JPS60174736A - Method for concentrating alcohol - Google Patents

Method for concentrating alcohol

Info

Publication number
JPS60174736A
JPS60174736A JP59028693A JP2869384A JPS60174736A JP S60174736 A JPS60174736 A JP S60174736A JP 59028693 A JP59028693 A JP 59028693A JP 2869384 A JP2869384 A JP 2869384A JP S60174736 A JPS60174736 A JP S60174736A
Authority
JP
Japan
Prior art keywords
alcohol
aqueous solution
reverse osmosis
osmosis membrane
soluble organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59028693A
Other languages
Japanese (ja)
Inventor
Shigemi Endou
遠藤 志げみ
Kakichi Ito
伊藤 嘉吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP59028693A priority Critical patent/JPS60174736A/en
Publication of JPS60174736A publication Critical patent/JPS60174736A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PURPOSE:To separate and concentrate effectively an alcohol from an aqueous solution of the alcohol to the permeated water side at a relatively low energy cost, by feeding the aqueous solution of the alcohol containing a soluble organic substance other than the alcohol to a reverse osmosis membrane of relatively low desalination ratio under pressure. CONSTITUTION:An alcohol is separated and concentrated from an aqueous solution thereof 2. In the process, a soluble organic substance 3, e.g. raffinose or lactose, other than the alcohol is present in the above-mentioned aqueous solution 2, which is fed to a reverse osmosis membrane 5 of <=90%, preferably 10- 80% desalination ratio under preferably <=20kg/cm<2> pressure to separate and concentrate the alcohol 6 on the permeated water side. The alcohol can be concentrated under a lower pressure by this method than by the well-known method, and this method is advantageous to energy cost. The unpermeated water side 7 is circulated, and a concentrated solution of the alcohol 6 is obtained on the permeated water side. Thus, the recovery ratio of the alcohol is high, and an aqueous solution of a lower alcohol in a low concentration at which the distillation method cannot be applied can be concentrated to a concentration at which the distillation method is applicable at a low cost.

Description

【発明の詳細な説明】 本発明はアルコールの濃縮方法に関するものであり・特
にメタノールやエタノールなどの低級アルコールの比較
的低濃度水溶液からアルコールを濃縮する方法に関する
ものであり・低脱塩率の逆浸透膜を用いて比較的低エネ
ルギーで効果的にアルコールを濃縮することを目的とす
る。従来からアルコール水溶液からアルコールを回収す
る場合・蒸留法が用いられている。蒸留法はアルコール
と水との沸点の差を利用してアルコールを回収するもの
であり・比較的高濃度のアルコール水溶液からアルコー
ルを回収する場合は有効な方法である。しかしながらた
とえはアルコール濃度が5%以下というような比較的低
濃度のアルコール水溶液の場合はそれだけ熱エネルギー
を多量に必要とするため工業的に採算がとれないという
欠点を有している。したがって近年においては比較的低
濃度のアルコール水溶液からアルコールを回収する場合
・逆浸透膜を用いる方法が試みられている。
Detailed Description of the Invention The present invention relates to a method for concentrating alcohol, and in particular to a method for concentrating alcohol from a relatively low concentration aqueous solution of a lower alcohol such as methanol or ethanol. The aim is to effectively concentrate alcohol with relatively low energy using a osmotic membrane. Distillation has traditionally been used to recover alcohol from an aqueous alcohol solution. The distillation method utilizes the difference in boiling point between alcohol and water to recover alcohol, and is an effective method for recovering alcohol from a relatively high concentration aqueous alcohol solution. However, in the case of an alcohol aqueous solution with a relatively low concentration, such as an alcohol concentration of 5% or less, a large amount of thermal energy is required, which has the disadvantage that it is not industrially profitable. Therefore, in recent years, attempts have been made to use reverse osmosis membranes to recover alcohol from relatively low concentration alcohol aqueous solutions.

すなわちたとえば逆浸透膜装置にアルコール水溶液を加
圧下で供給し・非透過水側にアルコール水溶液を循環し
ながら・逆浸透膜でアルコールの通過を阻止して・透過
水側で水を排除し・非透過水側でアルコールの濃縮液を
得ようとするものである。
In other words, for example, an alcohol aqueous solution is supplied under pressure to a reverse osmosis membrane device, the alcohol aqueous solution is circulated to the non-permeated water side, the passage of alcohol is blocked by the reverse osmosis membrane, water is removed on the permeated water side, and the non-permeated water is removed. The purpose is to obtain a concentrated alcohol solution on the permeate side.

しかしながらこの方法も以下のような種々の欠点を有し
ている。
However, this method also has various drawbacks as described below.

すなわちこの方法に適用できる逆浸透膜の種類が限定さ
れ(たとえば東し■製PE0−1000 )+かつ当該
膜の操作圧が5okg/cr6以上という比較的高圧な
のでエネルギーコスト的にけっして有利とはいえない。
In other words, the types of reverse osmosis membranes that can be applied to this method are limited (for example, PE0-1000 manufactured by Toshi ■), and the operating pressure of the membrane is relatively high at 5 ok/cr6 or higher, so although it is not advantageous in terms of energy costs, it is do not have.

また非透過水側にアルコール水溶液を循環し・当該循環
液のアルコール濃度をしだいに増加させようとするもの
であるから濃縮に時間がかかるという欠点もある。
Furthermore, since the alcohol aqueous solution is circulated to the non-permeated water side and the alcohol concentration of the circulating liquid is gradually increased, there is also a drawback that concentration takes time.

さらに特にメタノールやエタノールなどの低級アルコー
ルと水との膜に対する挙動は一般に近似しておリーした
がって非透過水側でアルコールが濃縮できる膜を用いた
としても・透過水側にもアルコールが比較的多量に透過
するのでアルコールの回収率が低いという欠点を有して
いる。
Furthermore, the behavior of lower alcohols, such as methanol and ethanol, and water in a membrane is generally similar.Therefore, even if a membrane is used that can concentrate alcohol on the non-permeated water side, there will still be a relatively large amount of alcohol on the permeated water side. It has the disadvantage that the recovery rate of alcohol is low because it permeates through the water.

本発明者等はこの点に鑑み・逆浸透膜を用いて低コスト
でアルコールを濃縮する方法を種種検討した結果・アル
コール水溶液にアルコール以外の可溶性有機物を共存さ
せ・比較的低脱塩率の逆浸透膜に加圧下で供給すると・
アルコールが逆浸透膜を通過しやすくなり・したがって
透過水側でアルコールが濃縮できることうさらに当該透
過処理の際の操作圧はむしろ低圧のほうが透過側のアル
コール濃度が濃くなることを知見した。
In view of this, the present inventors have investigated various methods of concentrating alcohol at low cost using reverse osmosis membranes. - Allowing soluble organic substances other than alcohol to coexist in the alcohol aqueous solution. When supplied to the permeable membrane under pressure,
It has been found that alcohol can pass through the reverse osmosis membrane more easily and therefore alcohol can be concentrated on the permeate side, and that the alcohol concentration on the permeate side becomes higher when the operating pressure during the permeation treatment is lower.

本発明は上述の知見に基づくもので、アルコール水溶液
からアルコールを分離濃縮するにあたり・当該水溶液に
アルコール以外の可溶性有機物を共存させ脱塩率90%
以下の逆浸透膜に加圧下で供給することにより・アルコ
ールを透過水側で分離濃縮することを特徴とするアルコ
ールの濃縮方法に関するものである。
The present invention is based on the above-mentioned findings.In separating and concentrating alcohol from an aqueous alcohol solution, the aqueous solution is coexisted with soluble organic substances other than alcohol, resulting in a desalination rate of 90%.
The present invention relates to a method for concentrating alcohol, which is characterized in that alcohol is separated and concentrated on the permeated water side by supplying the following to a reverse osmosis membrane under pressure.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

従来の逆浸透膜によるアルコールの濃縮は非透過水側で
アルコールを濃縮するものであるが・本発明はアルコー
ル水溶液にアルコール以外の可溶性有機物を共存させて
逆浸透膜に加圧下で供給することにより・アルコールを
逆浸透膜に通過させ!透過水側でアルコールを濃縮する
ものであり・この点が従来の方法と相違するものである
Concentration of alcohol using conventional reverse osmosis membranes concentrates alcohol on the non-permeated water side, but in the present invention, soluble organic substances other than alcohol coexist in an alcohol aqueous solution and are supplied to the reverse osmosis membrane under pressure.・Alcohol passes through the reverse osmosis membrane! Alcohol is concentrated on the permeated water side; this point is different from conventional methods.

アルコール水溶液にアルコール以外の可溶性有機物を共
存させた場合tいかなる理由によりアルコールが逆浸透
膜を通過しやすくなるのかというと・おそらく水溶液中
の水分子が共存する有機物に強く親和するため・水分子
が有機物と随行するためと推察される。すなわちアルコ
ール水溶液に可溶性有機物を共存させると・水溶液中に
はアルコール分子と溶解有機物分子と水分子が存在する
こととなるが、当該水溶液を加圧下で逆浸透膜に供給す
ると・有機物分子は逆浸透膜を通過せずに非透過水側に
留まることとなる。一方アルコール分子と水分子は元来
逆浸透膜に通過しやすい性質を有しているが・前述した
ごとく水分子が有機物分子に強く親和するため水分子が
有機物に随行し・水分子の透過が抑制され・そのために
相対的にアルコール分子が逆浸透膜を通過しやすくなる
のであろうと考えられる。
When a soluble organic substance other than alcohol coexists in an alcohol aqueous solution, the reason why alcohol passes through the reverse osmosis membrane more easily is probably because the water molecules in the aqueous solution have a strong affinity for the coexisting organic substances. It is presumed that this is because it accompanies organic matter. In other words, when a soluble organic substance coexists in an alcohol aqueous solution, there are alcohol molecules, dissolved organic substance molecules, and water molecules in the aqueous solution, but when the aqueous solution is supplied to a reverse osmosis membrane under pressure, the organic molecules are absorbed by reverse osmosis. The water does not pass through the membrane and remains on the non-permeate side. On the other hand, alcohol molecules and water molecules originally have the property of easily passing through a reverse osmosis membrane, but as mentioned above, water molecules have a strong affinity for organic matter molecules, so water molecules accompany organic matter, and the permeation of water molecules becomes difficult. This is thought to be the reason why it is relatively easier for alcohol molecules to pass through the reverse osmosis membrane.

以上のような作用はあくまで推論であるが・メタノール
やエタノールクどの低級アルコールの水溶液を逆浸透膜
で透過処理する場合・可溶性有機物を共存させない場合
は・アルコールは非透過水側で濃縮される傾向にあるが
・可溶性有機物を共存させると確実にアルコ−、ルを透
過水側で濃縮できることは事実である。
Although the above effects are just speculations, when an aqueous solution of a lower alcohol such as methanol or ethanol is permeated through a reverse osmosis membrane, when soluble organic matter is not allowed to coexist, the alcohol tends to be concentrated in the non-permeated water side. However, it is true that alcohols and alcohols can be reliably concentrated on the permeate side if soluble organic substances are present.

本発明において使用する可溶性有機物はアルコール以外
のものであって・逆浸透膜を通過しにくいような比較的
高分子であり・かつ水に対する溶解度の大きいものであ
ればいかなるものも使用でき・たとえばラフイノーズp
乳糖tグルコースtフラクトース嘗シュークローズ=各
8アミノ酸ジエチレンジアミン四酢酸ナトリウム(HD
TA−4Na )などを用いることができる。また当該
可溶性有機物の溶解量は一般に多ければ多い程・アルコ
ールの透過性が大となり9通常は5チ(重量%)以上の
濃度となるようにアルコール水溶液に溶解する。
The soluble organic substance used in the present invention can be anything other than alcohol, as long as it is a relatively high molecular weight substance that is difficult to pass through a reverse osmosis membrane, and has a high solubility in water.For example, rough nose p
Lactose, glucose, fructose, sucrose = each 8 amino acids, sodium diethylenediaminetetraacetate (HD
TA-4Na) etc. can be used. In general, the larger the amount of the soluble organic substance dissolved, the greater the alcohol permeability.9 Usually, the soluble organic substance is dissolved in the alcohol aqueous solution to a concentration of 5% (wt%) or more.

なお・処理しようとするアルコール水溶液にもともと上
述したような可溶性有機物が共存している場合は・その
存在量が充分であればその一!ま透過処理することがで
き・またその存在量が不足している場合は、不足分の可
溶性有機物を追加溶解して透過処理を行なえばよい。
In addition, if the alcohol aqueous solution to be treated originally coexists with the above-mentioned soluble organic substances, if the amount present is sufficient, then this is the case! If the amount of soluble organic matter present is insufficient, the insufficient amount of soluble organic matter may be additionally dissolved and the permeation treatment may be performed.

要するに本発明においてはアルコール水溶液に所定の可
溶性有機物が共存していれば本発明の目的を達成するこ
とができる。
In short, in the present invention, the object of the present invention can be achieved if a predetermined soluble organic substance coexists in the alcohol aqueous solution.

本発明は上述したような可溶性有機物をアルコール水溶
液に共存させて透過処理するものであるが・可溶性有機
物に換えて塩化す) IJウム・硫酸ナトリウムなどの
無機塩類を3チ(重量%)以上共存させてもアルコール
を透過水側で濃縮することが可能である。
In the present invention, the above-mentioned soluble organic substances are allowed to coexist in an alcohol aqueous solution for permeation treatment, but inorganic salts such as IJium and sodium sulfate are coexisting at least 3% (by weight). It is possible to concentrate alcohol on the permeated water side even if

しかし無機塩類は有機物と比較すると逆浸透膜を透過し
やすいので・不純物含有量の少ないアルコール濃縮液を
得ようとすると・どうしても逆浸透膜を高脱塩率のもの
を用いねばならない。さらに無機塩類を溶解させると液
の浸透圧が高くなりすぎ、したがって透過処理の操作圧
を高圧にせねばならなくなり・かつその透過流速もかな
り低下する。したがって低エネルギーコストで効果的に
アルコールを濃縮するという本発明の目的を達し得ない
However, inorganic salts permeate through reverse osmosis membranes more easily than organic substances, so in order to obtain an alcohol concentrate with low impurity content, it is necessary to use a reverse osmosis membrane with a high desalting rate. Furthermore, when inorganic salts are dissolved, the osmotic pressure of the liquid becomes too high, and therefore the operating pressure for permeation treatment must be made high, and the permeation flow rate also decreases considerably. Therefore, the objective of the present invention, which is to effectively concentrate alcohol at low energy cost, cannot be achieved.

一方可溶性有機物を用いる場合は有機物そのものが逆浸
透膜に通過しに<〈うかつ浸透圧がそれ程大きくならな
いので・低脱塩率の逆浸透膜を用いることができるとと
もに・操作圧が比較的低圧でも透過流速を速くすること
ができ処理時間を短縮できる。
On the other hand, when using soluble organic substances, the organic substances themselves do not pass through the reverse osmosis membrane, and the osmotic pressure does not become so large.・A reverse osmosis membrane with a low salt removal rate can be used.・Even if the operating pressure is relatively low. The permeation flow rate can be increased and the processing time can be shortened.

次に本発明に用いる逆浸透膜について以下に説明する。Next, the reverse osmosis membrane used in the present invention will be explained below.

本発明に用いる逆浸透膜は脱塩率(1000〜5000
ppmの塩化ナトリウム溶液の塩化ナトリウムを排除で
きる割合ts)が90eI6以下のものを用いる。
The reverse osmosis membrane used in the present invention has a desalination rate (1000 to 5000)
A sodium chloride solution with a sodium chloride removal rate ts) of 90eI6 or less is used.

すなわち脱塩率が90%以上の逆浸透膜を用いると透過
処理の操作圧を高くせねばならずエネルギーコストが上
昇し好ましくなく・かつ実施例で示すごとくアルコール
の濃縮倍率も小さいので好ましくない。
That is, if a reverse osmosis membrane with a salt removal rate of 90% or more is used, the operating pressure for permeation treatment must be increased, which increases energy costs, which is undesirable, and as shown in the examples, the alcohol concentration ratio is also undesirable.

なお脱塩率の小さい逆浸透膜を用いる程操作圧を低下さ
せることができるがtしがしたとえば10%以下の脱塩
率であると共存する有機物が透過水側へ透過し・本発明
の目的を達成し得なくなるので・好ましくは脱塩率が1
0〜80チの逆浸透膜を用いるとよい。
Note that the operating pressure can be lowered by using a reverse osmosis membrane with a lower salt removal rate; however, if the salt removal rate is less than 10%, coexisting organic matter will permeate to the permeate side, and the present invention Preferably, the desalination rate is 1 because it will not be possible to achieve the purpose.
It is preferable to use a 0 to 80 inch reverse osmosis membrane.

上述した本発明に用いる逆浸透膜としては・たとえばデ
サリネーション社製のG−51G−10・G−20(い
ずれも商品名)・日東電工■製NTIL−7250+ 
N’ll’R1550+ (イずれも商品名)・住友化
学■製ソルロックス5C−5000+ 8O−eooo
 (いずれも商品名)などを挙げることができる。
Examples of reverse osmosis membranes used in the present invention described above include G-51G-10 and G-20 (both trade names) manufactured by Desalination Co., Ltd., and NTIL-7250+ manufactured by Nitto Denko ■.
N'll'R1550+ (all product names) Sollox 5C-5000+ 8O-eooo manufactured by Sumitomo Chemical ■
(all are product names).

次に本発明における透過処理の操作圧を説明すると一本
発明においてはあまり高圧で透過処理することはいたず
らにエネルギーコストを上昇させるだけで好ましくなく
!通常40kg/crll以下で行なうが・実施例で示
したごとく・操作圧がむしろ低い方がアルコールの濃縮
倍率が大きくなるので・操作圧を20kg/ai以下で
透過処理することが好ましい。
Next, to explain the operating pressure for permeation treatment in the present invention, in the present invention, performing permeation treatment at too high a pressure is not preferable as it will only unnecessarily increase energy costs! The permeation treatment is usually carried out at a pressure of 40 kg/crll or less, but as shown in the examples, the lower the operating pressure, the higher the concentration ratio of alcohol, so it is preferable to perform the permeation treatment at an operating pressure of 20 kg/ai or less.

以下に本発明の実施態様を図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

図面は本発明のフローを示す説明図であり・原液槽1に
アルコール水溶液2を受け・こむにアルコール以外の可
溶性有機物3を溶解させ・当該溶液をポンプ4により逆
浸透膜装置5に加圧下で供給する。このような操作によ
り・溶液中のアルコールは逆浸透膜を通過し・アルコー
ル濃度が濃くなったアルコール液6が透過水側で得られ
る。一方非透過水ツには添加した可溶性有機物と残存す
るアルコールが含まれており・これを原水槽1に循環し
ツこのような循環透過を続行することによりアルコール
の濃縮液を透過水側から採取する。
The drawing is an explanatory diagram showing the flow of the present invention. ・Receive alcohol aqueous solution 2 in stock solution tank 1 ・Dissolve soluble organic matter 3 other than alcohol in the container ・The solution is transferred to reverse osmosis membrane device 5 under pressure by pump 4 supply By such an operation, the alcohol in the solution passes through the reverse osmosis membrane, and an alcoholic liquid 6 with a higher alcohol concentration is obtained on the permeated water side. On the other hand, the non-permeated water contains the added soluble organic matter and residual alcohol, and by circulating this to the raw water tank 1 and continuing this circulation permeation, a concentrated alcohol solution is collected from the permeated water side. do.

なお原液槽1に添加した可溶性有機物3は透過処理の後
半で濃縮液として原液槽1に残留するので・たとえばこ
れに再びアルコール水溶液2を加えることにより・可溶
性有機物を回収使用することができる。また透過水側か
ら得られるアルコール液6に再度可溶性有機物を溶解し
pもう一度透過処理することも可能である。このように
一度濃縮したアルコール液を再度濃縮する操作を行なえ
ば・それだけ濃度の濃いアルコール液が得られるので。
Since the soluble organic matter 3 added to the stock solution tank 1 remains in the stock solution tank 1 as a concentrated solution in the latter half of the permeation treatment, the soluble organic matter can be recovered and used by, for example, adding the alcohol aqueous solution 2 again. It is also possible to dissolve the soluble organic matter again in the alcohol solution 6 obtained from the permeated water side and perform the permeation treatment once again. In this way, if you re-concentrate the alcoholic liquid once concentrated, you can obtain an alcoholic liquid with a higher concentration.

−膜処理では満足しない場合は随時以上のような多段処
理を行なえばよい。
- If the membrane treatment is not satisfactory, the above-mentioned multi-stage treatment may be performed at any time.

以上説明したごとく本発明は従来の逆浸透膜装置による
アルコールの濃縮と比較して低圧力でアルコールを濃縮
することができ・エネルギーコスト的に有利であり・か
つ非透過水側を循環して透過水側でアルコールの濃縮液
を得るものであるからアルコールの回収率が高いという
利点を有している。
As explained above, the present invention can concentrate alcohol at a lower pressure than the conventional reverse osmosis membrane device, is advantageous in terms of energy cost, and circulates through the non-permeated water side. Since the alcohol concentrate is obtained on the water side, it has the advantage of a high recovery rate of alcohol.

したがって従来では蒸留法が適用できないような特にメ
タノールやエタノールなどの低級アルコールの低濃度水
溶液を本発明によって低コストで蒸留法が適用できる濃
度まで濃縮することができるので・本発明をたとえば蒸
留法の前処理などに用いることにより・今まで生物処理
などの余分な操作を労して廃棄していた低濃度のアルコ
ール水溶液を有効に回収することができ・本発明が産業
に与える利益は太きい。
Therefore, it is possible to concentrate low-concentration aqueous solutions of lower alcohols such as methanol and ethanol, to which distillation methods cannot be applied conventionally, at low cost to a concentration where distillation methods can be applied. By using it for pre-treatment, it is possible to effectively recover low-concentration alcohol aqueous solutions, which until now had to be discarded by going through extra operations such as biological treatment.The present invention brings great benefits to industry.

以下に本発明の効果をより明確とするために実施例を説
明する。
Examples will be described below to make the effects of the present invention more clear.

なお本発明は以下の実施例によって限定されるものでは
ない。
Note that the present invention is not limited to the following examples.

実施例−1 直径5G’llQ脱塩率60〜70チのデザリネーショ
ン社製の低脱塩率逆浸透膜・G−5と脱塩率99チ以上
のUOP社製の高説地率逆浸透膜PA−300を平膜試
験器に挿着し・エタノール10チ水溶液を被処理液とし
りこれにラフィノース・乳糖をそれぞれ10%(重量%
)になるように溶解し・当該溶解液を圧力15kg/d
・温度25℃の条件で加圧下で前記平膜式試験器に供給
し、非透過水を循環するとともに・透過水側からアルコ
ール液を回収した。
Example-1 A low salt removal rate reverse osmosis membrane G-5 made by Desalination Co., Ltd. with a diameter of 5 G'llQ and a salt removal rate of 60 to 70 inches and a high salt removal rate reverse osmosis membrane made by UOP Co., Ltd. with a salt removal rate of 99 inches or more. Insert the membrane PA-300 into a flat membrane tester, use a 10% ethanol aqueous solution as the liquid to be treated, and add 10% each of raffinose and lactose (wt%).
) and apply the solution at a pressure of 15 kg/d.
・It was supplied to the flat membrane tester under pressure at a temperature of 25° C., and while the non-permeated water was circulated, ・the alcohol solution was recovered from the permeated water side.

一方比較のためにラフィノース・乳糖などの可溶性有機
物を全く溶解させない同じアルコール水溶液についても
同じ条件で透過処理した。それぞれの透過水側のアルコ
ール濃度を第1表に示した。なお表中0内は非透過水側
のアルコール濃度に対する透過水側のアルコール濃度の
濃縮倍率を示す。
On the other hand, for comparison, the same alcohol aqueous solution that does not dissolve any soluble organic substances such as raffinose and lactose was also permeabilized under the same conditions. Table 1 shows the alcohol concentration of each permeate water. In the table, 0 indicates the concentration ratio of the alcohol concentration on the permeated water side to the alcohol concentration on the non-permeated water side.

第 1 表 ) 実施例−2 実施例−1で用いたと同じ直径5anのデザリネーショ
ン社製逆浸透膜G−5およびUOP社製PA−300に
ついてエタノール2係水溶液を対象とし・平膜試験器を
用いて実施例−1と同じように透過処理した。なお操作
圧力を10・20+ so、4okg/c111の4種
類について行ないTまだ添加する可溶性有機物としては
ED’I’A −4N aを用い・これを各エタノール
水溶液にそれぞれ20ジノ(重量%)になるように溶解
した。
Table 1) Example-2 A flat membrane tester was used for an ethanol 2-containing aqueous solution for reverse osmosis membrane G-5 made by Desalination Co., Ltd. and PA-300 made by UOP Co., Ltd., which had the same diameter of 5 ann as used in Example-1. The permeation treatment was carried out in the same manner as in Example-1. The operation was carried out at four different operating pressures: 10, 20+so, and 4okg/c111. ED'I'A-4N a was used as the soluble organic substance to be added. This was added to each ethanol aqueous solution at a concentration of 20 dino (wt%). It was dissolved as follows.

これらの結果を第2表に示した。なお表中0内は非透過
水仙のアルコール濃度に対する透過水仙のアルコール濃
度の濃縮倍率を示す。
These results are shown in Table 2. In addition, in the table, 0 indicates the concentration ratio of the alcohol concentration of permeated daffodil to the alcohol concentration of non-permeated daffodil.

第 2 表 操作温度25℃Table 2 Operating temperature 25℃

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様の一例を示すフローの説明図で
あり・lは原液槽、2はアルコール水溶液・3は可溶性
有機物・4はポンプ・5は逆浸透膜装置・6はアルコー
ル液・7は非透過水を示す。
The drawing is an explanatory diagram of a flow showing an example of an embodiment of the present invention.L is a stock solution tank, 2 is an alcohol aqueous solution, 3 is a soluble organic substance, 4 is a pump, 5 is a reverse osmosis membrane device, 6 is an alcohol solution, and 7 indicates non-permeable water.

Claims (1)

【特許請求の範囲】 (11アルコール水溶液からアルコールを分離濃縮する
にあたり・当該水溶液にアルコール以外の可溶性有機物
を共存させ・脱塩率90チ以下の低脱塩率の逆浸透膜に
加圧下で供給することにより・アルコールを透過水側で
分離濃縮することを特徴とするアルコールの濃縮方法。 (2)逆浸透膜へ20kg/aM以下の圧力で供給する
特許請求の範囲第1項記載のアルコールの濃縮方法。
[Claims] (11) In separating and concentrating alcohol from an alcohol aqueous solution - Allowing the aqueous solution to coexist with soluble organic substances other than alcohol - Supplying under pressure to a reverse osmosis membrane with a low salt removal rate of 90% or less A method for concentrating alcohol characterized by separating and concentrating the alcohol on the permeate side. (2) Supplying the alcohol to the reverse osmosis membrane at a pressure of 20 kg/aM or less according to claim 1. Concentration method.
JP59028693A 1984-02-20 1984-02-20 Method for concentrating alcohol Pending JPS60174736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59028693A JPS60174736A (en) 1984-02-20 1984-02-20 Method for concentrating alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59028693A JPS60174736A (en) 1984-02-20 1984-02-20 Method for concentrating alcohol

Publications (1)

Publication Number Publication Date
JPS60174736A true JPS60174736A (en) 1985-09-09

Family

ID=12255556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59028693A Pending JPS60174736A (en) 1984-02-20 1984-02-20 Method for concentrating alcohol

Country Status (1)

Country Link
JP (1) JPS60174736A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696726A (en) * 1986-07-14 1987-09-29 Shell Oil Company Process for the production of dichlorohydrin
JPS6372634A (en) * 1986-09-16 1988-04-02 Japan Organo Co Ltd Method for recovering ethanol
JP2010143888A (en) * 2008-12-22 2010-07-01 Toray Ind Inc Method for producing butanol

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696726A (en) * 1986-07-14 1987-09-29 Shell Oil Company Process for the production of dichlorohydrin
JPS6372634A (en) * 1986-09-16 1988-04-02 Japan Organo Co Ltd Method for recovering ethanol
JP2010143888A (en) * 2008-12-22 2010-07-01 Toray Ind Inc Method for producing butanol

Similar Documents

Publication Publication Date Title
Drioli et al. Integrated membrane operations in desalination processes
US6303037B1 (en) Reverse osmosis process and equipment
CA2706205C (en) Process for the purification of organic acids
AU2009326257B2 (en) Improved solvent removal
US20110155666A1 (en) Method and system using hybrid forward osmosis-nanofiltration (h-fonf) employing polyvalent ions in a draw solution for treating produced water
US20090039020A1 (en) Methods for reducing boron concentration in high salinity liquid
JP5135749B2 (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
US4889633A (en) Process for treating aqueous fluids containing organic compounds and salts of polyvalent inorganic acids
Charcosset Ultrafiltration, microfiltration, nanofiltration and reverse osmosis in integrated membrane processes
JP3218371B2 (en) Method for separating water from dilute aqueous solution of N-methylmorpholine-N-oxide, N-methylmorpholine and / or morpholine
KR102042043B1 (en) A Draw Solution for forward osmosis using salt of organic acid and use thereof
TWI322185B (en) Process for the recovery and purification of organic acids
CN205773801U (en) A kind of inorganic salt draws liquid indirect regeneration
JPS58118538A (en) Recovery of organic acid
JPS59156402A (en) Concentration of organic substance by reverse osmosis membrane
JPS60174736A (en) Method for concentrating alcohol
JPS63100996A (en) Method for desalting brine
US20190106344A1 (en) Process for purification of waste water from dairy processing
CN218435031U (en) Metal surface treatment liquid recycling system
CN114230076A (en) Metal surface treatment liquid recycling system and operation method thereof
Molinari et al. Recovery and recycle of tannins in the leather industry by nanofiltration membranes
JPH11267645A (en) Production of pure water
Cséfalvay et al. Applicability of nanofiltration and reverse osmosis for the treatment of wastewater of different origin
JPS60104025A (en) Concentration of alcohol
US20050214192A1 (en) Recovery of sodium thiocyanate from industrial process solution using nanofiltration technique