JPS60174291A - Laser irradiating device - Google Patents
Laser irradiating deviceInfo
- Publication number
- JPS60174291A JPS60174291A JP59028559A JP2855984A JPS60174291A JP S60174291 A JPS60174291 A JP S60174291A JP 59028559 A JP59028559 A JP 59028559A JP 2855984 A JP2855984 A JP 2855984A JP S60174291 A JPS60174291 A JP S60174291A
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- laser beam
- laser
- axis
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/10—Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、半導体などの被加工物にレーザ光を走査し
ながら照射して、加熱溶解又は加熱切断などの加工を行
うためのレーザ光照射装置に関するものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a laser beam irradiation device for performing processing such as heating melting or heating cutting by scanning and irradiating a workpiece such as a semiconductor with a laser beam. It is related to.
一般に、高速、高密度の半導体装置を実現するために、
絶縁物の上に単結晶の半導体を形成し、この半導体層に
素子を作製することが試みられている。そして絶縁体上
に単結晶の半導体層を形成するために、細く絞ったレー
ザ光を走査しながらこれを400℃程度に加熱された半
導体層に照射し、この半導体層を溶融して単結晶化させ
るという方法がある。Generally, in order to realize high-speed, high-density semiconductor devices,
Attempts have been made to form a single-crystal semiconductor on an insulator and to fabricate an element in this semiconductor layer. In order to form a single-crystal semiconductor layer on the insulator, a narrowly focused laser beam is scanned and irradiated onto the semiconductor layer heated to about 400 degrees Celsius, melting the semiconductor layer and turning it into a single crystal. There is a way to do it.
従来、この半導体層を溶融するためのレーザ光照射装置
として、第1図及び第2図に示す2種類の装置があった
。第1図において、1はレーザ発振器、2は直径数十μ
mに絞られたレーザ光線、3は絶縁体上に形成された半
導体層を有する半導体基板、4は半導体基Ifi3を支
えかつこれを400℃程度に加熱する支持台である。こ
の支持台4は、レーザ光線2が常に半導体基板3に垂直
に入射するようにレーザ光線2に対して垂直な面内(図
中、x、X方向)で移動可能となっている。Conventionally, there have been two types of laser beam irradiation apparatuses shown in FIGS. 1 and 2 as laser beam irradiation apparatuses for melting this semiconductor layer. In Figure 1, 1 is a laser oscillator, 2 is a diameter of several tens of microns.
3 is a semiconductor substrate having a semiconductor layer formed on an insulator, and 4 is a support base that supports the semiconductor substrate Ifi3 and heats it to about 400°C. This support stand 4 is movable in a plane perpendicular to the laser beam 2 (in the x and X directions in the figure) so that the laser beam 2 is always perpendicularly incident on the semiconductor substrate 3.
上記支持台4は、第1図に示すように、レーザ光線2に
対して垂直な面内でX方向に数十cm / secの速
さで移動される。従って半導体基板3の表面上において
は、レーザ光線2がX方向に数十国/secの速さで走
査されたことになる。そしてこの−走査が終了すると、
該支持台4はX方向に数十μm移動され次のX方向の走
査が始まる。このようにして支持台4上の半導体基板3
の全面にわたってレーザ光が照射され、半導体層の加熱
溶融。As shown in FIG. 1, the support table 4 is moved in the X direction at a speed of several tens of cm/sec within a plane perpendicular to the laser beam 2. Therefore, the surface of the semiconductor substrate 3 is scanned by the laser beam 2 in the X direction at a speed of several tens of degrees per second. And when this -scanning is finished,
The support table 4 is moved several tens of μm in the X direction, and the next scan in the X direction begins. In this way, the semiconductor substrate 3 on the support base 4 is
The entire surface of the semiconductor layer is irradiated with laser light, and the semiconductor layer is heated and melted.
単結晶化が行われる。Single crystallization is performed.
第2図は従来の他のレーザ光照射装置の概略図である。FIG. 2 is a schematic diagram of another conventional laser beam irradiation device.
図において、第1図と同一符号は同一のものを示す。5
及び6はガルバノメータが取りつけられた第1.第2の
鏡で、それぞれX方向と、それに垂直なX方向に回転が
できるようになっている。In the figure, the same reference numerals as in FIG. 1 indicate the same parts. 5
and 6 is the first one equipped with a galvanometer. The second mirror can be rotated in the X direction and in the X direction perpendicular to it.
上記第1の鏡5は、レーザ光2が半導体基板3上でX方
向に数十cm/secの速さで走査されるように回転す
る。そして半導体基板3上でレーザ光2がX方向の一定
歪を終了すると、第2の鏡6がレーザ光2がX方向に数
十μm動くように回転し、そして次に上記第1の鏡5が
次のX方向の走査のために回転を開始する。このように
して、支持台4上の半導体基@3の全面にわたってレー
ザ光が照射され、半導体層の加熱溶融、単結晶化が行わ
れる。The first mirror 5 rotates so that the laser beam 2 is scanned over the semiconductor substrate 3 in the X direction at a speed of several tens of cm/sec. When the laser beam 2 finishes the constant distortion in the X direction on the semiconductor substrate 3, the second mirror 6 rotates so that the laser beam 2 moves several tens of μm in the X direction, and then the first mirror 5 starts rotating for the next scan in the X direction. In this way, the entire surface of the semiconductor substrate @3 on the support base 4 is irradiated with laser light, and the semiconductor layer is heated and melted and made into a single crystal.
ところが、第1図に示したような従来の装置では、レー
ザ光を半導体層全面にわたって照射するために、加熱装
置のついた重い支持台4を動かさねばならず、多くの動
力を必要とし、また装置が複雑になるなどの欠点があっ
た。また第2図に示したような従来の装置では、第1図
に示したような装置よりも簡単にはなるが、レーザ光が
半導体層に対して常に同じ角度で照射されないため、半
導体層の上に反射防止膜を付けた場合、場所によって半
導体層に吸収されるレーザ光のパワーが異なり、一定に
ならないという欠点があった。However, in the conventional apparatus shown in FIG. 1, in order to irradiate the entire surface of the semiconductor layer with laser light, a heavy support base 4 equipped with a heating device must be moved, which requires a large amount of power. There were drawbacks such as the complexity of the device. Furthermore, although the conventional device shown in FIG. 2 is simpler than the device shown in FIG. 1, the laser light is not always irradiated onto the semiconductor layer at the same angle. When an antireflection film is attached thereon, there is a drawback that the power of the laser light absorbed by the semiconductor layer varies depending on the location and is not constant.
この発明は上記のような従来のものの欠点を除、1させ
てレーザ光の走査を行なうようにすることにより、照射
されるレーザ光の光軸が対象物に対して常に一定の角度
を保ち、かつレーザ光を走査させるのに大きな動力を必
要としないレーザ光照射装置を提供することを目的とし
ている。This invention eliminates the above-mentioned drawbacks of the conventional method, and by scanning the laser beam, the optical axis of the irradiated laser beam always maintains a constant angle with respect to the object. Another object of the present invention is to provide a laser beam irradiation device that does not require large power to scan the laser beam.
以下、この発明の一実施例を図について説明する。第3
図〜第5図は本発明の一実施例にょるレーザ光照射装置
を示したものであり、図において、■は連続発振のレー
ザ光2を放射するレーザ発振器であり、このレーザ光2
としては、例えばアルゴン(Ar)ガスレーザ光、二酸
化炭素(co2)ガスレーザ光が使用される。15.1
6はレーザ発振器1から対象物である半導体基板3まで
のレーザ光2の光路中に設けられた第1.第2の鏡であ
り、第1の鏡15は上記レーザ発振器1がらの出射レー
ザ光の光軸(X軸)に対し水平面内で45゛偵けられ、
半導体基板3の表面に対して垂直に配置されている。ま
た第2の鏡16はその長手方向がX軸と平行になるよう
、かつ上記第1の鏡15からの反射光の光軸(X軸)に
対し垂直面内で45°傾けられて配装置されており、上
記第1の鏡15からの反射レーザ光を2軸方向に反射す
゛るようになっている。そしてこれらの第1.第2の
鏡15,16は、図示しない鎖駆動手段によってそれぞ
れX軸方向、y軸方向に直線的に移動可能となっている
。なお、半導体基板3はその表面が第1.第2の鏡15
.16の移動方向x、yと平行な面内、即ちz軸に垂直
な、面内に配置されている。An embodiment of the present invention will be described below with reference to the drawings. Third
5 to 5 show a laser beam irradiation device according to an embodiment of the present invention. In the figures, ■ is a laser oscillator that emits continuous wave laser beam 2;
For example, argon (Ar) gas laser light and carbon dioxide (CO2) gas laser light are used. 15.1
Reference numeral 6 denotes a first . The first mirror 15 is a second mirror, and the first mirror 15 is oriented 45 degrees in a horizontal plane with respect to the optical axis (X-axis) of the laser beam emitted from the laser oscillator 1,
It is arranged perpendicularly to the surface of the semiconductor substrate 3. Further, the second mirror 16 is arranged so that its longitudinal direction is parallel to the X-axis, and is inclined at 45 degrees in a plane perpendicular to the optical axis (X-axis) of the reflected light from the first mirror 15. The laser beam reflected from the first mirror 15 is reflected in two axial directions. And the first of these. The second mirrors 15 and 16 are movable linearly in the X-axis direction and the Y-axis direction, respectively, by chain drive means (not shown). Note that the surface of the semiconductor substrate 3 is the first. second mirror 15
.. 16 in a plane parallel to the moving directions x and y, that is, in a plane perpendicular to the z-axis.
次に動作について説明する。Next, the operation will be explained.
レーザ発振器1からX軸方向へ放射されたレーザ光2は
、第1の鏡15によってy軸方向に反射され、該反射レ
ーザ光はさらに第2の鏡16によって2軸方向に反射さ
れて半導体基板3に垂直に入射する。この時、上記第1
の鏡15はX軸方向ニ数十〇m/Secの速さで移動し
ているので、レーザ光2は半導体基板3上でX方向に数
十cm/secの速さで走査されることになる。そして
半導体基板3上でレーザ光2がX軸方向の一走査を終了
すると、第2の鏡16がy軸方向に数十μm動き、レー
ザ光2の半導体基板3への照射位置が数十μm移動する
。そして再び次のX軸方向の走査、即ち第1の鏡15の
移動が始まる。このようにして、支持台4上の半導体基
板3の全面にねた。てレーザ光線が照射され、半導体層
の加熱溶融、単結晶化が行われる。The laser beam 2 emitted from the laser oscillator 1 in the X-axis direction is reflected by the first mirror 15 in the y-axis direction, and the reflected laser beam is further reflected in two-axis directions by the second mirror 16 to strike the semiconductor substrate. It is incident perpendicularly to 3. At this time, the above first
Since the mirror 15 is moving at a speed of several tens of meters/sec in the X-axis direction, the laser beam 2 is scanned on the semiconductor substrate 3 at a speed of several tens of cm/sec in the X-direction. Become. When the laser beam 2 completes one scan in the X-axis direction on the semiconductor substrate 3, the second mirror 16 moves several tens of μm in the Y-axis direction, and the irradiation position of the laser beam 2 on the semiconductor substrate 3 changes by several tens of μm. Moving. Then, the next scan in the X-axis direction, that is, the movement of the first mirror 15 begins again. In this way, the entire surface of the semiconductor substrate 3 on the support stand 4 was covered with it. A laser beam is irradiated to heat and melt the semiconductor layer and make it into a single crystal.
半導体基板3に照射されるレーザ光の照射角度は該基板
3の全面にわたって常に一定となり、均一な加熱溶融、
単結晶化を行なうことができる。また、従来装置のよう
に支持台4を移動させる必要もなく、装置に必要な動力
を非常に少なくすることができる。The irradiation angle of the laser beam irradiated onto the semiconductor substrate 3 is always constant over the entire surface of the substrate 3, resulting in uniform heating and melting.
Single crystallization can be performed. Further, there is no need to move the support base 4 as in the conventional device, and the power required for the device can be significantly reduced.
なお、上記実施例ではレーザ光線が対象物の表面に垂直
に入射するようにしたが、これは斜めに入射させるよう
にしてもよく、上記実施例と同様の効果が得られる。ま
た、X軸方向に可動である第1の鏡とy軸方向に可動で
ある第2の鏡とを同時に動かずようにしてもよい。In the above embodiment, the laser beam is made to enter the surface of the object perpendicularly, but it may be made to enter the object obliquely, and the same effect as in the above embodiment can be obtained. Furthermore, the first mirror that is movable in the X-axis direction and the second mirror that is movable in the Y-axis direction may be made stationary at the same time.
以上のように、この発明によれば、レーザ光を走査して
これを対象物に照射するレーザ光照射装置において、レ
ーザ光の光路中に2枚の鏡を設け、これらの鏡をそれぞ
れ異なる方向に直線移動させて上記レーザ光の走査を行
なうようにしたので、対象物に照射されるレーザ光の照
射角度が當に一定にでき、かつレーザ光走査のだめの動
力を非常に少なくすることができる効果がある。As described above, according to the present invention, in a laser beam irradiation device that scans a laser beam and irradiates an object with it, two mirrors are provided in the optical path of the laser beam, and these mirrors are directed in different directions. Since the laser beam is scanned by moving the laser beam in a straight line, the irradiation angle of the laser beam irradiated onto the object can be kept constant, and the power required for laser beam scanning can be extremely reduced. effective.
第1図は従来のレーザ光照射装置の一例を示す模式図、
第2図は従来のレーザ光照射装置の他の例を示す模式図
、第3図はこの発明の一実施例によるレーザ光照射装置
を示す模式図、第4図は第3図の装置の平面図、第5図
は第3図の装置の側面図である。
1・・・レーザ発振器、2・・・レーザ光線、3・・・
半導体基板(対象物)、15・・・第1の鏡、16・・
・第2の鏡。
なお図中同一符号は同−又は相当部分を示す。
出願人 工業技術院長 川 ]■1 裕 部第1図
第2図
ち
1
第3図
第5図FIG. 1 is a schematic diagram showing an example of a conventional laser beam irradiation device.
FIG. 2 is a schematic diagram showing another example of a conventional laser beam irradiation device, FIG. 3 is a schematic diagram showing a laser beam irradiation device according to an embodiment of the present invention, and FIG. 4 is a plan view of the device in FIG. 3. 5 is a side view of the apparatus of FIG. 3. 1... Laser oscillator, 2... Laser beam, 3...
Semiconductor substrate (object), 15...first mirror, 16...
・Second mirror. Note that the same reference numerals in the figures indicate the same or equivalent parts. Applicant Kawa, Director of the Agency of Industrial Science and Technology ■1 Hirobe Figure 1 Figure 2 Figure 1 Figure 3 Figure 5
Claims (4)
光を走査してこれを対象物に照射するレーザ光照射装置
において、上記レーザ発振器から対象物までのレーザ光
の光路中に設けられた第1.第2の鏡と、該第1.第2
の鏡のそれぞれを相互に異なる方向に直線移動させて上
記レーザ光の走査を行なう鎖駆動手段とを備えたことを
特徴とするレーザ光照射装置。(1) In a laser beam irradiation device that scans a continuous wave laser beam emitted from a laser oscillator and irradiates it onto an object, a first laser beam provided in the optical path of the laser beam from the laser oscillator to the object. .. a second mirror; and the first mirror. Second
a chain driving means for linearly moving each of the mirrors in mutually different directions to perform scanning with the laser beam.
ーザ光の光軸であるX軸に対し水平面内で45°領けら
れて配置されており、上記第2の鏡は、その長手方向が
X軸に平行となるようかつ上記第1の鏡からの反射光の
光軸であるy軸に対し垂直面内で45°傾けられて配置
されCおり、上記鎖駆動手段は、上記第1.第2の鏡を
それぞれX軸、y軸方向に直線移動させるものであり、
上記第2の鏡からの反射光である対象物への入射光はZ
軸方向となっていることを特徴とする特許請求の範囲第
1項記載のレーザ光照射装置。(2) The first mirror is arranged at an angle of 45° in a horizontal plane with respect to the X-axis, which is the optical axis of the laser beam emitted from the laser oscillator, and the second mirror is arranged along its longitudinal axis. The chain driving means is arranged so that its direction is parallel to the X-axis and is inclined at 45° in a plane perpendicular to the y-axis, which is the optical axis of the reflected light from the first mirror. 1. The second mirror is moved linearly in the X-axis and y-axis directions, respectively,
The light incident on the object, which is the reflected light from the second mirror, is Z
The laser beam irradiation device according to claim 1, characterized in that the laser beam irradiation device is oriented in the axial direction.
を放射するものであることを特徴とする特許請求の範囲
第1項又は第2項記載のレーザ光照射装置。(3) The laser light irradiation device according to claim 1 or 2, wherein the laser oscillator emits argon gas laser light.
を放射するものであることを特徴とする特許請求の範囲
第1項又は第2項記載のレーザ光照射装置。(4) The laser light irradiation device according to claim 1 or 2, wherein the laser oscillator emits carbon dioxide gas laser light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59028559A JPS60174291A (en) | 1984-02-20 | 1984-02-20 | Laser irradiating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59028559A JPS60174291A (en) | 1984-02-20 | 1984-02-20 | Laser irradiating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60174291A true JPS60174291A (en) | 1985-09-07 |
Family
ID=12251998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59028559A Pending JPS60174291A (en) | 1984-02-20 | 1984-02-20 | Laser irradiating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60174291A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5828787B2 (en) * | 1974-07-10 | 1983-06-17 | 株式会社東芝 | Saidaichi Count Souchi |
-
1984
- 1984-02-20 JP JP59028559A patent/JPS60174291A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5828787B2 (en) * | 1974-07-10 | 1983-06-17 | 株式会社東芝 | Saidaichi Count Souchi |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10500677B2 (en) | Laser machining systems and methods with vision correction and/or tracking | |
US6410882B1 (en) | Laser welding method | |
JP4490883B2 (en) | Laser processing apparatus and laser processing method | |
JP4156513B2 (en) | Scribing method and scribing apparatus for brittle material substrate | |
JP2004514053A (en) | Apparatus for sintering, material removal and / or labeling with electromagnetic radiation flux and method of operating the apparatus | |
JP2002141301A5 (en) | ||
US20080008854A1 (en) | Composite sheet, machining method for composite sheet and laser machining apparatus | |
WO2004020140A1 (en) | Laser processing method and processing device | |
TWI803934B (en) | Laser processing system and method thereof | |
US20040124184A1 (en) | Method and apparatus for forming periodic structures | |
TWI292352B (en) | ||
JPWO2003008168A1 (en) | Scribing device for brittle material substrate | |
JP3077462B2 (en) | How to cut glass | |
JP3221724B2 (en) | Optical annealing method and apparatus | |
JPWO2003013816A1 (en) | Method and apparatus for scribing brittle material substrate | |
CN106475681A (en) | Optical machining device and the production method of light machining object | |
CN108161230A (en) | A kind of devices and methods therefor of quasi- 3D processing spherical crown aperture plate | |
JPS60174291A (en) | Laser irradiating device | |
JPS6380987A (en) | Laser beam machine | |
JP3873098B2 (en) | Laser processing method and apparatus | |
JP6802093B2 (en) | Laser processing method and laser processing equipment | |
JP2002346775A (en) | Device and method for laser beam machining | |
JP2581574B2 (en) | Laser processing method and apparatus | |
JPH0639575A (en) | Laser beam machine | |
JPH01271084A (en) | Laser cutting method for glass |