JPS6017446B2 - Radiation resistant resin composition - Google Patents

Radiation resistant resin composition

Info

Publication number
JPS6017446B2
JPS6017446B2 JP13720481A JP13720481A JPS6017446B2 JP S6017446 B2 JPS6017446 B2 JP S6017446B2 JP 13720481 A JP13720481 A JP 13720481A JP 13720481 A JP13720481 A JP 13720481A JP S6017446 B2 JPS6017446 B2 JP S6017446B2
Authority
JP
Japan
Prior art keywords
weight
resin composition
parts
resistant resin
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13720481A
Other languages
Japanese (ja)
Other versions
JPS5838711A (en
Inventor
幸 萩原
洋右 森田
英輔 小田
俊一 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13720481A priority Critical patent/JPS6017446B2/en
Publication of JPS5838711A publication Critical patent/JPS5838711A/en
Publication of JPS6017446B2 publication Critical patent/JPS6017446B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】 この発明は耐放射線性の向上された樹脂組成物に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resin composition with improved radiation resistance.

原子炉、増殖炉あるいはイオン化放射線発生器などに使
用される電線、ケーブルおよび各種機器類は常時かなり
の量の放射線を被曝していることが多いo従ってかかる
使用目的の電線ケーブルの被覆絶縁材料、各種機器類に
おける絶縁材料、パッキング、シール材料、枠、ホース
材料などに用いられる樹脂組成物に対しては、経済上並
びに安全上の見地から高度の耐放射線性を有することが
要求されている。
Wires, cables, and various equipment used in nuclear reactors, breeder reactors, ionizing radiation generators, etc. are often constantly exposed to a considerable amount of radiation; therefore, insulating materials for covering electric wires and cables for such purposes, Resin compositions used for insulating materials, packing, sealing materials, frames, hose materials, etc. in various types of equipment are required to have a high degree of radiation resistance from economic and safety standpoints.

発明者等は熱可塑性樹脂及びゴム等の耐放射線性の向上
に関して鋭意検討を重ねた結果、熱可塑性樹脂またはゴ
ムに後記一般式で示されるハ。
As a result of intensive studies on improving the radiation resistance of thermoplastic resins and rubbers, the inventors have found that thermoplastic resins or rubbers have the following general formula C.

ゲン化アセナフチレンの多量体とハイドロパーオキサィ
ド系重合開始剤と有機過酸化物の適量を併用することに
より耐放射線に優れた樹脂またはゴム成形体が得られる
ことを見出しこの発明を完成したものである。即ちこの
発明は、熱可塑性樹脂あるいはゴム類など基体重合体1
0の重量部に対して、一般式(但しXは水素または塩素
または臭素原子、Yは塩素または臭素原子、mは2〜6
の整数、Rはハロゲン原子以外の置換基、nは0〜4の
整数、nは2以上の場合Rは同一または異種のいずれで
もよい、m+nミ6)で表わされる単位を構成要素とす
るハロゲン化アセナフチレンの多量体の1種または2以
上の物質を少なくとも0.5重量部と、ハイドロパーオ
キサィド系重合開始剤0.2〜1の重量部と、有機過酸
化物0.5〜1の重量部とを配合したことを特徴とする
耐放射線性樹脂組成物である。
This invention was completed by discovering that a resin or rubber molded product with excellent radiation resistance can be obtained by using a polymer of acenaphthylene genide, a hydroperoxide polymerization initiator, and an appropriate amount of an organic peroxide in combination. It is. That is, the present invention provides a base polymer 1 such as a thermoplastic resin or rubber.
0 part by weight, the general formula (where X is hydrogen, chlorine or bromine atom, Y is chlorine or bromine atom, m is 2 to 6
, R is a substituent other than a halogen atom, n is an integer of 0 to 4, and when n is 2 or more, R may be the same or different, halogen whose constituent elements are units represented by m+nmi6) at least 0.5 part by weight of one or more polymers of acenaphthylene, 0.2 to 1 part by weight of a hydroperoxide polymerization initiator, and 0.5 to 1 part by weight of an organic peroxide. This radiation-resistant resin composition is characterized in that it contains parts by weight of

この発明による組成物が上記のように優れた耐放射線性
を発揮し得る理由は必らずしもこれを詳らかになし得た
訳ではないが、遊離基発生剤として用いるハイドロパー
オキサィド系重合開始剤の存在が、組成物中に配合され
たハロゲン化アセナフチレンの多量体の縮重合或いは重
合体へのグラフト重合を著しく促進させ、又ベースポリ
マーの架橋化が適度に調整され、これらが好結果をもた
らすものと考えられる。
Although the reason why the composition according to the present invention is able to exhibit the excellent radiation resistance as described above is not necessarily clear, it is possible to The presence of the polymerization initiator significantly accelerates the condensation polymerization or graft polymerization of the halogenated acenaphthylene polymer blended into the composition, and also controls the crosslinking of the base polymer appropriately, which is preferable. It is believed that this will bring about results.

この発明で基体重合体として用いられる熱可塑性樹脂及
びゴム類としては例えばポリエチレン、ポリプロピレン
、ポリブデン、エチレン酢酸ピニル共重合体、エチレン
ーェチルアクリレート共重合体、エチレン−プロピレン
共重合体、エチレンープロピレンージェン共重合体、エ
チレン−塩化ビニル共重合体、エチレン−酢酸ビニル−
グラフト塩化ビニル共重合体、エチレンーェチルアクリ
レートーグラフト塩化ビニル共重合体、エチレン−プロ
ピレンーグラフト塩化ビニル共重合体、塩素化ポリエチ
レン、塩素化ポリエチレンーグラフト塩化ビニル共重合
体、ポリウレタン、ポリアミド、ポリエステル、アクリ
ル樹脂、プチルゴム、クロロプレンゴム、ニトリルゴム
、天然ゴム、シリコーンゴム、クロロスルホン化ポリエ
チレン、スチレンーブタジエンゴム、スチレンーブタジ
エンーアクリロニトリル共重合体、アクリロニトリルー
スチレン共重合体、ポリエステルーェーテルェラストマ
一などが挙げられる。
Examples of thermoplastic resins and rubbers used as the base polymer in this invention include polyethylene, polypropylene, polybutene, ethylene-pynylacetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene copolymer, and ethylene-propylene. -gen copolymer, ethylene-vinyl chloride copolymer, ethylene-vinyl acetate-
Grafted vinyl chloride copolymer, ethylene-ethyl acrylate grafted vinyl chloride copolymer, ethylene-propylene-grafted vinyl chloride copolymer, chlorinated polyethylene, chlorinated polyethylene-grafted vinyl chloride copolymer, polyurethane, polyamide, Polyester, acrylic resin, butyl rubber, chloroprene rubber, nitrile rubber, natural rubber, silicone rubber, chlorosulfonated polyethylene, styrene-butadiene rubber, styrene-butadiene-acrylonitrile copolymer, acrylonitrile-styrene copolymer, polyester-ether Examples include Last Man.

つぎに、本発明でいうハロゲン化アセナフチレンの多量
体とはハロゲン化アセナフチレンが形式的には脱水素あ
るし、は脱ハロゲン化水素反応を起して統合し、縮合度
2以上の多量体となったものをいう。
Next, the term halogenated acenaphthylene multimer as used in the present invention means that halogenated acenaphthylene is formally dehydrogenated, and is integrated by dehydrohalogenation reaction to form a multimer with a degree of condensation of 2 or more. refers to something that

アセナフチレン構造単位間の結合点としては、例えば、
容易に形成されるものとして1(或2)、(或2)、 4′(もしくは4,7′、7,7′) 4,5′(もしくは 4,6′、5,7′) 5,5(もしくは5,6′) 等が例示されるが、 が、そのほかにも1,1′−、1,2−、1(或2),
3′−、1(或2),4′−、1(或2),7′−、1
(或2),8′−、3,3′一、3,4′−、3,5′
−、3,6′−、3,7′−、3,8′−、4,8′‐
等の結合、さらに例えば5,5′と6,6′、4,7′
と6,6′のように二つの結合を介して縮合することも
可能である。
Bonding points between acenaphthylene structural units include, for example,
1 (or 2), (or 2), 4' (or 4, 7', 7, 7') 4, 5' (or 4, 6', 5, 7') 5, which are easily formed. Examples include 5 (or 5, 6'), but also 1, 1'-, 1, 2-, 1 (or 2),
3'-, 1 (or 2), 4'-, 1 (or 2), 7'-, 1
(or 2), 8'-, 3, 3'-1, 3, 4'-, 3, 5'
-, 3,6'-, 3,7'-, 3,8'-, 4,8'-
combinations such as 5,5' and 6,6', 4,7'
It is also possible to condense via two bonds such as and 6,6'.

縮合度3以上のものはこのような結合のいずれかにより
構成単位を増大せしめたものである。なお縮合度の上限
は10以上となると組成物中への分散性が著しく低下し
配合による効果が低下するので好ましくこのような縮合
物は後述の参考例で述べるようにアリル位もしくはペン
ジル位置にまずハロゲンを導入し、つぎにその高い反応
性を利用し、触媒存在下に処理することによって合成す
ることができる。これらハロゲン化アセナフチレンの多
量体と高分子物質との相溶’性は特に置換基がなくても
良好であるが、さらにメチル基、メトキシ基、メチルェ
ステル基等が導入されることによって増進される。
Those having a degree of condensation of 3 or more are those in which the number of constituent units is increased by any of these bonds. If the upper limit of the degree of condensation is 10 or more, the dispersibility in the composition will be significantly reduced and the effect of blending will be reduced, so it is preferable that such a condensate is It can be synthesized by introducing a halogen and then taking advantage of its high reactivity and treating it in the presence of a catalyst. The compatibility between these halogenated acenaphthylene polymers and polymeric substances is particularly good even without substituents, but it is improved by further introducing methyl groups, methoxy groups, methyl ester groups, etc.

これによって、混線成形時の加工性及び高温下、長時間
の成形物使用時に輝散、鯵出しない性質が認められる。
しかし、過度に炭素数の多い置換基は合成上困難性があ
り、また、長鎖アルキル基の場合は耐放射線性を低下さ
せることから避ける必要がある。而して、この目的で導
入される置換基としては炭素数1〜4のアルキル基、ア
ルコキシ基、アルキルェステル基等が例示される。そし
てその配合量はこの発明の効果を発揮するために上記樹
脂またはゴム類からなる基体重合体100重量部に対し
て少なくとも0.5重量部の童が必要である。次にこの
発明で用いられるハイドロパーオキサィド系重合開始剤
としては、tープチルハイドロパーオキサイド、ジーイ
ソプロピルベンゼンハイド0/ぐーオキサイド、クメン
ハイド0/ぐーオキサィドなどが挙げられ、これらの配
合量を上記基体重合体10の重量部に対して0.2〜1
0重量部に限定した理由は、その下限以下ではこの発明
の効果が不充分となり、又上限を超えてもその増量効果
が殆んど見られないことによるものである。
As a result, it is recognized that it has good workability during cross-wire molding, and that it does not cause shine or bleed when molded products are used for long periods of time at high temperatures.
However, substituents with an excessively large number of carbon atoms are difficult to synthesize, and long-chain alkyl groups need to be avoided because they reduce radiation resistance. Examples of substituents introduced for this purpose include alkyl groups having 1 to 4 carbon atoms, alkoxy groups, and alkyl ester groups. In order to exhibit the effects of the present invention, it is necessary to use at least 0.5 parts by weight of the compound based on 100 parts by weight of the base polymer made of the above-mentioned resin or rubber. Next, hydroperoxide polymerization initiators used in this invention include t-butyl hydroperoxide, diisopropylbenzene hydride 0/gu oxide, cumene hydride 0/gu oxide, etc. 0.2 to 1 part by weight of the base polymer 10
The reason why the amount is limited to 0 parts by weight is that below the lower limit, the effect of the present invention will be insufficient, and even if the upper limit is exceeded, the effect of increasing the amount will hardly be observed.

又この発明で用いられる有機過酸化物としては、ジクミ
ルバーオキサイド、1,3−ビス(t−ブチルパーオキ
シイソプロピル)ベンゼン、2,5ージメチル−2,5
ージ(t−プチルパーオキシ)へキシン−3、tープチ
ルクミルバーオキサィドなどが挙げられ、その配合量を
同様に0.5〜10重量部に限定した理由は、その下限
以下ではベースポリマーの架橋効果が不充分となり、又
上限を超えてその増量効果が殆んど見られないからであ
る。
Further, as the organic peroxide used in this invention, dicumyl peroxide, 1,3-bis(t-butylperoxyisopropyl)benzene, 2,5-dimethyl-2,5
-di(t-butylperoxy)hexine-3, t-butylcumyl peroxide, etc., and the reason why the blending amount was similarly limited to 0.5 to 10 parts by weight is that it is below the lower limit. This is because the crosslinking effect of the base polymer will be insufficient, and if the upper limit is exceeded, the effect of increasing the amount will hardly be observed.

尚この発明の組成物に対しては、その使用目的などに応
じて適当な補強性、増量剤、顔料、溶剤、加硫剤、架橋
助剤、あるいは熱、、光安定剤などをその特性を低下さ
せない範囲で適量を加えることは、何等差支えない。
The composition of this invention may be added with appropriate reinforcing properties, fillers, pigments, solvents, vulcanizing agents, crosslinking aids, heat, light stabilizers, etc., depending on its intended use. There is no problem in adding an appropriate amount as long as it does not cause any deterioration.

この発明の組成物は後記実施例から明らかなように、そ
の耐放射線性を著しく向上させ得たものであり、その工
業的価値は非常に大きい。
As is clear from the examples below, the composition of the present invention has significantly improved radiation resistance, and has great industrial value.

以下実施例によりこの発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

ハロゲン化アセナフチレンの多量体の製造例1 1,2,3,5ーテトラブロモアセナフテン(C,2日
6BL)4モルのベンゼン(500夕)溶液と臭化カリ
ウム2モル、臭素酸カリウム0.2モルの水溶液(60
0のを三ッロフラスコに取り、階所にて激しく涜拝混合
した。
Production example 1 of a multimer of halogenated acenaphthylene A solution of 4 moles of 1,2,3,5-tetrabromoacenaphthene (C, 2 days 6 BL) in benzene (500 grams), 2 moles of potassium bromide, and 0.2 moles of potassium bromate. 2 molar aqueous solution (60
0 was taken into a trill flask and mixed violently in the room.

これに濃硫酸2モルを同容積の水で希釈し、蝿梓下、1
0qo近傍にて滴下し、3時間反応させた。反応終了後
、ベンゼン層を水、カセイソーダ水溶液(2%)、再び
水の順で洗浄し、シリカゲルにて乾燥した。つぎに、乾
燥ベンゼン溶液を三ッロフラスコに移し、側管より約2
モルの水酸化カリウムを溶解させた温エタノール液を滴
下させ、脱臭化水素反応を行なった。反応終了後ベンゼ
ン層を水洗し乾燥した。さらに減圧下でベンゼンを留去
し、残留物を熱アセトンにて充分洗浄乾燥して、ブロモ
ァセナフチレンの縮合物を得た。縮合物の元素分析値よ
り推定された組成式は(C,2日3.7Br2.9)そ
であった。
To this, dilute 2 moles of concentrated sulfuric acid with the same volume of water, add 1
It was added dropwise at around 0qo and reacted for 3 hours. After the reaction was completed, the benzene layer was washed with water, an aqueous solution of caustic soda (2%), and water again in this order, and dried with silica gel. Next, transfer the dry benzene solution to the Sanllo flask, and add about 2
A warm ethanol solution in which molar amounts of potassium hydroxide had been dissolved was added dropwise to carry out a dehydrobromation reaction. After the reaction was completed, the benzene layer was washed with water and dried. Furthermore, benzene was distilled off under reduced pressure, and the residue was thoroughly washed and dried with hot acetone to obtain a condensate of bromoacenaphthylene. The compositional formula estimated from the elemental analysis values of the condensate was (C, 2days 3.7Br2.9).

GPC測定による縮合度そは2〜5のものが主成分であ
った。例2 1,2,3,5−テトラブロモアセナフテンのクロロホ
ルム溶液に触媒量の塩化第2錫を添加し、約3時間静か
に沸とう環流させた。
The main components were those with a condensation degree of 2 to 5 as determined by GPC measurement. Example 2 A catalytic amount of stannic chloride was added to a chloroform solution of 1,2,3,5-tetrabromoacenaphthene and gently boiled and refluxed for about 3 hours.

反応終了後、水洗、乾燥し、クロロホルムを留去した。
つぎに残留物をベンゼンに溶解し、例1と同様の方法に
より、脱臭化水素反応を行なった。ベンゼン層を水洗後
、乾燥し、ついでベンゼンを函去し熱アセトンにて充分
洗浄した。得られたブロモアセナフチレンの縮合物の組
成式は(C,2日4.,Bら.3)そであり、GPC測
定による縮合度〆は2〜7のものが主成分であった。例
3 ァセナフテン154夕を約340の‘の四塩化炭素に溶
解し、温度loo0に保持しつつ、塩化第二鉄1鼠夕を
加えた。
After the reaction was completed, the mixture was washed with water, dried, and chloroform was distilled off.
Next, the residue was dissolved in benzene, and a dehydrobromination reaction was carried out in the same manner as in Example 1. The benzene layer was washed with water, dried, and then the benzene was removed and thoroughly washed with hot acetone. The compositional formula of the obtained condensate of bromoacenaphthylene was (C, 2nd day 4., B et al. 3), and the degree of condensation as determined by GPC measurement was 2 to 7 as the main component. Example 3 154 ml of acenaphthene was dissolved in about 340 ml of carbon tetrachloride and 1 ml of ferric chloride was added while maintaining the temperature at 0.000 ml.

これに良く燈拝しながら四塩化炭素で希釈した臭素96
Mを滴下した。滴下終了後反応系を45〜55℃とし、
反応を完結させた。つぎに触媒をろ別し、溶液を水洗し
、四塩化炭素を留去して中間体であるブロモアセナフテ
ン縮合体を得た。次に、例1と同様の方法により、ブロ
モアセナフテン縮合体の脱臭化水素反応を行なった。ベ
ンゼン層を水洗後、乾燥し、ついでベンゼンを留去し熱
アセトンにて充分洗浄した。得られたブ。モアセナフチ
レン縮合物の組成式は・(C,2日,.7Br3.8)
そであり、GPC測定の結果縮合度そは2〜3のものが
主成分であった。実施例1〜3および比較例1〜3 エチレンプロピレン共重合体に対して表1に示した組成
となるよう配合剤を加え、これらを加熱ロールにてよく
混練し、得られた混合物を160qoにて306間プレ
ス成形し2帆および3肌厚のシートを作成した。
Bromine 96 diluted with carbon tetrachloride while holding the light well
M was added dropwise. After the completion of the dropping, the reaction system was heated to 45 to 55°C,
The reaction was completed. Next, the catalyst was filtered off, the solution was washed with water, and carbon tetrachloride was distilled off to obtain an intermediate bromoacenaphthene condensate. Next, in the same manner as in Example 1, the bromoacenaphthene condensate was subjected to dehydrobromination reaction. The benzene layer was washed with water, dried, and then benzene was distilled off and thoroughly washed with hot acetone. Obtained bu. The composition formula of moacenaphthylene condensate is (C, 2 days, .7Br3.8)
As a result of GPC measurement, the main component was found to have a degree of condensation of 2 to 3. Examples 1 to 3 and Comparative Examples 1 to 3 Compounding agents were added to the ethylene propylene copolymer so as to have the composition shown in Table 1, and these were thoroughly kneaded with a heating roll. The resulting mixture was heated to 160 qo. A sheet of 2 sails and 3 skin thickness was produced by press molding for 306 minutes.

得られた各々のシートについて初期の機械的特性および
y線100MMd照射後の特性、JIS K7201に
よる酸素指数を測定し同表に示した。
For each sheet obtained, initial mechanical properties, properties after irradiation with 100 MMd of Y-rays, and oxygen index according to JIS K7201 were measured and shown in the table.

表から明らかな如く、ブロモアセナフチレンの多量体を
配合した組成物成形体に遊離基発生処理を施こす場合、
ハイドロパーオキサィド系重合開始剤と有機過酸化物と
を併用すると優れた耐放射線性と難燃性を賦与せしめ得
ることが明らかである。また実施例3に示すように更に
雛燃助剤を配合すると更に優れた難燃性を現出すること
ができる。
As is clear from the table, when a molded composition containing a bromoacenaphthylene polymer is subjected to free radical generation treatment,
It is clear that the combination of a hydroperoxide polymerization initiator and an organic peroxide can impart excellent radiation resistance and flame retardancy. Furthermore, as shown in Example 3, if a flame auxiliary agent is further added, even better flame retardance can be achieved.

表1 ※1:プロピレン含量40重量多 ※2:大内新興■製、2,2,4,ートリメチル−1,
2ージヒドロキノリン共重合体実施例4〜5および比較
例4〜5 ポリエチレンに対して表2に示した組成なるよう配合剤
を加え、これらを加熱ロールにてよく混線し、得られた
組成物を160qCにて30分間プレス成形し1側及び
3肋厚シートを作成した。
Table 1 *1: Propylene content 40% by weight *2: Manufactured by Ouchi Shinko ■, 2,2,4-trimethyl-1,
2-dihydroquinoline copolymer Examples 4 to 5 and Comparative Examples 4 to 5 Adding ingredients to polyethylene so as to have the composition shown in Table 2, and mixing these well with a heating roll, the resulting compositions was press-molded at 160qC for 30 minutes to create sheets with one side and three ribs.

得られた各々のシートについて初期の機械的特性および
y線100Mrad照射後の特性及び酸素指数を測定し
たので同表に示した。
The initial mechanical properties, properties after 100 Mrad y-ray irradiation, and oxygen index were measured for each of the obtained sheets, which are shown in the same table.

表2 ※1一:密度0.920 MII.0 ※2:大内新興■製、4,4′−チオピス(6一t−ブ
チル−3−メチルフェノー ル) 実施例6〜7および比較例6〜7 ク。
Table 2 *1: Density 0.920 MII. 0 *2: Manufactured by Shinko Ouchi, 4,4'-thiopis (6-t-butyl-3-methylphenol) Examples 6-7 and Comparative Examples 6-7.

ロプレンゴムに対して表3に示した組成となるよう配合
剤を加え、これらを加熱ロールにてよく混練し、得られ
た混合物を160℃にて20分間プレス成形し2肋及び
3肌厚シートを作成した。得られた各々のシートについ
て初期の機械的特性およびy線10伽心ad照射後の特
性及び酸素指数を測定したので同表に示した。表3 以上、実施例から明らかなように本発明の樹脂組成物は
優れた耐放射線性を有するもので、特に放射線を被曝す
る物品等の被覆材料として好適なものである。
Compounding agents were added to Loprene rubber to give the composition shown in Table 3, and these were thoroughly kneaded using heated rolls. The resulting mixture was press-molded at 160°C for 20 minutes to form 2- and 3-thickness sheets. Created. The initial mechanical properties, properties and oxygen index after irradiation with y-rays and 10 yen ad were measured for each of the obtained sheets, which are shown in the same table. Table 3 As is clear from the Examples above, the resin composition of the present invention has excellent radiation resistance and is particularly suitable as a coating material for articles etc. exposed to radiation.

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂あるいはゴム類などの基体重合体10
0重量部に対して、一般式▲数式、化学式、表等があり
ます▼ (但し式中Xは水素、塩素、臭素の郡から選ばれたい
ずれかの原子、Yは塩素または臭素原子、mは2〜6の
整数、Rはハロゲン原子以外の置換基、nは0〜4の整
数、nは2以上の場合Rは同一または異種のいずれでも
よい、m+n≦6)で表わされる単位を構成要素とする
ハロゲン化アセナフチレンの多量体を少なくとも0.5
重量部とハイドロパーオキサイド系重合開始剤0.2〜
10重量部と、有機過酸化物0.5〜10重量部とを配
合したことを特徴とする耐放射線性樹脂組成物。
[Claims] 1. Base polymer 10 such as thermoplastic resin or rubber.
For 0 parts by weight, there are general formulas ▲ mathematical formulas, chemical formulas, tables, etc. ▼ (However, in the formula, An integer of 2 to 6, R is a substituent other than a halogen atom, n is an integer of 0 to 4, when n is 2 or more, R may be the same or different, m+n≦6) as a constituent element of at least 0.5 halogenated acenaphthylene polymers
Weight part and hydroperoxide polymerization initiator 0.2~
10 parts by weight of a radiation-resistant resin composition, and 0.5 to 10 parts by weight of an organic peroxide.
JP13720481A 1981-09-01 1981-09-01 Radiation resistant resin composition Expired JPS6017446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13720481A JPS6017446B2 (en) 1981-09-01 1981-09-01 Radiation resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13720481A JPS6017446B2 (en) 1981-09-01 1981-09-01 Radiation resistant resin composition

Publications (2)

Publication Number Publication Date
JPS5838711A JPS5838711A (en) 1983-03-07
JPS6017446B2 true JPS6017446B2 (en) 1985-05-02

Family

ID=15193216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13720481A Expired JPS6017446B2 (en) 1981-09-01 1981-09-01 Radiation resistant resin composition

Country Status (1)

Country Link
JP (1) JPS6017446B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153061U (en) * 1986-03-18 1987-09-28
KR20210104054A (en) 2018-12-18 2021-08-24 스미또모 가가꾸 가부시키가이샤 Manufacturing method of porous layer, laminate, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI317365B (en) * 2002-07-31 2009-11-21 Jsr Corp Acenaphthylene derivative, polymer, and antireflection film-forming composition
CN107747253B (en) * 2017-10-20 2020-09-01 派恩(中山)科技有限公司 Superfine cellulose modified material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153061U (en) * 1986-03-18 1987-09-28
KR20210104054A (en) 2018-12-18 2021-08-24 스미또모 가가꾸 가부시키가이샤 Manufacturing method of porous layer, laminate, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPS5838711A (en) 1983-03-07

Similar Documents

Publication Publication Date Title
JP2704637B2 (en) Polydialkylsiloxane-olefin block copolymer, method for producing the same, composition containing the copolymer, and molded article made from the composition
GB2066268A (en) Ethylene polymer composition
JPH0113730B2 (en)
TW200904954A (en) Flame retarding composition of composite material containing modified expansible graphite/ thermoplastic polymer
JPS63500947A (en) Tetrahalophthalate ester as flame retardant for polyphenylene ether resin
JPH08157726A (en) Production of silicone rubber compound
JPS6025063B2 (en) Radiation-resistant and flame-retardant treatment method for polymeric materials
JPS6017446B2 (en) Radiation resistant resin composition
US3501435A (en) Process for curing polycarboranylenesiloxanes
JPS6140266B2 (en)
JPH02129137A (en) Halogenated bis(4-phenoxyphenyl)ether and flame retardant polymer composition containing the same
WO1982002053A1 (en) Polyester resin composition resistant against discoloration by light
JPH05295043A (en) Method for crosslinking olefin polymer composition
JPS5936651B2 (en) thermosetting resin composition
US3058957A (en) Cross-linking vinyl ether polymers with
JPS6135230B2 (en)
JPS6015655B2 (en) Method for producing a flame-retardant polymer composition molded article
JPS6158095B2 (en)
JPH0250887B2 (en)
JPH04202357A (en) Flame retardant polyamide resin composition excellent in thermal stability
JPS626565B2 (en)
JPS62182B2 (en)
JPS6111263B2 (en)
JPH02150441A (en) Moldable resin composition
JPS59135243A (en) Crosslinked chlorinated polyethylene composition having excellent resistance to deterioration by metal