JPS60177098A - Magnetic fluid - Google Patents

Magnetic fluid

Info

Publication number
JPS60177098A
JPS60177098A JP3137684A JP3137684A JPS60177098A JP S60177098 A JPS60177098 A JP S60177098A JP 3137684 A JP3137684 A JP 3137684A JP 3137684 A JP3137684 A JP 3137684A JP S60177098 A JPS60177098 A JP S60177098A
Authority
JP
Japan
Prior art keywords
melting point
magnetic fluid
fluid
dispersed
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3137684A
Other languages
Japanese (ja)
Other versions
JPH0257115B2 (en
Inventor
Takeo Nishikawa
西川 武夫
Susumu Watanabe
渡邊 迪
Takao Morimura
森村 太華生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3137684A priority Critical patent/JPS60177098A/en
Publication of JPS60177098A publication Critical patent/JPS60177098A/en
Publication of JPH0257115B2 publication Critical patent/JPH0257115B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic fluid of improved heat resistance, suitable for sealing, screening by specific gravity, fixation of fluid, printing, recording, sensor, etc., by dispersing in a low-melting point alloy constituted by Zn, Gd, etc. high-permeability fine powder having surface of good wetting with Zn, etc. CONSTITUTION:(A) High-permeability Fe-, Ni-, Co-based fine powder having surface of good wetting with Zn, Sn and In is dispersed in (B) a low-melting point alloy constituted by Ga and at least one sort of metal selected from Zn, Sn and In to obtain the objective magnetic fluid with the component (A) dispersed as stable particles coated with Zn, Sn, In, etc. The material for the component (A) is pref. pure iron, pure cobalt, pure nickel, silicon steel plate, 78 permalloy, supermalloy, mumetal, 45-25 perminvar, etc.

Description

【発明の詳細な説明】 1LL艷 本発明はシールをはじめ比m選別、流動体の固定、印刷
、記録、センサ、ベアリング等の各種応用分野に利用し
得る磁性流体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic fluid that can be used in various application fields such as seals, ratio selection, fluid fixing, printing, recording, sensors, and bearings.

従来技術 従来、実用に供されている磁性流体は、マグネタイトま
たは各種のフェライトのように、透磁率が大で、粒径1
00〜200人の微粒子表面をオレイン酸やリノール酸
のような長鎖不飽和脂肪酸で被覆し、これを界面活性剤
の存在下で炭化水素や水等の分散媒中に分散させたコロ
イド溶液である。
Prior Art Magnetic fluids that have been used in practical use have high magnetic permeability, such as magnetite or various ferrites, and have a particle size of 1.
A colloidal solution in which the surface of microparticles of 00 to 200 people is coated with long-chain unsaturated fatty acids such as oleic acid or linoleic acid and dispersed in a dispersion medium such as hydrocarbon or water in the presence of a surfactant. be.

この磁性流体は、流動性と強磁性を兼ね備えたもので、
近年各種の応用分野で利用され、更に開発が続けられて
いる極めて有用な材料である。
This magnetic fluid has both fluidity and ferromagnetism.
It is an extremely useful material that has been used in a variety of applied fields in recent years and is being further developed.

しかし、これらの磁性流体は、何れも有機化合物や水が
成分の一つになっているために、それらの物質の熱分解
あるいは蒸発を伴う温度−圧力下では使用できないのが
欠点である。
However, since these magnetic fluids all contain organic compounds and water as one of their components, they have the disadvantage that they cannot be used at temperatures and pressures that would cause thermal decomposition or evaporation of these substances.

また、水銀などの液体金属中に強磁性流体粉末を分散さ
せたものも開発されている。ところが、水銀は有毒であ
る上に蒸気圧が高く、350℃で沸騰するので使用温度
、使用方法にかなりの制限がある。
In addition, ferrofluid powders dispersed in liquid metals such as mercury have also been developed. However, mercury is toxic, has a high vapor pressure, and boils at 350°C, so there are considerable restrictions on the temperature and method of use.

目 的 この発明は、従来用いられていた磁性流体の上記欠点、
特に耐熱性を向上させるために分散媒として金属、特に
Ga系低融合金を使用して、その目的を達したものであ
る。
Purpose This invention solves the above-mentioned drawbacks of conventionally used magnetic fluids.
In particular, this objective was achieved by using a metal, especially a Ga-based low alloy alloy, as a dispersion medium to improve heat resistance.

構成 この発明の構成は、透磁率が大で、Zn13n、lnと
濡れ易い表面を有する微粉末が、ln 、3nおよびl
 nからなる群のうち一種以上とGaとからなる低融点
合金である分散媒中に分散していることを特徴とする磁
性流体である。
Structure The structure of the present invention is that fine powder having a high magnetic permeability and a surface that is easily wetted with Zn13n, ln, ln, 3n, and ln.
The magnetic fluid is characterized in that it is dispersed in a dispersion medium that is a low melting point alloy consisting of Ga and one or more of the group consisting of n.

この磁性流体の成分である低融点合金、高透磁性材料お
よび製造法について述べる。
We will discuss the low melting point alloy, high magnetic permeability material, and manufacturing method that are the components of this magnetic fluid.

A、低融点合金 本発明における低融点合金の主成分であるGaは下記の
性質を有する低融点金属である。
A. Low melting point alloy Ga, which is the main component of the low melting point alloy in the present invention, is a low melting point metal having the following properties.

m、p、29.8℃ b、p、2071°C(推定) 蒸気圧は単原子分子体と仮定すると、 logp =−16280/T −1,27ioa T
+14.123p:mmH!J T:’ K これを具体的数値でH(]と比較してみると、上記説明
から明らかなように、Gaは30℃で融解し、2000
℃まで液状、500℃でも蒸気圧が小さく、かつ、無毒
である。したがって、Qaは常温からH(+に較べてか
なり高温まで使用可能である。
m, p, 29.8°C b, p, 2071°C (estimated) Assuming that the vapor pressure is a monoatomic molecule, logp = -16280/T -1,27ioa T
+14.123p:mmH! J T:' K Comparing this with H(] using specific numerical values, it is clear from the above explanation that Ga melts at 30°C and 2000°C.
It is liquid up to 500°C, has a low vapor pressure even at 500°C, and is non-toxic. Therefore, Qa can be used from room temperature to considerably higher temperatures than H(+).

ところで液体のGaの粘度を示すと下記のとおりである
By the way, the viscosity of liquid Ga is as follows.

温度℃ 粘度poise (dyne am/a1)5
2.9 0,019 97.4 0.016 149 0.014 200 0.013 301 0.01 402 0.009 soo o、ooa Goo 、、0.007 806 0.00に れからみても明らかなように、非常に流れ易い液体で、
その粘度は水に近いといえる。
Temperature °C Viscosity poise (dyne am/a1)5
2.9 0,019 97.4 0.016 149 0.014 200 0.013 301 0.01 402 0.009 soo o, ooa Goo ,,0.007 806 0.00 It seems obvious It is a very flowing liquid,
Its viscosity can be said to be close to that of water.

また、液体Qaの熱伝導度は、30〜100’C。Further, the thermal conductivity of the liquid Qa is 30 to 100'C.

の範囲テハ0,336J/cm−s −’ Kでこの(
10はCuの3.85(0℃)の1710であるが、下
記の物質の熱伝導液と比較すると大きいものである。
This (
10 is 1710 which is 3.85 (0° C.) of Cu, which is large compared to the heat transfer liquid of the following material.

物 質 熱伝導度 J/Cm−3・°に水銀 0.09
(0℃) 水 6.05x 10−3 (30℃)有機油脂 1.
5〜2x10’ 空気 0.24xlO−8 GaがZn、3n、In等と形成スル低融点共晶合金を
例示すると、下記のものがある。
Material Thermal conductivity J/Cm-3° mercury 0.09
(0℃) Water 6.05x 10-3 (30℃) Organic oil 1.
5~2x10' Air 0.24xlO-8 Examples of low melting point eutectic alloys in which Ga is formed with Zn, 3n, In, etc. are as follows.

組 成 融点 (℃) 95Ga −521125 92Ga −83n 20 76Ga −24I n 15.7 82Ga −123n −6Zn 15.7Ga、Sn
、Zn、Inそれぞれの磁気的性質は、 磁化率χ(10−’ emu ’/ a )で示ずとQ
a;−0,31、In;−0,11 3n ニー0.25、 Znニー0.14であり、いず
れも反磁性体であり、II場の影響は事実上受けない。
Composition Melting point (℃) 95Ga -521125 92Ga -83n 20 76Ga -24I n 15.7 82Ga -123n -6Zn 15.7Ga, Sn
The magnetic properties of , Zn, and In are expressed as magnetic susceptibility χ(10-'emu'/a) and Q
a: -0,31, In: -0,11 3n knee 0.25, Zn knee 0.14, both of which are diamagnetic and are virtually unaffected by the II field.

Qa系低融合金の成分であるzn 13n、lnはFe
、Ni、GOと親和力力強り、それ等の表面を強固に被
覆し、酸化を防止する。
zn 13n and ln, which are components of Qa-based low alloy alloy, are Fe
, Ni, GO, and strongly coats their surfaces to prevent oxidation.

したがって、本発明においてFe 、 Ni 。Therefore, in the present invention, Fe, Ni.

GO系の高透磁性微粒子は上記低融点合金中でZn、S
n、In等で被覆された安定な粒子として分散しており
、凝集、粗大化することかない。
GO-based high magnetic permeability fine particles are Zn, S, etc. in the above-mentioned low melting point alloy.
It is dispersed as stable particles coated with n, In, etc., and does not aggregate or become coarse.

B、高透磁性材料 高透磁性で、高キュリ一点をもつ物質は、酸化物系物質
、マグネタイト、フェライトを除き、大体Fe、co、
Ni単体またはそれらの合金であるから、それらの中に
この発明の材料の成分として多くの有用な高磁性材料が
存在する。
B. High magnetic permeability materials Substances with high magnetic permeability and a high Curie point are generally Fe, co,
There are many highly magnetic materials useful as constituents of the material of the present invention, such as Ni alone or alloys thereof.

例えば、純鉄、純コバルト、純ニッケル、ケイ素鋼板、
アルパーム、センダスト、78パーマロイ、スーパーマ
ロイ、ミューメタル、45−25パーミンバー等が挙げ
られる。
For example, pure iron, pure cobalt, pure nickel, silicon steel plate,
Examples include Alperm, Sendust, 78 Permalloy, Supermalloy, Mumetal, 45-25 Perminvar, and the like.

Fe、Co、Niの磁性的耐熱性は例えば第1図に示し
たとおりで、図中の記号の意味は下記のとおりである。
The magnetic heat resistance of Fe, Co, and Ni is as shown in FIG. 1, for example, and the meanings of the symbols in the figure are as follows.

is 王°Kにおける磁気能率 1o OoKに外挿した値 θf キュリ一温度 Fe : 1041.8’ K Co ; 1388.2°K Ni ; 629,5’ K 第1図の数値に相当する摂氏温度を示すと下記とおりで
ある。
is Magnetic efficiency at 1o OoK Value extrapolated to OoK θf Curie temperature Fe: 1041.8'K Co; 1388.2°K Ni; 629,5'K The temperature in degrees Celsius corresponding to the values in Figure 1 is It is shown below.

また常温(20℃、293,2°K)における各物質の
数値は これらの材料は、打部に伴ってキューリー湿度に近づき
、磁気能率は低下するが、Fe1GOは相当高温でもI
Sの低下は少ない。
In addition, the numerical values of each substance at room temperature (20°C, 293,2°K) show that these materials approach Curie humidity as the striking part approaches, and the magnetic efficiency decreases, but Fe1GO has I
The decrease in S is small.

C0磁性流体の製造 この発明の磁性流体の製造法には下記の方法がある。そ
れらについて説明すると、Qaと7n、3n、In等と
の低融点合金をまず作製しておき、つぎの方法を行なう
Production of C0 magnetic fluid The method of producing the magnetic fluid of this invention includes the following method. To explain them, a low melting point alloy of Qa and 7n, 3n, In, etc. is first prepared, and then the following method is performed.

イ)電解法 この低融点合金を溶融した状態で陽極とし、Fe1CO
1Ni化合物の水溶液を電解し、陽極面に析出する金属
を内部に拡散させる。
b) Electrolytic method This low melting point alloy is used as an anode in a molten state, and Fe1CO
An aqueous solution of a 1Ni compound is electrolyzed to diffuse the metal deposited on the anode surface into the interior.

析出した金属は析出後直ちにZn 1811 、’ I
nで表面が被覆され、安定な粒子として分散している。
Immediately after precipitation, the deposited metal becomes Zn 1811, ' I
The surface is coated with n and dispersed as stable particles.

口)亜鉛還元法 この低融点合金にZnを還元用に添加し、Fe 、Go
 、Ni化合物の水溶液を激しく振盪しながら次の反応
を起させる。
) Zinc reduction method Zn is added to this low melting point alloy for reduction, and Fe, Go
, the following reaction is caused while shaking the aqueous solution of the Ni compound vigorously.

Fe 2++Zn −+Fe +Zn 2 +還元され
た鉄はこの低融点金属中に電解法と同じようにZn、3
n、inで被覆され、安定粒子として存在する。
Fe 2++ + Zn − + Fe + Zn 2 + The reduced iron contains Zn, 3
n,in and exist as stable particles.

ハ)粉砕法 Fc、Qo、Niの単体または合金のいずれにも適用で
きる方法であって、これらの金属を上記低融点合金中で
粉砕する。粉砕によって生成した金属の表面は低融点合
金中で3n、zn、Inと優先的に接触し、これらの金
属で被覆される。粉砕が進行し、超微粉化する場合でも
同じ現象が進行する。
C) Grinding method This method can be applied to Fc, Qo, and Ni alone or to their alloys, and these metals are ground in the above-mentioned low melting point alloy. The surface of the metal produced by pulverization comes into preferential contact with 3n, zn, and In in the low melting point alloy and is coated with these metals. The same phenomenon occurs even when pulverization progresses and becomes ultra-fine.

粉砕装置は種々の形式があるが、要は溶融合金中で粉砕
できる形式ならばよい。
There are various types of crushing equipment, but any type that can crush in molten alloy will suffice.

以上イ)、D)、ハ)の方法を単独または組合せること
により親媒性コロイドが得られる。
A hydrophilic colloid can be obtained by using the above methods A), D), and C) alone or in combination.

D、磁性流体の性質 分散液のレオロジー 分散粒子は粉砕1稈で、工業的には粒径100〜200
人(10〜20I11μ)にまで微粉砕されるが、50
00人(500mμ)になるとすでにコロイド粒子とし
て挙動するといわれる。粒子の形状によっても違うが、
分散粒子の濃度の増大に伴ってニュートン流体的性質か
らチクソトロピー的流体に性質が変化する。りなわら、
静止時には流動しないが、外力が加わると容易に流動す
る降伏点をもつ流体になる。
D. Properties of magnetic fluid The rheology of the dispersion The dispersion particles are pulverized to 1 culm, and industrially the particle size is 100 to 200.
It is finely pulverized to the size of a person (10-20I11μ), but 50
It is said that when the particle size reaches 0.00 people (500 mμ), it already behaves as a colloidal particle. Although it varies depending on the shape of the particles,
As the concentration of dispersed particles increases, the properties change from Newtonian fluid properties to thixotropic fluid properties. Rinawara,
Although it does not flow when it is at rest, it becomes a fluid with a yield point that easily flows when an external force is applied.

、これを図で定性的に示すと第2図に示したような性質
になる。
, if this is shown qualitatively in a diagram, the properties will be as shown in Figure 2.

■・・・流速 p・・・外力 この分散液を磁場に置くと第3図に示ずにうにな変化が
見られる。すなわち、磁場の作用がないと第3図−aの
ように容器1の中の単なる分散液体3であるが、磁石2
により磁場が作用づると分散質の淵1哀が小さいどきは
第3図−bのように磁石2に吸い寄せられた成分(分散
質)の濃度の大きい部分Aと磁石の影響を受けない成分
(分散媒)を主とする部分Bに分離する。分散質の濃度
が大きいと、はとんど分離せずに、第3図−〇のように
磁石2に吸い寄せられる。部分Aは高透磁性粒子が最小
の分散媒を伴うて濃縮された部分であり、部分Bは余剰
の分散媒からなる部分といえる。濃縮された部分の粒子
濃度は、粒子の形状と粒径と磁場の強さにより決まる。
(2) Flow rate p...External force When this dispersion is placed in a magnetic field, a change is observed, not shown in Figure 3. That is, without the action of a magnetic field, the liquid 3 in the container 1 is simply dispersed as shown in Figure 3-a, but the magnet 2
When a magnetic field is applied, as shown in Fig. 3-b, when the edge of the dispersoid is small, there is a part A with a large concentration of the component (dispersoid) attracted to the magnet 2, and a part A that is not affected by the magnet ( It is separated into part B, which mainly contains dispersion medium). When the concentration of the dispersoids is high, they are hardly separated and are attracted to the magnet 2 as shown in Figure 3-0. Part A can be said to be a part where highly permeable particles are concentrated with a minimum amount of dispersion medium, and part B can be said to be a part consisting of surplus dispersion medium. The particle concentration in the concentrated part is determined by the shape and size of the particles and the strength of the magnetic field.

したがって、粒子形状と粒径が目標値に達した後、充分
高い磁場中におき、余分の分散媒を分離除去する手段と
して応用することもできる。
Therefore, after the particle shape and particle size reach target values, it can be placed in a sufficiently high magnetic field and applied as a means for separating and removing excess dispersion medium.

実施例 82Ga −12Sn −6Znの合金(m、p、は1
5.7℃)中で鉄を粉砕し、濃度7%懸濁させた分散体
は、18℃で確実にチクソトロピー性を示し、500℃
に加熱後も変化のない磁性流体であった。
Example 82Ga-12Sn-6Zn alloy (m, p are 1
A dispersion in which iron is ground and suspended at a concentration of 7% at 5.7°C) exhibits thixotropic properties reliably at 18°C, and at 500°C.
The magnetic fluid remained unchanged even after heating.

この分散媒が電気伝導性であることは他の磁性流体にな
い特徴である。
The fact that this dispersion medium is electrically conductive is a feature not found in other magnetic fluids.

その他この発明で用いるQa系低融合金に対抗する材料
どして水銀とNa −に合金が挙げられる。これらを分
散媒として恐らく類似の手段で類似の磁性流体が製造で
きるものと推定できるが、すでに説明したように水銀は
蒸気圧が大きいうえ、その毒性が大きく、Na −に合
金は非常に不安定にな物質であるので開放状態で使用す
ることはできない。したがって、これらの金属は実用上
の制限が大きい。それらに比して、この発明で用いるQ
a系合金は実用的な分散媒である。
Other materials that can compete with the Qa-based low alloy used in the present invention include alloys of mercury and Na -. It is presumed that similar magnetic fluids can be produced using similar methods using these as dispersion media, but as already explained, mercury has a high vapor pressure and is highly toxic, and its alloys with Na - are extremely unstable. Because it is an open substance, it cannot be used in an open state. Therefore, these metals have significant practical limitations. Compared to those, Q used in this invention
A-based alloys are practical dispersion media.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Fe、co、NiのT/θfとIs/Ioの
関係を示すグラフ、 第2図は、ヂクソトロピー流体の性質を示ずグラフ、 第3図−a−Cは、この発明の流体の性質を示す説明図
を示す。 1・・・容器、2・・・磁石、3・・・磁性流体、特許
出願人 四周 武人ぽか2名 代理人 弁理士 小 松 秀 岳 代理人 弁理士 旭 宏 第1図 第2−辺 23 i4 牙31”dl−o−牙3 E−c2ノ
Fig. 1 is a graph showing the relationship between T/θf and Is/Io of Fe, co, and Ni. Fig. 2 is a graph showing the properties of dixotropic fluid. Fig. 3-a-C is a graph showing the relationship between T/θf and Is/Io of Fe, co, and Ni. An explanatory diagram showing properties of fluid is shown. 1... Container, 2... Magnet, 3... Magnetic fluid, Patent applicant Yoshu Taketo Poka 2 agents Patent attorney Hide Komatsu Gaku agent Patent attorney Hiroshi Asahi Figure 1 Figure 2-Side 23 i4 Fang31”dl-o-Fang3 E-c2ノ

Claims (1)

【特許請求の範囲】[Claims] 透磁率が大で、Zn、3n1 )nと濡れ易い表面を有
する微粉末が、Zn 、SnおよびInからなる群のう
ち一種以上とQaとからなる低融点合金である分散媒中
に分散していることを特徴とする磁性流体。
A fine powder with high magnetic permeability and a surface that is easily wetted with Zn, 3n1)n is dispersed in a dispersion medium that is a low melting point alloy consisting of one or more of the group consisting of Zn, Sn and In and Qa. A magnetic fluid characterized by:
JP3137684A 1984-02-23 1984-02-23 Magnetic fluid Granted JPS60177098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3137684A JPS60177098A (en) 1984-02-23 1984-02-23 Magnetic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3137684A JPS60177098A (en) 1984-02-23 1984-02-23 Magnetic fluid

Publications (2)

Publication Number Publication Date
JPS60177098A true JPS60177098A (en) 1985-09-11
JPH0257115B2 JPH0257115B2 (en) 1990-12-04

Family

ID=12329529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3137684A Granted JPS60177098A (en) 1984-02-23 1984-02-23 Magnetic fluid

Country Status (1)

Country Link
JP (1) JPS60177098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61244004A (en) * 1985-04-22 1986-10-30 Takeo Nishikawa Magnetic fluid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738005U (en) * 1993-12-20 1995-07-14 三栄工業株式会社 Waste container for drainers in the bathhouse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61244004A (en) * 1985-04-22 1986-10-30 Takeo Nishikawa Magnetic fluid

Also Published As

Publication number Publication date
JPH0257115B2 (en) 1990-12-04

Similar Documents

Publication Publication Date Title
Chen et al. Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines
US4094804A (en) Method for preparing a water base magnetic fluid and product
Schuele Preparation of fine particles from bi-metal oxalates
CN112207285A (en) Preparation method and application of powder material
JPH1197230A (en) Magnetic fluid and its manufacture
Bouremana et al. Crystal structure, microstructure and magnetic properties of Ni nanoparticles elaborated by hydrothermal route
Ayers et al. Very fine metal powders
JPS6139369B2 (en)
JPS60177098A (en) Magnetic fluid
JP4989642B2 (en) Conductive fluid containing millimeter-scale magnetic particles
JP3482420B2 (en) Graphite-coated metal particles and method for producing the same
JPS61244004A (en) Magnetic fluid
JP4989643B2 (en) Conductive fluid containing magnetic fine particles
US4544463A (en) Method for producing equiaxed iron or iron alloy particles
Chang et al. Preparation of Co/Ag nanocompound fluid using ASNSS with aid of ultrasonic orthogonal vibration
JP2004244484A (en) Heat transfer medium
US2336470A (en) Separation of materials of different specific gravities and media therefor
US3409549A (en) Compositions and articles including non-pyrophoric microparticles
JPS61112307A (en) Manufacture of magnetic fluid
Popplewell et al. The long term stability of magnetic liquids for energy conversion devices
US4540477A (en) Apparatus for producing acicular or equiaxed iron or iron alloy particles
KR102222878B1 (en) Manufacturing method of magnetic alloy
Smith CCXXXII.—Sintering: its nature and cause
Dixon et al. The effect of the addition of antimony on the physical and magnetic properties of iron particles in mercury
CN108994292A (en) A kind of method of modifying of low-melting-point metal