JPS60175588A - Carbon dioxide recovery apparatus - Google Patents

Carbon dioxide recovery apparatus

Info

Publication number
JPS60175588A
JPS60175588A JP59032051A JP3205184A JPS60175588A JP S60175588 A JPS60175588 A JP S60175588A JP 59032051 A JP59032051 A JP 59032051A JP 3205184 A JP3205184 A JP 3205184A JP S60175588 A JPS60175588 A JP S60175588A
Authority
JP
Japan
Prior art keywords
carbon dioxide
pipe
condenser
water
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59032051A
Other languages
Japanese (ja)
Inventor
Tetsuro Mikuni
三国 哲朗
Kazuya Hagiwara
萩原 和弥
Heihachi Harashina
原科 平八
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP59032051A priority Critical patent/JPS60175588A/en
Publication of JPS60175588A publication Critical patent/JPS60175588A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To perform the self-feeding of carbon dioxide used in preparing potable water, by providing a gas extraction apparatus and a dissolving and absorbing apparatus to the confluent pipe communicated with the gas extraction pipe connected to each condenser in the high temp. stage side of an evaporation type seawater desalting apparatus so as to successively arrange both apparatuses on the downstream side. CONSTITUTION:Evaporators 4 each equipped with a flash box 1, a demister 2 and a condenser 3 are connected in a multi-stage fashion and seawater is introduced into the condenser 3 of each evaporator 4 from one end side thereof and withdrawn from the other end side thereof and, after heated by a main heater, evaporated while sent to the flash box 1 of each evaporator 4 in the other end side thereof. Gas extraction pipings 5 are respectively arranged to the steam sides of the condensers 3 of plural evaporators 4 in the high temp. stage side H being the other end side thereof and met to form a confluent pipe 6 while the ejector 8 connected to a water supply pipe 7 is provided to said confluent pipe 6 and a pipeline 9 is connected to a dissolving tank 10 where carbon dioxide is dissolved and absorbed from non-condensible gas containing carbon dioxide.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は海水淡水化装置から発生する炭酸ガスを回収す
る炭酸ガス回収装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a carbon dioxide recovery device for recovering carbon dioxide gas generated from a seawater desalination device.

「従来技術」 海水から淡水を製造する方法には蒸発法、脱法等各種の
方法があるが、蒸発法では第1図に示ずような海水淡水
化装置を用いでいる。ずなわら、フラッジlボックスa
1デミスタb及び凝縮器Cを備えた蒸発器dを多段に連
設し、海水を蒸気タービン等により駆動されるポンプ9
により後段側の蒸発器dの凝縮器C内へ送り、順次前段
側の蒸発器dの凝縮器Cまで通過させた後、主加熱器e
で加熱し、今度は前記前段側の蒸発器dのフラッシュボ
ックスaに送って加熱された海水を負圧下にさらして蒸
発させると、蒸発した水蒸気はデミスタbを通過して水
滴が除去され、凝縮器Cにおいて該凝縮器C内を通過す
る前記海水により冷却されて水蒸気が凝縮し、受部fに
蒸留水が溜まる。
``Prior Art'' There are various methods for producing fresh water from seawater, such as evaporation methods and decontamination methods.The evaporation method uses a seawater desalination apparatus as shown in FIG. Zunawara, Fludge L Box A
1 evaporator d equipped with a demister b and a condenser C is connected in multiple stages, and seawater is pumped by a pump 9 driven by a steam turbine or the like.
It is sent to the condenser C of the evaporator d on the rear stage side, and then passed to the condenser C of the evaporator d on the front stage side, and then transferred to the main heater e.
The heated seawater is then sent to the flash box a of the evaporator d on the previous stage and exposed to negative pressure to evaporate.The evaporated water vapor passes through the demister b, water droplets are removed, and it condenses. In the vessel C, the water vapor is cooled by the seawater passing through the condenser C and condensed, and distilled water accumulates in the receiving part f.

第1段の蒸発器dを通過した加熱海水は次段の蒸発器d
に入ってフラッシュボックスaで蒸発され、前記と同様
の過程で蒸留水が生成されて受部「に溜り、順次後段ま
での各蒸発器dに−3いて同様に蒸留水が生成される。
The heated seawater that has passed through the first stage evaporator d is transferred to the next stage evaporator d.
Distilled water is generated in the same process as described above and collected in the receiving part ``3'', and is sequentially transferred to each of the subsequent evaporators d to generate distilled water in the same way.

更に、各段の凝縮器Cに非凝縮性のガス例えば海水中に
溶存していた空気の成分である窒素、酸素、炭酸ガス等
を大気中に排出する抽気配管11を接続し、各蒸発器d
内の負圧度を高めて熱光率を向上させると共に水蒸気を
凝縮器Cに導くようにして凝縮効率を高めている。
Furthermore, a bleed pipe 11 is connected to the condenser C of each stage for discharging non-condensable gas such as nitrogen, oxygen, carbon dioxide, etc., which are components of air dissolved in seawater, into the atmosphere. d
The degree of negative pressure inside the condenser is increased to improve the thermal luminosity and the water vapor is guided to the condenser C to increase the condensation efficiency.

このようにして生成された蒸留水は蒸留水管iによりポ
ンプ等で抜き出され、飲料水、工業用水、潅概用水等に
使用される。
The distilled water thus produced is extracted by a pump or the like through the distilled water pipe i, and is used as drinking water, industrial water, irrigation water, or the like.

しかし、該海水淡水化装置によって10られる蒸留水を
飲料用にするには水の硬度を高める必要があり、その一
手段として従来蒸留水に炭酸ガスを溶解させ更に炭酸カ
ルシウムあるいは水酸化カルシウムを添加し反応せしめ
るという方法がとられてきたが、それには炭酸ガス発生
装置を備えていなtノればならず、設(lili費及び
コストが高価になっていた。
However, in order to make the distilled water produced by the seawater desalination equipment potable, it is necessary to increase the hardness of the water, and one way to do this is to dissolve carbon dioxide gas in distilled water and then add calcium carbonate or calcium hydroxide. A method has been used in which a carbon dioxide gas generator is reacted, but this requires the provision of a carbon dioxide gas generating device, and the installation costs and costs are high.

[発明の目的コ 本発明は蒸発式海水淡水化装置から得られる蒸留水より
飲料水を製造する際に使用する炭酸ガスを自給しlF?
るようにすることを目的とする。
[Purpose of the Invention] The present invention provides self-sufficient carbon dioxide gas used in producing drinking water from distilled water obtained from an evaporative seawater desalination device.
The purpose is to ensure that

[発明の構成] 本発明は、蒸発式海水淡水化装置の高温段側の各凝縮器
に油気装置を夫々接続し、該油気配管と連通uしめた合
流管に油気装置及び溶解吸収装置を順次設けることによ
り、蒸発式海水淡水化装置の高温段側で発生する炭酸ガ
スリッチの非凝縮性ガス中の炭酸ガスを溶液状態で回収
し、該非凝縮性ガス中に含まれる炭酸ガスを熱温水の飲
料水化処理に使用し得るようにし、炭酸ガス発生設備等
を不要とした炭酸ガス回収装置にかかるものである。
[Structure of the Invention] The present invention provides an oil and gas device connected to each condenser on the high-temperature stage side of an evaporative seawater desalination device, and an oil and gas device and a dissolving/absorbing device connected to a confluence pipe that communicates with the oil and gas pipe. By installing the devices in sequence, the carbon dioxide in the carbon dioxide-rich non-condensable gas generated on the high-temperature stage side of the evaporative seawater desalination device is recovered in a solution state, and the carbon dioxide contained in the non-condensable gas is heated. The present invention relates to a carbon dioxide recovery device that can be used to process hot water into drinking water and eliminates the need for carbon dioxide generation equipment.

[実 施 例] 以下、本発明の実施例を図面を参照しつつ説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の装置の第1実施例を示すもので、フラ
ッシュボックス1、デミスタ2及び凝縮器3を備えた蒸
発器4を多段に連設し、該各蒸発器4の凝縮器3に海水
を一端側から導入し他端側から抜き出し、主加熱器で加
熱した後前記他端側の蒸発器4のフラッシュボックス1
へ送って、蒸発させ、順次前記・一端側の蒸発器4のフ
ラッシュボックス1まで送り蒸発させるようにしである
FIG. 2 shows a first embodiment of the apparatus of the present invention, in which evaporators 4 equipped with a flash box 1, a demister 2, and a condenser 3 are arranged in series, and each evaporator 4 has a condenser 3. Seawater is introduced from one end side, extracted from the other end side, heated by the main heater, and then transferred to the flash box 1 of the evaporator 4 on the other end side.
The liquid is then sent to the flash box 1 of the evaporator 4 at one end, where it is evaporated.

前記他端側すなわち高温段側Hの複数の蒸発器4の各凝
縮器3の蒸気側に抽気配管5を夫々配設し、該各抽気配
管5を合流せしめて合流管6どなし、該合流管6に水供
給管7と接続したニジ1クタ8を設け、該エジェクタ8
の出口に接続した管路9を溶FIv檜10に連結し、炭
酸ガスを含有する非凝縮性ガスから炭酸ガスを溶解帳収
しくqるようにしである。
A bleed pipe 5 is disposed on the steam side of each condenser 3 of the plurality of evaporators 4 on the other end side, that is, on the high temperature stage side H, and the bleed pipes 5 are merged to form a merging pipe 6, A pipe 6 is provided with an ejector 8 connected to a water supply pipe 7, and the ejector 8
A conduit 9 connected to the outlet of the molten FIv pipe 10 is connected to the melt FIv cypress 10 so that carbon dioxide gas can be dissolved and dissolved from the non-condensable gas containing carbon dioxide gas.

図中、11は炭酸ガス溶液供給管、12は非吸収性ガス
排出1j】の排ガス管であり、図示してないが低温段側
の各蒸発器は抽気配管により夫々連通せしめ、最終段の
凝縮器エジェクタ13により人気放出し1qるにうにし
である。
In the figure, 11 is a carbon dioxide gas solution supply pipe, 12 is a non-absorbent gas discharge pipe 1j], and although not shown, each evaporator on the low-temperature stage side is connected to each other by a bleed pipe, and the final stage condensation The popular ejector 13 releases 1q of sea urchins.

以上のように構成したので、各蒸発器4内を低温段側り
から高温段側Hへと徐々に加熱された海水は主加熱器に
より更に加熱された後、高温段側1」の最初のフラッシ
ュボックス1に送られる。
With the above configuration, the seawater that has been gradually heated inside each evaporator 4 from the low temperature stage side to the high temperature stage side H is further heated by the main heater, and then heated to the first part of the high temperature stage side 1. Sent to flash box 1.

該加熱海水中に溶存していた空気の成分である窒素、酸
素、炭酸ガス等は加熱により放出され易くなっており、
且つエジェクタ8によ・り合流管6及び各抽気配管5、
凝縮器3及び蒸発器4内が負圧となっているため、加熱
海水中の水の蒸発が促進されると共に前記溶存空気成分
の放出も促進される。
Air components such as nitrogen, oxygen, and carbon dioxide that were dissolved in the heated seawater are easily released by heating.
and a confluence pipe 6 and each bleed pipe 5 by an ejector 8,
Since the inside of the condenser 3 and the evaporator 4 are under negative pressure, the evaporation of water in the heated seawater is promoted, and the release of the dissolved air component is also promoted.

最初の蒸発器4内で蒸発した水蒸気及び他のガス成分は
デミスタ2を通って水滴が分離された後、凝縮器3に至
り、該凝縮器3において、該凝縮器3内を流れる海水に
より冷却され、水蒸気は凝縮して受器に溜まるが、他の
ガス成分、窒素、酸素、炭酸ガス等は非凝縮性であるた
め気体のまま抽気配管5により抽気される。
The water vapor and other gas components evaporated in the first evaporator 4 pass through the demister 2, where water droplets are separated, and then reach the condenser 3, where they are cooled by seawater flowing through the condenser 3. The water vapor condenses and accumulates in the receiver, but other gas components such as nitrogen, oxygen, carbon dioxide, etc. are non-condensable and are therefore extracted as gases through the extraction pipe 5.

次に、一部の水が蒸発し及び溶存空気成分のかなりの部
分が除かれた海水は、次段の蒸発器4のフラッシュボッ
クス1に入り、前記と同様に蒸発、他のガス成分の放出
、水蒸気の凝縮及び非凝縮性ガスの抽気が行われる。
Next, the seawater from which some of the water has evaporated and a considerable part of the dissolved air components has been removed enters the flash box 1 of the next-stage evaporator 4, where it evaporates in the same manner as described above and releases other gas components. , condensation of water vapor and extraction of non-condensable gases are carried out.

以下、前記と同様に最終段まで水蒸気の凝縮及び非凝縮
性ガスの抽気が行なわれ、蒸留水と非凝縮性ガス及び澹
縮海水とが得られる。
Thereafter, water vapor is condensed and non-condensable gas is extracted until the final stage in the same manner as described above, and distilled water, non-condensable gas and condensed seawater are obtained.

以上の工程において、各クラッシュボックス1における
海水の温度は最初の段において最も高く、順次低下して
最終段において最も低くなり炭酸ガスの抽気は高温段側
1〜1において高濃度に且つ収率よく回収される。
In the above process, the temperature of the seawater in each crush box 1 is highest in the first stage, decreases sequentially, and becomes the lowest in the final stage, and the carbon dioxide gas is extracted at high concentration and with good yield in the high temperature stages 1 to 1. It will be collected.

ここで4!1られた炭酸ガスを多聞に含む非凝縮性ガス
は1ジ1クタ8を通過する水により吸引されて管路9を
通り溶解槽1oに入る。この際、水に比較的溶解し易い
炭酸ガスは殆ど溶解吸収され、又他の非吸収性のガス成
分は溶解1ff10の上部に設けられた排ガス管12よ
り大気中に放散される。この炭酸ガスを吸収する際の溶
媒は水に限らず、炭酸ガスを吸収し易く調整したアルカ
リ溶液(例えば水酸化カルシウム等を溶解した溶液)を
使用してもよい。
The non-condensable gas containing a large amount of carbon dioxide gas is sucked by the water passing through the diode 8 and passes through the pipe line 9 and enters the dissolving tank 1o. At this time, most of the carbon dioxide gas, which is relatively easily soluble in water, is dissolved and absorbed, and other non-absorbable gas components are released into the atmosphere from the exhaust gas pipe 12 provided at the top of the melt 1ff10. The solvent for absorbing carbon dioxide gas is not limited to water, and an alkaline solution adjusted to easily absorb carbon dioxide gas (for example, a solution containing calcium hydroxide or the like) may be used.

このようにして溶液状態で回収された炭酸溶液を、前記
各凝縮器3の受器に溜った蒸溜水を抜き出す蒸溜水管内
に添加し、後工程で水酸化カルシウム等を添加すれば、
容易に軟水化でき飲料水が1りられる。
If the carbonic acid solution thus recovered in a solution state is added to the distilled water pipes from which the distilled water accumulated in the receivers of the respective condensers 3 is extracted, and calcium hydroxide etc. are added in a subsequent step,
Water can be easily softened and can be used as drinking water.

第3図は本発明の装置の第2実施例であり、前記第1実
施例と略同様の構成において、合流管6の下流側端部を
バロメトリックコンデンサ14に導入すると共に、各凝
縮器3の受器に溜った蒸溜水を抜き出す蒸留水管15の
ポンプ16出側を分岐せしめた蒸溜水枝管17の下流側
端部を前記バロメトリックコンデンサ14に導入し、更
に該バロメトリックコンデンサ14の上部に排気管18
を接続し、該排気管18に1ジエクタ19を設けて、前
記バロメトリックコンデンサ14内を負Hにし得゛るよ
うにしてあり、又該バロメトリックコンデンサ14の底
部に液抜き管2oを接続し炭酸ガスを溶解吸収した溶液
をタンク21に排出し得るようにしである。
FIG. 3 shows a second embodiment of the device of the present invention, in which the downstream end of the merging pipe 6 is introduced into the barometric condenser 14, and each condenser 3 has a configuration substantially similar to that of the first embodiment. The downstream end of a distilled water branch pipe 17, which is branched from the outlet side of the pump 16 of the distilled water pipe 15 which extracts the distilled water accumulated in the receiver, is introduced into the barometric condenser 14. exhaust pipe 18
A dioctor 19 is provided in the exhaust pipe 18 so that the inside of the barometric condenser 14 can be made negative H, and a drain pipe 2o is connected to the bottom of the barometric condenser 14. This allows the solution in which carbon dioxide gas has been dissolved and absorbed to be discharged into the tank 21.

本実施例の場合には、高温段側Hの蒸発器4から回収し
た炭酸ガスリッチの非凝縮性ガスと、該蒸発器4で凝縮
された蒸溜水の一部とをバロメトリックコンデンサ14
において接触せしめ、炭酸ガスを蒸留水に溶解吸収させ
、炭酸ガスを吸収した溶液を液抜ぎ管2oよりタンク2
1に回収し貯蔵すると共に、非吸収性のガスをエジェク
タ19により排気することにより該バロメトリックコン
デンサ14内を負圧とし、更に、前記各凝縮器3からの
炭酸ガスリッヂの非凝縮性ガスの抽気を行なう。
In the case of this embodiment, the carbon dioxide rich non-condensable gas recovered from the evaporator 4 on the high temperature stage side H and a portion of the distilled water condensed in the evaporator 4 are transferred to the barometric condenser 14.
The carbon dioxide gas is dissolved and absorbed in distilled water, and the solution that has absorbed carbon dioxide gas is transferred from the liquid drain pipe 2o to the tank 2.
At the same time, the non-absorbable gas is exhausted by the ejector 19 to create a negative pressure in the barometric condenser 14, and the non-condensable gas of the carbon dioxide ridge from each condenser 3 is extracted. Do the following.

第4図は本発明の第3実施例であり、前記第1実施例と
略同様の構成において、合流管6に水蒸気凝縮用のコン
デンサ22及び真空ポンプ23を順次下流側に設け、更
に該合流管6の真空ポンプ23下流側を吸収塔24の下
部に接続し、該吸収塔24の上部に水供給管25を接続
しである。図中26は液抜き管、27は非吸収性ガスの
放散管を示す。
FIG. 4 shows a third embodiment of the present invention, in which a condenser 22 and a vacuum pump 23 for water vapor condensation are sequentially provided in the downstream side of the confluence pipe 6, and the condenser 22 and vacuum pump 23 are sequentially provided on the downstream side of the confluence pipe 6. The downstream side of the vacuum pump 23 of the pipe 6 is connected to the lower part of the absorption tower 24, and the water supply pipe 25 is connected to the upper part of the absorption tower 24. In the figure, 26 indicates a liquid drain pipe, and 27 indicates a non-absorbable gas diffusion pipe.

本実施例の場合には、各蒸発器4の凝縮器3から真空ポ
ンプ23により抽気された炭酸ガスリッチの非凝縮性ガ
スは、コンデンサ22を通過する際若干同伴する水蒸気
が殆ど完全に除去された後、吸収塔24内に送り込まれ
、該吸収塔24内を下から上へ上昇する間に水供給管2
5より該吸収塔24の上部から導入されて上から下へ下
降する水と向流式に接触して、炭酸ガスが水に溶解吸収
され、液抜き管26より流れ出る。−力水に吸収され難
いガスは放散管27より大気放出される。
In the case of this embodiment, when the carbon dioxide-rich non-condensable gas extracted from the condenser 3 of each evaporator 4 by the vacuum pump 23 passes through the condenser 22, the water vapor that is accompanied to some extent is almost completely removed. After that, the water is fed into the absorption tower 24, and while rising inside the absorption tower 24 from the bottom to the top, the water supply pipe 2
5 is introduced from the upper part of the absorption tower 24 and comes into contact with water flowing downward from above in a countercurrent manner, carbon dioxide gas is dissolved and absorbed by the water, and flows out from the drain pipe 26. - Gases that are difficult to be absorbed by the power water are discharged into the atmosphere from the diffusion pipe 27.

なお、本発明の炭酸ガス吸収装置は上述の実施例のみに
限定されるものではなく、本発明の要旨を逸脱しない範
囲内において種々変更を加え得ることは勿論である。
It should be noted that the carbon dioxide absorption device of the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

[発明の効果] 以上述べたように本発明の炭酸ガス回収装置によれば、
高温段側の蒸発器から発生する炭酸ガスリッチの非凝縮
性ガスを捕集し、水或は溶液に炭酸ガスを溶解吸収させ
るようにしたので、炭酸ガスを炭酸ガス以外のガス成分
と分離して回収することができ、該回収した炭酸ガス溶
解吸収溶液を蒸留水の飲料水化処理に使用すれば、炭酸
ガスの自給が可能となるため従来必要とされていた炭酸
ガス発生設備が不要となり、又、溶液として回収できる
ので貯蔵可能となり、海水淡水化装置の運転停止時にも
炭酸ガスの供給が可能となると共に炭酸ガスの安定供給
が可能となる等、種々の優れた効果を発揮する。
[Effects of the Invention] As described above, according to the carbon dioxide recovery device of the present invention,
The carbon dioxide-rich non-condensable gas generated from the evaporator on the high-temperature stage side is collected, and the carbon dioxide gas is dissolved and absorbed in water or a solution, so that the carbon dioxide gas can be separated from gas components other than carbon dioxide gas. If the recovered carbon dioxide gas dissolving and absorbing solution is used to convert distilled water into drinking water, self-sufficiency of carbon dioxide becomes possible, eliminating the need for carbon dioxide generation equipment that was previously required. In addition, since it can be recovered as a solution, it can be stored, and it exhibits various excellent effects, such as being able to supply carbon dioxide gas even when the seawater desalination equipment is stopped, and making it possible to stably supply carbon dioxide gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な蒸発式海水淡水化装置の一例を示す説
明図、第2図は本発明の装置の第1実施例の説明図、第
3図は本発明の装置の第2実施例の説明図、第4図は本
発明の装置の第3実施例の説明図である。 流管、8.19は1ジエクタ、10は溶解櫓、11は炭
 7酸ガス溶液供給管、14はバロメトリックコンデ 
悸ンサ、15は蒸留水管、22はコンデンサ、23は真
空ポンプ、24は吸収塔を示す。 特 許 出 願 人 石川島播磨重工業株式会社
FIG. 1 is an explanatory diagram showing an example of a general evaporative seawater desalination device, FIG. 2 is an explanatory diagram of a first embodiment of the device of the present invention, and FIG. 3 is a diagram of a second embodiment of the device of the present invention. FIG. 4 is an explanatory diagram of a third embodiment of the apparatus of the present invention. Flow tube, 8.19 is 1 dioctor, 10 is melting tower, 11 is carbonic acid gas solution supply pipe, 14 is barometric condenser.
15 is a distilled water pipe, 22 is a condenser, 23 is a vacuum pump, and 24 is an absorption tower. Patent application Hitoshi Kawajima Harima Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1) 蒸発式加水淡水化装置の高温段側の各凝縮器に抽
気配管を夫々接続し、該各抽気配管と連通せしめた合流
管に抽気装置及び溶解吸収装置を順次下流側に設けたこ
とを特徴とする炭酸ガス回収装置。
1) A bleed pipe is connected to each condenser on the high-temperature stage side of the evaporative water desalination equipment, and a bleed device and a dissolution/absorption device are sequentially installed downstream in a confluence pipe that communicates with each bleed pipe. Characteristic carbon dioxide recovery equipment.
JP59032051A 1984-02-22 1984-02-22 Carbon dioxide recovery apparatus Pending JPS60175588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59032051A JPS60175588A (en) 1984-02-22 1984-02-22 Carbon dioxide recovery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59032051A JPS60175588A (en) 1984-02-22 1984-02-22 Carbon dioxide recovery apparatus

Publications (1)

Publication Number Publication Date
JPS60175588A true JPS60175588A (en) 1985-09-09

Family

ID=12348061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59032051A Pending JPS60175588A (en) 1984-02-22 1984-02-22 Carbon dioxide recovery apparatus

Country Status (1)

Country Link
JP (1) JPS60175588A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570784A (en) * 1992-12-24 1996-11-05 Allied Wholesale, Inc. Tool organizer and deployment apparatus
JP2014097464A (en) * 2012-11-15 2014-05-29 Jfe Engineering Corp Method and apparatus for production of pure water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570784A (en) * 1992-12-24 1996-11-05 Allied Wholesale, Inc. Tool organizer and deployment apparatus
JP2014097464A (en) * 2012-11-15 2014-05-29 Jfe Engineering Corp Method and apparatus for production of pure water

Similar Documents

Publication Publication Date Title
US3972693A (en) Process for the treatment of phenol-containing waste water from coal degassing or gasification processes
EP0933331B1 (en) Evaporative concentration apparatus for waste water
EP1921281B1 (en) Seawater desalinating apparatus using blowdown water of heat recovery steam generator
US8430947B2 (en) Water recovery from steam-assisted production
US20070215453A1 (en) Method for producing a distillate stream from a water stream containing at least one dissolved solid
US20150232348A1 (en) Water desalination and brine volume reduction process
ES2886591T3 (en) Method to recycle mother liquor in PTA refining unit
US20110067610A1 (en) Water recovery from flue gas in steam-assisted production
JP2012525529A (en) Power plant and water treatment plant with CO2 capture
JPH0920747A (en) Method and apparatus for recovering condensible matter from vapor from urea vacuum evaporator
US3953972A (en) Geothermal energy recovery process
CN101745240B (en) Method and device for pumping out incondensable gas between effects of multi-effect distillation system
CN102079552B (en) Low-temperature multi-effect evaporation seawater desalination system with falling film condenser
US3468761A (en) Staged vapor-liquid operated ejector arrangement for multi-stage evaporator system
US20200338501A1 (en) Membrane water treatment system and method thereof
FR2472942A1 (en) MULTI-STAGE EVAPORATION PLANT WITH INTEGRATED HEAT RECYCLING SYSTEM
US4102650A (en) Process feed and effluent treatment systems
JPS60175588A (en) Carbon dioxide recovery apparatus
US6497748B2 (en) Method and apparatus for removing non-condensible gas from a working fluid in a binary power system
US3364125A (en) Waste heat flash evaporator in ion pressure turbine condenser system
GB1260214A (en) Method and apparatus for the desalination of water
JPS60175585A (en) Recovery of carbon dioxide
US6517607B2 (en) Method and apparatus for selective removal of a condensable component from a process stream with latent heat recovery
US4534174A (en) Geothermal reboiler apparatus and method
KR100588969B1 (en) Ventilation apparatus of desalination plant using distillation