの上に放熱性の良い導電性を示す例えば
金属板11を付着させる。
FIG. 2 shows an example of the configuration of an optical integrated circuit using this optical waveguide. 1 to 6 in FIG. 2 are the same as those in FIG. 1. For example, a metal plate 11 exhibiting good heat dissipation and conductivity is attached onto a substrate 1o different from the substrate 1o.

これは、導波路6中を通す光を発生させる例えば半導体
レーザや発光ダイオードによる発光源12の放熱板兼電
極となるものである。13は光導波路中へ損失少なく発
光源12がら光を導入するのに必要な誘電体であり、屈
折率は発光源12を光導波路6の屈折率の間の値を持つ
。基板1と基板10を付着させることによって光集積回
路が完成する。第2図の構成例によって発光源12から
の光は4つに分解される。逆に、発光源の代わりに受光
素子を用いると、入力が4ケ所のAND回路となること
は明らかである。
This serves as a heat sink and an electrode for a light emitting source 12, such as a semiconductor laser or a light emitting diode, which generates light that passes through the waveguide 6. Reference numeral 13 denotes a dielectric material necessary to introduce light from the light emitting source 12 into the optical waveguide with little loss, and its refractive index has a value between that of the light emitting source 12 and the refractive index of the optical waveguide 6. By attaching substrate 1 and substrate 10, an optical integrated circuit is completed. According to the configuration example shown in FIG. 2, the light from the light emitting source 12 is separated into four parts. Conversely, if a light receiving element is used instead of a light emitting source, it is clear that an AND circuit with four inputs will be used.

第3図は、本実施例の製造工程を説明するものである。FIG. 3 explains the manufacturing process of this example.

第1図と構成要素が同じであるため同じ番号を示す。基
板1上に、光導波路の底になる部分に金属蒸着膜2を選
択的に形成する。金属蒸着膜2は前述したとおシ光導波
路となる物質4の形成時に変化しないものを選ぶ。金属
蒸着BIA2の上に一部または全部型なるように別の金
属蒸着膜16を形成する(第3図a)。この金属蒸着膜
15も前述し/ことおり、光導波路となる物質4の形成
中または形成後において拡散しやすいものを選ぶ。
Since the components are the same as those in FIG. 1, the same numbers are shown. A metal vapor deposition film 2 is selectively formed on a substrate 1 at a portion that will become the bottom of an optical waveguide. The metal vapor deposited film 2 is chosen to be one that does not change during the formation of the material 4 that will become the optical waveguide as described above. Another metal evaporation film 16 is formed on the metal evaporation BIA2 so as to partially or completely cover the metal evaporation BIA2 (FIG. 3a). As mentioned above, this metal vapor deposited film 15 is also selected from a material that is easily diffused during or after the formation of the material 4 that will become the optical waveguide.

この蒸着膜16の金属が物質4中に拡散し光導波路のカ
ベとなる拡散層5が形成される。すなわち、第3図aの
のち、光導波路となる物質4を形成し、導波路のフタに
なる金属蒸着膜3を形成する(第3図b)。例えば51
02を用いる場合について説明する。真空装置内に入れ
、基板温度を100〜500″Cに保持し、真空に排気
した後、SiH4ガスおよび02ガスを真空度が0.1
〜10Torrになるよう流量および排気量を調節する
。真空装置内に直流または高周波電界を加えて、グロー
放電を発生させる。グロー放電によってSiH4および
02を分解させ、Sio2よりなる物質4を基板1上に
堆積させる。放電電力は1mW/cd〜I W/cdで
あシS iO2成長速度は、0.1μm〜10μηL/
hであった。
The metal of this vapor-deposited film 16 is diffused into the substance 4 to form a diffusion layer 5 which becomes the wall of the optical waveguide. That is, after FIG. 3a, a material 4 that will become an optical waveguide is formed, and a metal vapor deposition film 3 that will become a lid of the waveguide is formed (FIG. 3b). For example 51
The case where 02 is used will be explained. Place the substrate in a vacuum device, maintain the substrate temperature at 100 to 500''C, and evacuate it to vacuum.
Adjust the flow rate and displacement to ~10 Torr. A direct current or high-frequency electric field is applied within a vacuum device to generate a glow discharge. SiH4 and 02 are decomposed by glow discharge, and a substance 4 made of Sio2 is deposited on the substrate 1. The discharge power is 1 mW/cd to IW/cd, and the SiO2 growth rate is 0.1 μm to 10 μηL/
It was h.

S zO2成長中に、金属蒸着膜15が5iO24中に
拡散し、表面まで達する。部分的に拡散したり、拡散が
不十分な場合は、31024を形成後、金属蒸着膜16
を強力な光等で加熱し、十分に拡散させる。このように
して拡散層6を形成させる。光導波路のフタになる金属
蒸着膜3を選択的にエツチングして光導入口または光出
口を作成し、第1図に示したような構成となる。
During the S zO 2 growth, the metal evaporated film 15 diffuses into the 5iO 24 and reaches the surface. In case of partial diffusion or insufficient diffusion, after forming 31024, the metal vapor deposited film 16
Heat it with strong light, etc. and diffuse it sufficiently. In this way, the diffusion layer 6 is formed. The metal vapor deposited film 3, which becomes the lid of the optical waveguide, is selectively etched to create a light inlet or a light outlet, resulting in a structure as shown in FIG.

光導入口または光出口は第2図に示すように断面を用い
てもよい。また、厚さ方向に屈折率を容易に変化させる
ことができるもの、例えばSiO工のX値を基板面およ
び表面に近づくに従って大きくすれば、底面表面の反射
金属蒸着膜2,3はなくなっても良い。
The light inlet or the light outlet may have a cross section as shown in FIG. In addition, if the refractive index of the material whose refractive index can be easily changed in the thickness direction is increased, for example, by increasing the X value of SiO material as it approaches the substrate surface and the surface, the reflective metal vapor deposited films 2 and 3 on the bottom surface may disappear. good.

第4図は、光導波路のカベになる拡散層5を作成する第
2の実施例を示す。この実施例では、光導波路となる物
質4をまず堆積し、その後、カベとなる金属蒸着膜15
を形成する(第4図a)。
FIG. 4 shows a second example of creating a diffusion layer 5 that becomes the wall of an optical waveguide. In this embodiment, a material 4 that will become an optical waveguide is first deposited, and then a metal vapor deposited film 15 that will become a wall is deposited.
(Figure 4a).

その後、基板を加熱して、金属蒸着膜16を光導波路と
なる物質4中に拡散させる(第4図b)。
Thereafter, the substrate is heated to diffuse the metal vapor deposited film 16 into the material 4 that will become the optical waveguide (FIG. 4b).

その後、光導波路のフタになる金属蒸着膜3を形成しく
第4図C)、選択的にエツチングして第1図に示すよう
に完成させる。
Thereafter, a metal vapor deposited film 3 which will become the lid of the optical waveguide is formed (FIG. 4C) and selectively etched to complete the process as shown in FIG. 1.

5iO24中に拡散し難い金属でも強力に加熱すれば拡
散させることができる。この性質を用いて光導波路のカ
ベを作製したのが次に述べる第3の実施例である。カベ
になる金属蒸着膜15を形成させずに、底になる金属蒸
着膜2の端部をレーザー等の強力な光を照射して加熱さ
せる。この場合、レーザーの照射位置によって光導波路
を自由に作製できる利点がある。
Even metals that are difficult to diffuse into 5iO24 can be diffused by strong heating. The third example described below uses this property to fabricate an optical waveguide wall. Without forming the metal vapor deposited film 15 that becomes a wall, the end portion of the metal vapor deposited film 2 that becomes the bottom is heated by irradiating strong light such as a laser beam. In this case, there is an advantage that the optical waveguide can be freely manufactured depending on the laser irradiation position.

なお、以上の実施例では、グロー放電分解法によるE)
 102膜を光導波路用の物質としたが、S I H4
に、NH3を混合すればS、iN 膜が作製でき、5i
I(4にCH4を混合すればSiC膜が作製できる。
In addition, in the above examples, E) by glow discharge decomposition method
102 film was used as the material for the optical waveguide, but S I H4
If NH3 is mixed with the S, iN film, a 5i
A SiC film can be produced by mixing CH4 with I(4).

これらは可視光を十分透過できるため光導波路として用
いられることは明らかであり、光の波長によっては、非
晶質のシリコン膜やゲルマニウム膜でも使用は可能であ
る。グロー放電分解法だけでなく、スパンタリ/グ法に
よっても、熱分解法によっても、上記薄膜は、作製でき
ることは言うまでもない。
Since these can sufficiently transmit visible light, it is clear that they can be used as optical waveguides, and depending on the wavelength of the light, amorphous silicon films or germanium films can also be used. It goes without saying that the above-mentioned thin film can be produced not only by the glow discharge decomposition method but also by the Spantary/G method and the thermal decomposition method.

発明の効果 以上のように、本発明は光導波路となる薄膜中に、貫通
して金属等光を反射させる物質を拡散させてカベを作る
ことにより、安価に、効率良く光を伝達できる光導波路
を作製することができる。
Effects of the Invention As described above, the present invention provides an optical waveguide that can efficiently transmit light at low cost by creating a wall by diffusing a substance that reflects light, such as a metal, through a thin film that becomes an optical waveguide. can be created.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による光導波路の構造断面図
、第2図は第1図の光導波路を用いて光る方法を示した
工程図である。 1.10・・・・・・基板、2・・・・・・光導波路の
底となる金属蒸着膜、3・・・・・・光導波路のフタと
なる金属蒸着膜、4・・・・・・光を損失少なく透過さ
せる物質、5・・・・・・光導波路のカベとなる拡散層
、6・・・・・光導波路・ 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 (ユ・) と 2 ど 第4図 (のり !へ ? (C)
FIG. 1 is a structural sectional view of an optical waveguide according to an embodiment of the present invention, and FIG. 2 is a process diagram showing a method of emitting light using the optical waveguide of FIG. 1. 1.10...Substrate, 2...Metal vapor deposited film that will become the bottom of the optical waveguide, 3...Metal vapor deposited film that will become the lid of the optical waveguide, 4... ...Substance that transmits light with little loss, 5.. Diffusion layer that becomes the wall of the optical waveguide, 6.. Optical waveguide. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 3 (Yu・) and 2 Do Figure 4 (Nori! To? (C)

Claims (1)

【特許請求の範囲】[Claims] (1)損失少なく光を透過する薄膜層上損失少なく光を
反射する薄膜層および上記損失少なく光を透過する薄膜
層中に拡散し光を損失少なく反射する層を少なくとも構
成要素とし、上記光を透過する薄膜層が上記光を反射さ
せる薄膜層および上記拡散層によって少なくとも1面を
除くすべての面がおおわれるよう構成されることを特徴
とする光導波路。 い)損失少なく光を透過する薄膜層の両面に上記光を損
失少なく反射させる薄膜層を設け、上記光を反射させる
薄膜層間に上記光を透過する薄膜層中を拡散された光反
射層を設け、上記光を透過する薄膜層が光を反射する薄
膜層によって筒状にかこまれるように配されることを特
徴とする先導波路。
(1) A thin film layer that transmits light with low loss, a thin film layer that reflects light with low loss, and a layer that diffuses and reflects light with low loss in the thin film layer that transmits light with low loss are at least the constituent elements; An optical waveguide characterized in that the transmitting thin film layer is configured such that all surfaces except at least one surface are covered by the light reflecting thin film layer and the light diffusing layer. b) A thin film layer that reflects the light with little loss is provided on both sides of the thin film layer that transmits light with little loss, and a light reflecting layer is provided between the thin film layers that reflect the light that is diffused through the thin film layer that transmits the light. . A guiding waveguide characterized in that the light-transmitting thin film layer is surrounded by a light-reflecting thin film layer in a cylindrical shape.
JP3640484A 1984-02-27 1984-02-27 Optical waveguide Pending JPS60178408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3640484A JPS60178408A (en) 1984-02-27 1984-02-27 Optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3640484A JPS60178408A (en) 1984-02-27 1984-02-27 Optical waveguide

Publications (1)

Publication Number Publication Date
JPS60178408A true JPS60178408A (en) 1985-09-12

Family

ID=12468901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3640484A Pending JPS60178408A (en) 1984-02-27 1984-02-27 Optical waveguide

Country Status (1)

Country Link
JP (1) JPS60178408A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659648A (en) * 1995-09-29 1997-08-19 Motorola, Inc. Polyimide optical waveguide having electrical conductivity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535886A (en) * 1976-07-06 1978-01-19 Canon Kk Endscope
JPS5713412A (en) * 1980-06-28 1982-01-23 Mochida Pharmaceut Co Ltd Optical hollow waveguide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535886A (en) * 1976-07-06 1978-01-19 Canon Kk Endscope
JPS5713412A (en) * 1980-06-28 1982-01-23 Mochida Pharmaceut Co Ltd Optical hollow waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659648A (en) * 1995-09-29 1997-08-19 Motorola, Inc. Polyimide optical waveguide having electrical conductivity

Similar Documents

Publication Publication Date Title
US5785874A (en) Optical waveguide device bonded through direct bonding and a method for fabricating the same
JPS58121006A (en) Dielectric light wave guide and formation thereof
JPH11125726A (en) Optical waveguide and its manufacture
JPH01196005A (en) Manufacture of light microguide
JPH08328049A (en) Manufacture of heater-buried plane waveguide-type optical switch
KR100270618B1 (en) Method of manufacturing multi-crystallized silicon thin film
JPS60178408A (en) Optical waveguide
WO2007044554A2 (en) Amorphous silicon waveguides on iii/v substrates with a barrier layer
US5903697A (en) Optical waveguide, method of making the same and integrated optical device
JP2687362B2 (en) Optical switching element
JPH1131863A (en) Manufacture of diffraction grating and semiconductor laser manufactured using it and applied optical system using the laser
JPS5960405A (en) Optical waveguide and its manufacture
JP3245347B2 (en) Manufacturing method of optical waveguide device
JPH06118211A (en) Integrated optical mirror and manufacture thereof
JPH02229484A (en) Semiconductor element
US5436096A (en) Method of manufacturing X-ray exposure mask
JPS5928328A (en) Preparation of semiconductor device
JP2758632B2 (en) Optical member using thin film
JP2003172840A (en) Optical waveguide element and method of manufacturing the same
US20230384527A1 (en) Method of making photonic device
JP2000171650A (en) Optical waveguide and its production and optical device using this optical waveguide
JP2003344685A (en) Optical switching element and method for manufacturing the same
JPH0266502A (en) Manufacture of semiconductor optical waveguide
JPS6054277B2 (en) Single crystallization method for non-single crystal semiconductor layer
JPH10311921A (en) Integration type semiconductor laser element and production thereof