JPS601743A - Hydrogen ion beam irradiation source - Google Patents

Hydrogen ion beam irradiation source

Info

Publication number
JPS601743A
JPS601743A JP58108675A JP10867583A JPS601743A JP S601743 A JPS601743 A JP S601743A JP 58108675 A JP58108675 A JP 58108675A JP 10867583 A JP10867583 A JP 10867583A JP S601743 A JPS601743 A JP S601743A
Authority
JP
Japan
Prior art keywords
hydrogen
ion beam
film
hydrogen ion
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58108675A
Other languages
Japanese (ja)
Inventor
Masaki Ogawa
正毅 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58108675A priority Critical patent/JPS601743A/en
Publication of JPS601743A publication Critical patent/JPS601743A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To irradiate large current hydrogen ion beam having high purity by providing a partition film made of hydrogen absorbing metal for partitioning between the hydrogen lead-in side and the vacuum side, heating mechanism, cathode biased negatively against the partition film and an ionizing means comprised of an electron beam source or light source. CONSTITUTION:Hydrogen molecule led in through a hydrogen lead-in tube 11 is ionized on the surface of palladium film 12 and taken into said film 12. In said film 12, hydrogen will exist in ionized state while being dispersed onto the surface at the vacuum side. The hydrogen ions reached to the vacuum side surface of said film 12 will first reside on the surface of palladium in the form of hydrogen atoms adsorbed to the surface but ionized again by the electrons irradiated from a thermion emitting source 16 and emit into the vacuum then accelerated by the negative field produced by cathodes 15, 17 to form a hydrogen ion beam. The accelerated hydrogen ion beam is decelerated by blocking electrodes 18, 19 to be irradiated onto the surface of a semiconductor specimen 20.

Description

【発明の詳細な説明】 本発明は高純度、大電流の水素イオンビーム照射源に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high purity, high current hydrogen ion beam irradiation source.

一般に、水素イオンビーム照射技術は、半導体結晶技術
、プロセス技術において東要と考えらn法による半導体
結晶成長においては、基板表面にその半導体構成元素を
含む分子ビームを照射することによりその半導体を基板
上に成長させているが、この際水素イオンビームを同時
に照射すると得られる半導体結晶の品質が向上する。ま
た、汚れた半導体表面に水素イオンビームを照射すると
、半導体に欠陥を導入すること女く半導体表面を清浄化
できる。このよう々水素イオンビーム照射の効果を上げ
るには、水素イオンビームの大電流化と高純度化を達成
することが必要である。
In general, hydrogen ion beam irradiation technology is considered to be the cornerstone of semiconductor crystal technology and process technology. At this time, simultaneous irradiation with a hydrogen ion beam improves the quality of the resulting semiconductor crystal. Furthermore, by irradiating a dirty semiconductor surface with a hydrogen ion beam, the semiconductor surface can be cleaned without introducing defects into the semiconductor. In order to increase the effectiveness of hydrogen ion beam irradiation, it is necessary to achieve a large current and high purity of the hydrogen ion beam.

従来の水素イオン照射源として放電により水素ガスをプ
ラズマ化しここに負電場を印加することによりそのプラ
ズマ中から水素イオンを引圧す方式がある。この方式で
は、引出した水素イオンを絞って極細ビーム化するのが
難t、 <、また、プラズマ励起の際に容器壁から不純
物が混入するため、水素イオンビームとして高純度のも
のが得られない欠点があった。また、水素ガス流に直角
にアルゴンを当てる電子衡撃型イオン照射源もあるが、
この場合にはアルゴンが希博であるためイオン化効率が
悪く大電流のイオンビームを取出すことが出来ないとい
う欠点があった。
As a conventional hydrogen ion irradiation source, there is a method in which hydrogen gas is turned into plasma by electric discharge, and hydrogen ions are drawn out from the plasma by applying a negative electric field to the plasma. With this method, it is difficult to focus the extracted hydrogen ions into an ultra-fine beam, and impurities enter from the container wall during plasma excitation, making it impossible to obtain a highly pure hydrogen ion beam. There were drawbacks. There is also an electron-equilibrium ion irradiation source that applies argon at right angles to the hydrogen gas flow.
In this case, since the argon is rare, the ionization efficiency is poor and a large current ion beam cannot be extracted.

本発明の目的は、これらの欠点を除去し、高純度かつ大
電流の水素イオンビームを発射できる水素イオンビーム
照射源を提供することにある。
An object of the present invention is to eliminate these drawbacks and provide a hydrogen ion beam irradiation source that can emit a hydrogen ion beam of high purity and large current.

本発明の水素イオンビーム照射源の構成は、水素導入側
と真空側とを隔てる水素吸蔵金属で作られた隔膜と、こ
の隔膜を加熱する加熱機構と、前記隔膜の真空側面に対
向して設けられかつ前記隔膜に対し負にバイアスされる
少なくとも一つの陰極と、前記隔膜の真空側表面に電子
ビームを照射する電子ビーム源もしくは光を照射する光
源からなるイオン化手段とを含むこと全特徴とする。
The configuration of the hydrogen ion beam irradiation source of the present invention includes a diaphragm made of a hydrogen storage metal that separates a hydrogen introduction side and a vacuum side, a heating mechanism that heats this diaphragm, and a heating mechanism provided opposite to the vacuum side of the diaphragm. and at least one cathode biased negatively with respect to the diaphragm; and ionization means comprising an electron beam source that irradiates an electron beam or a light source that irradiates light onto the vacuum side surface of the diaphragm. .

次に本発明の実施例について図面を用いて説明する。Next, embodiments of the present invention will be described using the drawings.

′第1図は本発明の第1の実施例である水素イオンビー
ム照射源の要部断面図である。円筒形の水素導入筒】1
の一端はパラジウム膜12で閉じられており、このパラ
ジウム膜12は赤外部ランプ13で420℃に加熱さ几
る。一方、ウェネルト14はパラジウム膜12に対し正
電位にバイアスされ、水素イオン引出し用の陰極15.
17はパラジウム膜12に対し負電位にバイアスされる
。また、熱電子放射源16はパラジウム膜12表面に電
子線を照射する。
1 is a sectional view of a main part of a hydrogen ion beam irradiation source according to a first embodiment of the present invention. Cylindrical hydrogen introduction tube】1
One end is closed with a palladium film 12, and this palladium film 12 is heated to 420° C. by an infrared lamp 13. On the other hand, the Wehnelt 14 is biased to a positive potential with respect to the palladium membrane 12, and the cathode 15 for extracting hydrogen ions.
17 is biased to a negative potential with respect to the palladium film 12. Further, the thermionic radiation source 16 irradiates the surface of the palladium film 12 with an electron beam.

水素導入筒11から導入された水素分子(H2)はパラ
ジウム膜12表面で解離してこのパラジウム膜12中に
取り込まれる。このパラジウム膜12中において水素は
水素イオン状態で存在1.、真空側の表面に拡散する。
Hydrogen molecules (H2) introduced from the hydrogen introduction cylinder 11 are dissociated on the surface of the palladium membrane 12 and incorporated into the palladium membrane 12. Hydrogen exists in the hydrogen ion state in this palladium film 12.1. , diffuses to the surface on the vacuum side.

このパラジウム膜12の真空側表面に到達しまた水素イ
オンは、まず表面に吸着された水素原子という形でパラ
ジウム表面に滞在しているが、熱電子放射源16から照
射された電子により再びイオン化して真空中にとびだし
陰極15.16の作る負の電界により加速されて水素イ
オンビームを形成する。
The hydrogen ions that reach the vacuum side surface of the palladium film 12 first stay on the palladium surface in the form of hydrogen atoms adsorbed on the surface, but are ionized again by electrons irradiated from the thermionic radiation source 16. The hydrogen ions protrude into a vacuum and are accelerated by the negative electric field created by the cathodes 15 and 16 to form a hydrogen ion beam.

本発明による水素イオン照射源はパラジウム表面に高密
度に滞在している水素原子を電子衝撃によりイオン化1
〜ているので、水素分子気体をイオン化する従来のアヤ
ゴンによる電子衝撃型イオン照射源に較べはるかに高い
イオン化効率が得られ、そのため大電流の水素イオンビ
ームをとりだすことが可能となった。また、パラジウム
膜12はイオン半径の小さな水素イオンのみを通すため
導入水素に不純物が存在しても引出される水素イオンビ
ームは極めて高純度である。この実施例による水素イオ
ンビーム照射源け、高純度かつ大電流の水素イオンビー
ムを照射できる特徴をもつものである。
The hydrogen ion irradiation source according to the present invention ionizes hydrogen atoms staying in high density on the palladium surface by electron bombardment.
Because of this, much higher ionization efficiency can be obtained compared to the conventional electron impact ion irradiation source using Ayagon, which ionizes hydrogen molecular gas, and it has therefore become possible to extract a hydrogen ion beam with a large current. In addition, since the palladium membrane 12 allows only hydrogen ions with a small ionic radius to pass through, the extracted hydrogen ion beam has extremely high purity even if there are impurities in the introduced hydrogen. The hydrogen ion beam irradiation source according to this embodiment has the feature of being able to irradiate a hydrogen ion beam of high purity and large current.

さらに、加速された水素イオンビームけ、明止電極18
,19により減速されて半導体試料2oの表面に照射さ
れる。なお、パラジウム膜12に+500 V、 ’y
 x$ボルト 4に+550V、陰極15に5− +300V、陰極17にOV、 熱電子放射源16に−
)−350V、阻止電極18に+300V 、阻止電極
19に+490Vをそれぞれ印加したときに半導体20
に照射される水素イオンの運動エネルギーはxoeVと
極めて小さく、半導体200表面に損傷を与えることは
ない。
Furthermore, the accelerated hydrogen ion beam and the light-stop electrode 18
, 19, and irradiates the surface of the semiconductor sample 2o. In addition, +500 V, 'y
+550V to x$volt 4, 5- +300V to cathode 15, OV to cathode 17, - to thermionic source 16
)-350V, +300V to the blocking electrode 18, and +490V to the blocking electrode 19, the semiconductor 20
The kinetic energy of the hydrogen ions irradiated is extremely small, xoeV, and does not damage the surface of the semiconductor 200.

なお、この実施例は、加熱機構として赤外線ランプを用
いているが、パラジウム膜12への直接通電もしくは導
入筒11を通して熱伝導で加熱する加熱方式を用いても
よい。
Although this embodiment uses an infrared lamp as the heating mechanism, a heating method in which the palladium film 12 is directly energized or heated by thermal conduction through the introduction tube 11 may also be used.

第2図は本発明の第2の実施例の要部断面図である。本
実施例では、パラジウム膜表面に滞在する水素原子をイ
オン化する手段として光を用いている。すなわち、光源
としては水素原子のイオン化エネルギ13.6eV よ
り大きなエネルギーを持つ光を発生するもの9例えば、
Heの共鳴線源等が適当である。なお、これらの短波長
の光は吸収係数が大きく適当な密林がないため、差動排
気型の照射源とする必要がある。第2図において光源2
3から放出された光は、格子状の平板電極21を通6− してパラジウム膜12の表面に照射される。この場合は
第1図の装置と異って水素イオンビームが平行平板電極
21.22によす45°偏向された後、陰極17により
加速されている。これら平行平板電極の一方の電極21
は光を透過させるために格子状となっている。この実施
例の水素イオンビーム照射源は、偏向電極となっている
ため、中性粒子による試料照射が防がれることおよび照
射イオンの質量選択が可能なため第1図の装置よりもさ
らに高純度の水素イオンビームが得られるという特長を
もっている。
FIG. 2 is a sectional view of a main part of a second embodiment of the present invention. In this example, light is used as a means to ionize hydrogen atoms staying on the surface of the palladium film. In other words, as a light source, one that generates light with energy greater than the ionization energy of hydrogen atoms, 13.6 eV9, for example,
A resonant source of He or the like is suitable. Note that these short wavelength lights have a large absorption coefficient and there is no suitable dense forest, so a differentially pumped irradiation source is required. In Figure 2, light source 2
The light emitted from the palladium film 12 is irradiated onto the surface of the palladium film 12 through the grid-like flat plate electrode 21. In this case, unlike the apparatus shown in FIG. 1, the hydrogen ion beam is accelerated by the cathode 17 after being deflected by 45 degrees by the parallel plate electrodes 21, 22. One electrode 21 of these parallel plate electrodes
is grid-like to allow light to pass through. The hydrogen ion beam irradiation source in this example has a deflection electrode, which prevents the sample from being irradiated by neutral particles and allows for selection of the mass of the irradiated ions, resulting in higher purity than the device shown in Figure 1. It has the advantage of being able to obtain a hydrogen ion beam of.

これら実施例においては隔膜材料としてパラジウムを用
いたがパラジウム銀等のパラジウム合金を用いると機械
的強度によりすぐれた隔膜が形成できる。また、水素吸
蔵能力の大きな金属であれば、他の種類の金属を用いて
よいことは云うまでもない。これらの金属として例挙す
れば、ロジウム、イリジウム、ニオブ、ハフニウム、チ
タン等があげられる。
In these Examples, palladium was used as the diaphragm material, but if a palladium alloy such as palladium silver is used, a diaphragm with excellent mechanical strength can be formed. It goes without saying that other metals may be used as long as they have a large hydrogen storage capacity. Examples of these metals include rhodium, iridium, niobium, hafnium, and titanium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の要部断面図、第2図は
本発明の第2の実施例の要部断面図である。図において 11・・・・・・水素ガス導入筒、12・・・・・・パ
ラジウム隔膜、13・・・・・・赤外線ランプ、14・
旧・・ウェネルト電極、15,17・・・・・・陰極、
16・・・・・・熱電子放出源、18,19・・−・・
・阻止電極、2o−・・・・・半導体試料、21・・・
・・・格子状平板偏向電極、22・・・・・・平板偏向
電極、23・・・・・・光源、である。 事1tl 〃2 茅2図
FIG. 1 is a sectional view of a main part of a first embodiment of the invention, and FIG. 2 is a sectional view of a main part of a second embodiment of the invention. In the figure, 11...Hydrogen gas introduction tube, 12...Palladium diaphragm, 13...Infrared lamp, 14...
Old... Wehnelt electrode, 15, 17... cathode,
16... Thermionic emission source, 18, 19...
・Blocking electrode, 2o-...Semiconductor sample, 21...
. . . Grid-like flat plate deflection electrode, 22 . . . Flat plate deflection electrode, 23 . . . Light source. Things 1tl 〃2 Kaya 2 diagram

Claims (1)

【特許請求の範囲】 1)イオン化すべき水素を導入する側と真空となってイ
オンの出力される側とを隔てる水素吸蔵金属で作られた
隔膜と、この隔膜を加熱する加熱機構と、前記隔膜の真
空側面に対向して設けられかつ前記隔膜に対して負にバ
イアスされる少なくとも一つの陰極と、前記隔膜の真空
側表面に電子ビームを照射する電子ビーム源もしくは光
を照射する光源からなるイオン化手段とを含むことを特
徴とする水素イオンビーム照射源。 2)水素吸蔵金属がパラジウム、ハフニウム、チタン、
ロジウム、イリジウム、ニオブから選ばれた金属、もし
くはこれらの金属を含む合金である特許請求の範囲第1
項記載の水素イオンビーム照射源。
[Scope of Claims] 1) A diaphragm made of a hydrogen-absorbing metal that separates the side into which hydrogen to be ionized is introduced and the side from which ions are output in a vacuum state, a heating mechanism for heating this diaphragm, and a heating mechanism for heating the diaphragm; At least one cathode that is provided opposite to the vacuum side of the diaphragm and biased negatively with respect to the diaphragm, and an electron beam source that irradiates the vacuum side surface of the diaphragm with an electron beam or a light source that irradiates light. A hydrogen ion beam irradiation source, comprising ionization means. 2) Hydrogen storage metal is palladium, hafnium, titanium,
Claim 1 is a metal selected from rhodium, iridium, and niobium, or an alloy containing these metals.
Hydrogen ion beam irradiation source as described in .
JP58108675A 1983-06-17 1983-06-17 Hydrogen ion beam irradiation source Pending JPS601743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58108675A JPS601743A (en) 1983-06-17 1983-06-17 Hydrogen ion beam irradiation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58108675A JPS601743A (en) 1983-06-17 1983-06-17 Hydrogen ion beam irradiation source

Publications (1)

Publication Number Publication Date
JPS601743A true JPS601743A (en) 1985-01-07

Family

ID=14490817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58108675A Pending JPS601743A (en) 1983-06-17 1983-06-17 Hydrogen ion beam irradiation source

Country Status (1)

Country Link
JP (1) JPS601743A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423083U (en) * 1990-06-18 1992-02-25
US6169288B1 (en) 1997-10-03 2001-01-02 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Laser ablation type ion source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0423083U (en) * 1990-06-18 1992-02-25
US6169288B1 (en) 1997-10-03 2001-01-02 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Laser ablation type ion source

Similar Documents

Publication Publication Date Title
US5146088A (en) Method and apparatus for surface analysis
US5308461A (en) Method to deposit multilayer films
US4641316A (en) D.C. electron beam method and apparatus for continuous laser excitation
JPS601743A (en) Hydrogen ion beam irradiation source
US5654541A (en) Small vacuum compatible hyperthermal atom generator
JPH06124680A (en) Mass spectrometer for secondary neutral particle
JPH0760654B2 (en) Ion beam generation method and device
JPH04242049A (en) Ion source
JP2637948B2 (en) Beam plasma type ion gun
JPH0692638B2 (en) Thin film device
JP2752626B2 (en) Field ionization gas ionization method and its ion source
JPS59130056A (en) Proton beam illuminating source
JPS62224480A (en) Double beam gas ion laser
JP2637947B2 (en) Beam plasma type ion gun
JPS60121662A (en) Mass spectrometer
US20210183608A1 (en) Photon-induced ion source
JPH04303Y2 (en)
JP3079585B2 (en) Neutral particle mass spectrometer
JP3241164B2 (en) Excited molecular beam source
JP2001343364A (en) Detection device for specific atom in solid
JP6174054B2 (en) Orbitron pump and electron beam apparatus equipped with orbitron pump
JPH1064465A (en) Electron beam device
JPS60235344A (en) Ion beam generating apparatus
JPS60235337A (en) Ion beam generating apparatus
Sasao et al. Reflection and Ionization of Light Atoms from Complex-Mo Surface