JPS60174049A - Rotary electric machine with axial magnetic flux air gap - Google Patents

Rotary electric machine with axial magnetic flux air gap

Info

Publication number
JPS60174049A
JPS60174049A JP2877084A JP2877084A JPS60174049A JP S60174049 A JPS60174049 A JP S60174049A JP 2877084 A JP2877084 A JP 2877084A JP 2877084 A JP2877084 A JP 2877084A JP S60174049 A JPS60174049 A JP S60174049A
Authority
JP
Japan
Prior art keywords
rotor
pole
stator
yoke
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2877084A
Other languages
Japanese (ja)
Inventor
Naoji Sato
佐藤 尚次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Advanced Motor Corp
Original Assignee
Nidec Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Servo Corp filed Critical Nidec Servo Corp
Priority to JP2877084A priority Critical patent/JPS60174049A/en
Publication of JPS60174049A publication Critical patent/JPS60174049A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To increase the output of a motor by using a strong magnet material by using both sides of a disc-shaped magnet rotor. CONSTITUTION:Pole teeth of a stator 4 are alternately excited to S-pole and N- pole by energizing a stator winding 45. A rotor 1 is stopped by the generation of the S-pole and N-pole so that the poles N1, N2, N3, ... of the rotor 1 are opposed to the S-pole of the stator 4 and the poles S1, S2, S3,... of the rotor 1 are opposed to the N-pole of the stator 4. Then, the energization of the stator winding 45 is interrupted, a current is flowed to the stator winding 45', and the poles of the stator 4' are alternately excited to S-poles and N-poles. The rotor 1 is moved to the position that the poles N1, N2, N3,... of the rotor 1 are opposed to the S-pole of the stator 4' and the poles S1, S2, S3,... of the rotor 1 are opposed to the N-pole of the stator 4', and stopped.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、軸方向に磁束空隙を有する回転電機に係り、
特に、永久磁石形ステッピングモータ又はシンクロナス
モータとして動作するモータに適用して、形状を扁平に
、出力を大に、かつ微少ステップ角での駆動を可能とす
る、軸方向に磁束空隙を有する回転電機に関するもので
、例えば、磁気ディスク駆動装置の磁気ヘッド駆動用と
しての゛扁平状でしかも微少角駆動のステッピングモー
タに使用できる。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a rotating electric machine having a magnetic flux gap in the axial direction,
In particular, it is applied to motors that operate as permanent magnet stepping motors or synchronous motors, with a flat shape, large output, and a rotation with a magnetic flux gap in the axial direction that enables driving at minute step angles. The present invention relates to electrical machinery, and can be used, for example, as a flat stepping motor with minute angle drive for driving the magnetic head of a magnetic disk drive device.

〔発明の背景〕[Background of the invention]

従来の永久磁石形ステッピングモータ又はシンクロナス
モータにおいては、円筒の外周面を同じピッチで分割し
た各区画が交互にN極、S極となるように半径方向に着
磁した円筒形の永久磁石を回転子とし、この円筒の外周
面と小空隙を介して対向する内周面を持つ固定子磁極を
回転子の外周側に配置する、半径方向に磁束空隙き有す
る構成が、一般に、採用されていた。しかし、この従来
構成には次のような問題点があった。即ち、(1)円筒
形の磁石材に半径方向に多数の磁極を着磁すると極数の
増大と共に磁極の強さが急減し出力が低下するから極数
が限定される。
In conventional permanent magnet stepping motors or synchronous motors, a cylindrical permanent magnet is magnetized in the radial direction so that the outer circumferential surface of the cylinder is divided at the same pitch and each section becomes an alternating north pole and south pole. Generally, a configuration is adopted in which stator magnetic poles are arranged on the outer circumferential side of the rotor, and have a magnetic flux gap in the radial direction. Ta. However, this conventional configuration has the following problems. That is, (1) when a cylindrical magnet material is magnetized with a large number of magnetic poles in the radial direction, the strength of the magnetic poles decreases rapidly as the number of poles increases, and the output decreases, so the number of poles is limited.

(2)出力を増加するにはモータ形状を軸方向に長くす
ることで対応できるが、これは扁平形の構成には適さな
い、等の問題点があった。特に、最近需要が急増してい
る磁気ディスク駆動装置に採用する扁平でかつ微少角駆
動を要求されるステッピングモータには適さない。
(2) The output can be increased by lengthening the motor shape in the axial direction, but there are problems such as this is not suitable for a flat configuration. In particular, it is not suitable for flat stepping motors that are required to be driven at minute angles and are used in magnetic disk drive devices, the demand of which has been rapidly increasing recently.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術での上記した問題点を解決し
、扁平形状で出力を大きくし、しかも微少角駆動を可能
にする、7量産性の良い、軸方向に磁束空隙を有する回
転電機を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems in the prior art, to provide a rotary electric machine having a magnetic flux gap in the axial direction, which has a flat shape, increases output, and enables minute angle drive, and which has good mass productivity. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、上記目的を達成するために、(イ)円
板面を円周方向に同じピッチで分割した各区画が交互に
N極、S極となり、かつ、円板面に直交する方向に着磁
した円板状磁石を回転子としてその円板中心部において
回転子軸に一体的に取付け。
The present invention is characterized in that, in order to achieve the above object, (a) each section obtained by dividing the disk surface at the same pitch in the circumferential direction alternately becomes a north pole and a south pole, and is orthogonal to the disk surface; A disc-shaped magnet magnetized in the same direction is used as a rotor and is integrally attached to the rotor shaft at the center of the disc.

(ロ)上記回転子軸は回転子を中央に挾む前後2つの軸
受により回転自在に支承され。
(b) The rotor shaft is rotatably supported by two front and rear bearings that sandwich the rotor in the center.

(ハ)上記軸受は夫々固定子の内径部において固定保持
されており。
(c) The above bearings are each fixedly held at the inner diameter portion of the stator.

(ニ) これらの固定子は、上記磁石回転子の前後の着
磁面と軸方向に小空隙を介して対向する位置に配置され
る固定子磁極円板と、その外径側に当接する円筒形の外
ヨークと内径側に当接する円筒形の内ヨークと、これら
の外ヨークと内ヨークの夫々の他方の端面に当接する端
板、ヨークとにより形成される磁気回路と、上記外ヨー
クと内ヨークとの間の空隙部に巻装される固定子巻線と
で夫々構成されており。
(d) These stators consist of stator magnetic pole disks that are placed at positions facing the front and rear magnetized surfaces of the magnet rotor in the axial direction with a small gap in between, and a cylinder that abuts on the outer diameter side of the stator magnetic pole disks. A magnetic circuit formed by a cylindrical outer yoke, a cylindrical inner yoke that abuts on the inner diameter side, an end plate and a yoke that abut the other end surfaces of the outer yoke and the inner yoke, and the outer yoke and the yoke. Each stator winding is wound in the gap between the inner yoke and the stator winding.

(ホ)上記固定子磁極円板には夫々、円板面を円周方向
に上記回転子の円板面の分割と同じピッチで分割した各
区画に交互に異極性の磁極が生成するようにほぼ放射状
に多数の抜き穴が円板面にあけてあり。
(e) The stator magnetic pole disks are each divided into sections in the circumferential direction at the same pitch as the division of the rotor disk surface, so that magnetic poles of different polarity are generated alternately in each section. Numerous holes are drilled in the disk surface in an almost radial pattern.

(へ)上記2つの固定子は夫々の固定子磁極円板に生じ
る磁極が一ピツチだけ円周方向にずれるように配設位置
が決められている構成とするにある〔発明の実施例〕 以下、図面により本発明の一実施例を説明する。
(f) The above two stators are arranged so that the magnetic poles generated on each stator magnetic pole disk are shifted by one pitch in the circumferential direction. [Embodiment of the invention] The following , an embodiment of the present invention will be explained with reference to the drawings.

第1図は本発明を扁平状の永久磁石形ステッピングモー
タに適用した実施例の断面図である。第1図において、
lは円板状磁石で構成される回転子、2はこの回転子1
と一体的な回転子軸、3及び3′は回転子lを中央に挾
んで前後2個所の位Fで回転子軸2を回転自在に支承し
ている軸受で、実施例では多孔質樹脂で形成される円筒
状軸受である。回転子lは、第4図(a)に平面図、(
blにそのXでX′断面図として一例を示すように、異
方性)荒ライト等の磁石材料を用いて円板状に形成され
その円板面を円周方向に同じピッチで分割(実施例では
16等分)した各区画が交互にN極、S極となるように
、かつ、円板面に直交する方向に(即ち、ある区画の前
側面がS極ならばその区画の後側面はN極に、それに隣
接する区画においては前側面がN極、後側面がS極にな
るように)着磁されている。このように、円板面を板面
に直交する方向に着磁することは、異方性磁石材料を用
いれば容易に可能であり、しかも着磁位置が円板の最外
周部であることから、従来の円筒形磁石材料の外周部を
半径方向に着磁して使用する構成に比較して、強力な磁
石とすることができると共に、着磁面が広く極数を多く
できるので、ステッピングモータに適用して、微少ステ
ップ角での駆動ができることになる。
FIG. 1 is a sectional view of an embodiment in which the present invention is applied to a flat permanent magnet type stepping motor. In Figure 1,
l is a rotor composed of disc-shaped magnets, 2 is this rotor 1
The rotor shafts 3 and 3', which are integral with the rotor shaft, are bearings that sandwich the rotor l in the center and rotatably support the rotor shaft 2 at two positions F in the front and rear, and in the embodiment, are made of porous resin. This is a cylindrical bearing. The rotor l is shown in plan view in Fig. 4(a).
As shown in the cross-sectional view at In the example, divide the sections into 16 equal parts) so that each section becomes the N pole and S pole alternately, and in the direction perpendicular to the disk surface (i.e., if the front side of a certain section is the S pole, then the rear side of that section is magnetized so that the front side becomes the N pole and the rear side becomes the S pole in the adjacent section). In this way, magnetizing the disk surface in the direction perpendicular to the disk surface is easily possible using anisotropic magnet materials, and since the magnetization position is the outermost part of the disk. Compared to the conventional configuration in which the outer periphery of a cylindrical magnet material is magnetized in the radial direction, it is possible to make a stronger magnet, and the magnetization surface is wider and the number of poles can be increased, making it suitable for stepping motors. By applying this method, it is possible to drive at minute step angles.

第1図に戻り、4及び4′はそれぞれ固定子で、回転子
lを中央に挾んで軸方向の前後の配置位置となるように
、モータケース5の内周側に取付けられ、それぞれの内
径部において円筒状の軸受3゜3′を固定保持している
。各固定子4,4′はそれぞれ、回転子1の着磁面と軸
方向に0.05 wn程度の小空隙を介して対向する位
置に配置される固定子磁極円板41.41’と、これら
の磁極円板41.41’のそれぞれの外径側に一方の開
放端面が当接する円筒形の外ヨーク42.42’と、同
じく磁極円板4.1.41’のそれぞれの内径側に一方
の開放端面が当接する円筒形の内ヨーク43.43’と
、これらの外ヨークと内ヨークのそれぞれの他方の開放
端面に当接する円板状の端板ヨーク44.44’とによ
り形成される磁気回路と、上記外ヨーク42.42’と
内ヨーク43.43’との間の空間部にそれぞれ巻装さ
れる固定子巻線45゜45’とで構成される。なお、4
6.46’は固定子巻線45.45’が巻回された絶縁
材料製のボビン枠である。
Returning to FIG. 1, 4 and 4' are stators, respectively, which are attached to the inner circumferential side of the motor case 5 so that the rotor l is sandwiched in the center and the rotor l is placed in the front and rear positions in the axial direction. A cylindrical bearing 3°3' is fixedly held at the portion. Each stator 4, 4' has a stator magnetic pole disk 41, 41' disposed at a position facing the magnetized surface of the rotor 1 in the axial direction with a small gap of about 0.05 wn interposed therebetween; A cylindrical outer yoke 42.42' whose one open end surface is in contact with the outer diameter side of each of these magnetic pole disks 41.41', and a cylindrical outer yoke 42.42' which is in contact with the inner diameter side of each of the magnetic pole disks 4.1.41'. It is formed by a cylindrical inner yoke 43.43' whose one open end surface abuts, and a disc-shaped end plate yoke 44.44' which abuts the other open end surface of each of the outer yoke and the inner yoke. and stator windings 45° 45' respectively wound in the spaces between the outer yokes 42, 42' and the inner yokes 43, 43'. In addition, 4
6.46' is a bobbin frame made of insulating material around which stator winding 45.45' is wound.

次に、固定子磁極円板41,41′の詳細について第2
図、第3図により説明する。なお、固定子4と4′は、
全く同じ構成を備えており、組立て時の取。
Next, the details of the stator magnetic pole disks 41, 41' will be explained in the second section.
This will be explained with reference to FIG. In addition, stators 4 and 4' are
They have exactly the same configuration and are easy to assemble.

付けか、固定子磁極円板41と41′が回転子lの着磁
面に対向するように、配置、される点が異なるだけであ
るので、以下では磁極円板41について述べる第2図は
磁極円板41の一実施例の平面図(a)とそのx−x’
断面図を示し、第3図(a)、 (b)は他の実施例の
平面図の要部を示す。いずれの磁極円板4】にも、その
円板面を円周方向に前記回転子1の円板面の着磁のため
の分割と同じピッチで分割(実施例では16分割)した
各区画に交互に異極性の磁極が生成するようにほぼ放射
状に多数(実施例では16個)の抜き穴41− Hがあ
けである。このような構成は、磁性鉄板から円板を打抜
く時に同時にプレス打抜きで抜き穴を形成することも、
あるいは磁性円板にホトエツチング加工を施すことで抜
き穴を形成する方法によって量産性よく作製することが
できる。上記のような放射状の抜き穴を有する磁極円板
を、固定子巻線45にある方向の電流を流して励磁した
時、各区画に交互に異極性の磁極が生成されることを第
3図ta+の構成の磁極円板41で説明する。この第3
図fa)は、磁極円板41が外周側と内周側とで分離し
ている例であるが、いま固定子巻線が励磁されて、磁極
円板41内をその中心部から外周部に向けて磁束が図示
矢印方向(◇)に流れるとすると、2つの隣接する極歯
4l−T(11,4l−T(21の各先端部では、極歯
4l−T(1)の先端部からは磁束が流出し、極歯41
− T(2+の先端部へは磁束が流入しており、即ち、
隣接する2つの極歯4l−T(11゜41− T(21
には互いに異極性の磁極が生成されることになる。第3
図(blは磁極円板41が外周側と内周側とで分離され
ないで、部分的にツナガリを持たせた例であるが、この
構成でも、固定子巻線の励磁によって、隣接する2つの
極歯には互いに異極性の磁極が生成される。第2図の実
施例は、各区画とO・外周側と内周側とにツナガリがあ
る場合であるが、この場合も、抜き穴41−Hの形状を
実施例のようにすることで、隣接する2つの極歯の磁束
密度が最大になるのは、破線丸印(ご刀で示したツナガ
リが最狭になる部分であり、この最狭部分での磁束の流
入、°流出状態を考えると図示矢印(0)のようになり
、従って、隣接する2つの極歯には異極性の磁極が生成
されることになる。
The only difference is that the stator magnetic pole disks 41 and 41' are arranged so as to face the magnetized surface of the rotor l. Plan view (a) of one embodiment of the magnetic pole disk 41 and its x-x'
A sectional view is shown, and FIGS. 3(a) and 3(b) show main parts of a plan view of another embodiment. Each of the magnetic pole discs 4 is divided into sections (16 divisions in the embodiment) in which the disc surface is divided in the circumferential direction at the same pitch as the division for magnetizing the disc surface of the rotor 1. A large number (16 holes in the embodiment) of holes 41-H are formed substantially radially so that magnetic poles of different polarities are generated alternately. With such a configuration, when punching out a disk from a magnetic iron plate, holes can also be formed by press punching at the same time.
Alternatively, it can be manufactured with good mass productivity by photo-etching a magnetic disk to form punch holes. Figure 3 shows that when a magnetic pole disk having radial holes as described above is excited by passing a current in a certain direction through the stator winding 45, magnetic poles of different polarity are generated alternately in each section. The magnetic pole disk 41 having a ta+ configuration will be explained. This third
Figure fa) is an example in which the magnetic pole disk 41 is separated into the outer circumferential side and the inner circumferential side, but now the stator winding is excited, and the inside of the magnetic pole disk 41 is moved from the center to the outer circumference. Assuming that the magnetic flux flows in the direction of the arrow shown (◇), two adjacent pole teeth 4l-T (11, 4l-T (21), The magnetic flux flows out and the pole tooth 41
- Magnetic flux flows into the tip of T(2+, that is,
Two adjacent pole teeth 4l-T(11°41-T(21
In this case, magnetic poles of different polarity are generated. Third
Figure (bl) is an example in which the magnetic pole disk 41 is not separated between the outer circumferential side and the inner circumferential side and is partially provided with a twist. Even in this configuration, the excitation of the stator winding allows two adjacent Magnetic poles of different polarity are generated in the pole teeth.In the embodiment shown in FIG. - By making the shape of H as shown in the example, the magnetic flux density of the two adjacent pole teeth becomes maximum at the point where the tsunagari indicated by the dashed line (the sword) becomes the narrowest. Considering the inflow and outflow state of magnetic flux at the narrowest part, it becomes as shown by the arrow (0) in the figure, and therefore, magnetic poles of different polarity are generated in two adjacent pole teeth.

以上のような構成を持つ固定子磁極円板41’、 41
’をそれぞれ備えた2つの固定子4,4′は、固定子磁
極円板41.41’が回転子1の着磁面と軸方向に約0
05調の小空隙を介してそれぞれ対向するように、かつ
、2つの磁極円板41.41’に生じる磁極が一ピッチ
だけ、実施例では中心角にして36 (1/32度だけ
、円周方向にずれた既設位置となるように、モータケー
ス5の内周側に固定状に取付けられる。
Stator magnetic pole disks 41', 41 having the above configuration
The two stators 4 and 4' each have a stator magnetic pole disk 41, 41' that is approximately 0.0 0.05 in the axial direction with respect to the magnetized surface of the rotor 1.
The magnetic poles formed on the two magnetic pole disks 41 and 41' are arranged so as to face each other through a small gap of 0.05 tone, and the magnetic poles generated on the two magnetic pole disks 41 and 41' are arranged by one pitch, in the example, the central angle is 36 degrees (1/32 degree), and the circumference is It is fixedly attached to the inner circumferential side of the motor case 5 so that the existing position is shifted in the direction.

なお、第1図実施例は、軸方向での上記した小磁束空隙
を保持させるために、軸受3,3′の端面と回転子1の
前後の側面との間にリング状の間隙片を設置した場合を
示したが、回転子lの着磁面と固定子磁極円板41.4
1’との間の機械的接触を防止するために、固定子磁極
円板の面か、回転子の着磁面の一方または両方に、摺動
磨擦係数の小さい合成樹脂材からなる固体潤滑膜を形成
し、この固体潤滑膜を介して固定子磁極円板と回転子と
を対向させる構成とすることも可能である。
In addition, in the embodiment shown in FIG. 1, ring-shaped gap pieces are installed between the end faces of the bearings 3 and 3' and the front and rear sides of the rotor 1 in order to maintain the above-mentioned small magnetic flux gap in the axial direction. The case is shown in which the magnetized surface of the rotor l and the stator magnetic pole disk 41.4
In order to prevent mechanical contact between It is also possible to form a structure in which the stator magnetic pole disk and the rotor are opposed to each other via this solid lubricant film.

以上の構成を備えた実施例ステッピングモータのステッ
プ移動動作を第5図、第6図により説明する。第5図は
回転子1と固定子4,4′の展開図を示し、(alは固
定子巻線45(巻線端子をA、 Bとする)に矢印方向
の電流が流れるときの回転子と両固定子との関係位置を
示す。このとき、固定子巻線45’ (C,Dはその巻
線端子)には通電されない。固定子巻線45への通電に
より固定子4の各極l歯は図示のように、交互にS極、
n極に励磁される。これらのS極、n極の生成により、
回転子lは図示位置に、即ち、回転子1のN、、 N2
. N3.・・・・・の磁極が固定子4のS極に対向し
、回転子1のSl。
The step movement operation of the embodiment stepping motor having the above configuration will be explained with reference to FIGS. 5 and 6. Figure 5 shows a developed view of the rotor 1 and stators 4, 4', (al is the rotor when current flows in the direction of the arrow in the stator winding 45 (winding terminals are A and B). and both stators. At this time, the stator winding 45' (C and D are the winding terminals) is not energized. By energizing the stator winding 45, each pole of the stator 4 The L teeth alternately have S pole,
Excited to n-pole. Due to the generation of these S and N poles,
The rotor l is in the position shown, i.e. rotor 1 N,, N2
.. N3. The magnetic poles of ... oppose the S pole of the stator 4, and the SL of the rotor 1.

S2.S3.・・・・・・の磁極が固定子4の0極に対
向する位置に、停止する。次に+b1図に移り、固定子
巻線45の通電をしゃ断し、固定子巻線45′に矢印方
向の電流を流すことにより、固定子4′の各極歯は、図
示のように、交互にS極、n極に励磁される。これらの
S極、n極の生成により、回転子lは、そのN、、 N
2. N3.・・・・・・の磁極が固定子4′のS極に
対向し、Sl 、 s2. s3.・・・・・・の磁極
が固定子4′のn極に対向する位置まで移動して停止す
る。固定子4ずれているので、上記の(a)から(b)
へのステップ移1第6図の通電シーケンスに示すように
、次に固定子巻線45′への通電をしゃ断し、固定子巻
線45に、(a)図の場合とは逆方向に、B、A方向に
、電流を流すことにより、固定子4の極歯に交互にS極
、n極が生成されるが、そめ位置は(a)図のS極位置
龜n極が、n極位置にS極が生じ、これにより回固定子
巻線45への通電をしゃ断し、固定子巻線45′1こ、
(b)図の場合とは逆に、D、C方向に、電−流をプ移
動する。以上で1サイクルを終了し、次は再びfai図
の状態に戻り、固定子巻線45にA−B方向に電流を流
すことにより、・回転子lのあるーっの磁極Nlに着1
」シて第6図にそのステップ移・動状態を示すように、
固定子巻線45.45’への通電が(A、B)、(C−
D)、<B−A)、<D→C)、(A→B)。
S2. S3. It stops at a position where the magnetic pole of . . . opposes the 0 pole of the stator 4. Next, moving to figure +b1, by cutting off the current to the stator winding 45 and passing current in the direction of the arrow to the stator winding 45', each pole tooth of the stator 4' is alternately set as shown in the figure. It is excited to S pole and N pole. Due to the generation of these south and n poles, the rotor l has its N, , N
2. N3. The magnetic poles of . . . are opposed to the S pole of the stator 4', s3. The magnetic poles of . . . move to a position opposite to the n-pole of the stator 4' and stop. Since the stator 4 is misaligned, from (a) to (b) above
Step 1 As shown in the energization sequence in Fig. 6, the energization to the stator winding 45' is cut off, and the stator winding 45 is energized in the opposite direction to that shown in Fig. 6(a). By passing current in directions B and A, S poles and n poles are generated alternately on the pole teeth of the stator 4. An S pole is generated at the position, which cuts off the current to the rotary stator winding 45, causing the stator winding 45'1 to
(b) Contrary to the case shown in the figure, the current is moved in the D and C directions. This completes one cycle, and then returns to the state shown in the fai diagram again, and by passing current through the stator winding 45 in the A-B direction, the rotor l reaches a certain magnetic pole Nl.
” As shown in Figure 6, the step movement/movement state is as follows.
The stator windings 45, 45' are energized (A, B), (C-
D), <B-A), <D→C), (A→B).

・・・・・・と切り替わるごとに、磁極N1は同一方向
になお、上記ステップ動作の説明では、説明を簡単にす
るために、回転子1は、円板面を16等分した各区画が
交互に、円板面に直交する方向に、区画ごとにN極、S
極となるように着磁されているとしたが、第4図(bl
に示したように1区画の前側面がS ’+WAならばそ
の区画の後側面はN極となるように着磁されているとし
ても、回転子1の移動方向が逆になるだけの相異で、ス
テップ動作を行なう点は同じである。また、第5図(b
lにおいて、固定子巻線45′にC−D方向に電流を流
すことで固定子4′の各極歯は図示のように交互にS極
、11極が生成されるとしたが、これが図示とは逆にS
極位置にn極が、n極位置にS極か生成されるとしても
、回転子1の移動方向が上記とは逆になるだけで、ステ
ップ動作の点では同じである。
In the explanation of the above step operation, in order to simplify the explanation, the rotor 1 is divided into 16 equal parts of the disk surface. Alternately, in the direction perpendicular to the disk surface, N and S poles are placed in each section.
It is assumed that the magnet is polarized to become a pole, but as shown in Fig. 4 (bl
As shown in , if the front side of one section is S'+WA, even if the rear side of that section is magnetized to be N pole, the difference is such that the moving direction of rotor 1 is reversed. They are the same in that they perform step operations. In addition, Fig. 5 (b
1, by passing current through the stator winding 45' in the C-D direction, the pole teeth of the stator 4' are alternately S pole and 11 poles are generated as shown in the figure. On the contrary, S
Even if an n-pole is generated at the pole position and an S-pole is generated at the n-pole position, the step operation is the same, except that the moving direction of the rotor 1 is opposite to the above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、(1)円板状の
磁石回転子の両側面を使用する構成であるので従来の円
筒形磁石回転子に比し強力な磁石材料(例えば異方性フ
ェライト等)を用いて出力の大きなモータとすることが
できる。
As explained above, according to the present invention, (1) since both sides of the disk-shaped magnet rotor are used, stronger magnetic materials (for example, anisotropic (ferrite, etc.) can be used to create a motor with a large output.

(2)円板状の磁石回転子の着磁面が広く、磁極数を多
くできるので微小ステップ角のモータとすることができ
る。
(2) Since the magnetized surface of the disc-shaped magnet rotor is wide and the number of magnetic poles can be increased, a motor with a minute step angle can be achieved.

(3)固定子磁極が平面内に配設される構成であるので
、加]二か容易で、高精度のものが得られ、微小ステッ
プ角のモータが得られる。
(3) Since the stator magnetic poles are disposed in a plane, it is easy to obtain a motor with high precision, and a motor with a minute step angle can be obtained.

(4)円板状の回転子を前後から固定子で挾み、各固定
子それぞれは、1枚の固定子磁極円板と1組の円筒形ヨ
ークと1枚の端板ヨークと1個の固定子巻線とから形成
される簡易な構成であることから、組立てが簡単で、従
ってm産性のよい、しかも扁平形のモータとすることが
できる、等の効果かある。
(4) A disk-shaped rotor is sandwiched between stators from the front and back, and each stator consists of one stator magnetic pole disk, one set of cylindrical yokes, one end plate yoke, and one end plate yoke. Since it has a simple structure formed from stator windings, it is easy to assemble and has the advantage that it has good productivity and can be made into a flat motor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は本発明に
用いる固定子磁極円板の一例を示す図で。 falは平面図、tb)はそのx−x’断面図、第3図
(a)、。 (blは夫々本発明に用いる固定子磁極円板の他の実施
例を示す要部平面図、第4図は本発明に用いる回転子の
一例を示す図で(a)は平面図、(blはそのx−x’
断面図、第5図(a)、 (blはステッピングモータ
としてのステップ動作の説明図、第6図はステ・ノブ動
作用の通電シーケンスと回転子位置を示す図である。 〔符号の説明〕 1・・・回転子 2・・・回転子軸 3.3′・・・軸受 4,4′・・・固定子41 、4
1’・・・固定子磁極円板 42 、42’・・・外ヨーク 43 、43’・・内
ヨーク44.44’・・・端板ヨーク 45 、45’
・・・固定子巻線46 、46’・・・ポビン枠 5・
・・モータケース代理人弁理士 中村純之助 卆1抛 IP2図
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a diagram showing an example of a stator magnetic pole disc used in the present invention. fal is a plan view, tb) is its xx' cross-sectional view, and FIG. 3(a). (bl is a plan view of main parts showing other embodiments of the stator magnetic pole disc used in the present invention, FIG. 4 is a diagram showing an example of the rotor used in the present invention, (a) is a plan view, (bl is its x-x'
Cross-sectional view, FIG. 5(a), (BL is an explanatory diagram of the step operation as a stepping motor, and FIG. 6 is a diagram showing the energization sequence and rotor position for the steering knob operation. [Explanation of symbols] 1... Rotor 2... Rotor shaft 3. 3'... Bearing 4, 4'... Stator 41, 4
1'...Stator magnetic pole disk 42, 42'...Outer yoke 43, 43'...Inner yoke 44.44'...End plate yoke 45, 45'
... Stator winding 46, 46'... Pobin frame 5.
...Motor Case Patent Attorney Junnosuke Nakamura Volume 1 IP2 Diagram

Claims (1)

【特許請求の範囲】 (イ)円板面を円周方向に同じピッチで分割した各区画
が交互にN極、S極となり、かつ、円板面に直交する方
向に着磁した円板状磁石を回転子としてその円板中心部
において回転子軸に一体的に取付i。 (ロ)上記回転子軸は回転予電中央に挾む前後2つの軸
受により回転自在に支承され。 (ハ)上記軸受は夫々固定子の内径部において一固定保
持されており。 (ニ) これらの固定子は、上記磁石回転子の前後の着
磁面と軸方向に小空隙を介して対向する位置に配置され
る固定子磁極円板と、その外径側に当接する円筒形の外
ヨークと内径側に当接する円筒形の内3.−りと、これ
らの外ヨークと内ヨークの夫々の他方の端面に当接する
端板ヨークとにより形成される磁気回路と、上記外ヨー
クと内ヨークとの間の空間部に巻装される固定子巻線と
で夫々構成されており。 (ホ)上記固定子磁極円板には夫々、円板面を円周方向
に上記回転子の円板面の分割と同じピッチで分割した各
区画に交互に異極性の磁極が生成するようにほぼ放射状
に多数の抜き穴が円板面にあけてあり。 (へ)上記2つの固定子は夫々の固定子磁極円板うに配
設位置が決められていることを特徴とする軸方向に磁束
空隙を有する回転電機。
[Scope of Claims] (a) A disc shape in which each section obtained by dividing the disc surface at the same pitch in the circumferential direction becomes an N pole and an S pole alternately, and is magnetized in a direction perpendicular to the disc surface. A magnet is used as a rotor and is integrally attached to the rotor shaft at the center of the disc.i. (b) The rotor shaft is rotatably supported by two bearings, front and rear, sandwiched at the center of rotational pre-electrification. (c) Each of the above bearings is fixedly held at the inner diameter portion of the stator. (d) These stators consist of stator magnetic pole disks that are placed at positions facing the front and rear magnetized surfaces of the magnet rotor in the axial direction with a small gap in between, and a cylinder that abuts on the outer diameter side of the stator magnetic pole disks. 3. A cylindrical inner yoke that abuts the inner diameter side of the outer yoke. - a magnetic circuit formed by an end plate yoke that abuts the other end surface of each of the outer yoke and the inner yoke, and a fixing device wound around the space between the outer yoke and the inner yoke. Each is composed of a child winding. (e) The stator magnetic pole disks are each divided into sections in the circumferential direction at the same pitch as the division of the rotor disk surface, so that magnetic poles of different polarity are generated alternately in each section. Numerous holes are drilled in the disk surface in an almost radial pattern. (f) A rotating electrical machine having a magnetic flux gap in the axial direction, wherein the two stators are arranged at positions corresponding to respective stator magnetic pole disks.
JP2877084A 1984-02-20 1984-02-20 Rotary electric machine with axial magnetic flux air gap Pending JPS60174049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2877084A JPS60174049A (en) 1984-02-20 1984-02-20 Rotary electric machine with axial magnetic flux air gap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2877084A JPS60174049A (en) 1984-02-20 1984-02-20 Rotary electric machine with axial magnetic flux air gap

Publications (1)

Publication Number Publication Date
JPS60174049A true JPS60174049A (en) 1985-09-07

Family

ID=12257640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2877084A Pending JPS60174049A (en) 1984-02-20 1984-02-20 Rotary electric machine with axial magnetic flux air gap

Country Status (1)

Country Link
JP (1) JPS60174049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1480317A3 (en) * 2003-05-19 2007-08-29 Robert Bosch Gmbh Electrical Machine of Axial Flux Type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1480317A3 (en) * 2003-05-19 2007-08-29 Robert Bosch Gmbh Electrical Machine of Axial Flux Type

Similar Documents

Publication Publication Date Title
JP4150069B2 (en) Two-phase motor
US2548633A (en) Dynamoelectric machine
US4899072A (en) Pulse motor
US2122307A (en) Timer motor
JPH08242572A (en) Three-phase permanent magnet type rotary electric machine
JP2001136721A (en) Axially-spaced permanent magnet synchronous machine
US4714853A (en) Low profile electric motor
JPS60174049A (en) Rotary electric machine with axial magnetic flux air gap
JP4035501B2 (en) Stepping motor
JPS6335155A (en) Motor
JP3228782U (en) Motor using permanent magnet
JPH02228241A (en) Stepping motor
US2997612A (en) Self starting synchronous motor
JPS62163553A (en) 10-phase permanent magnet type stepping motor
JPH03256555A (en) Pm stepping motor of flat rotor type
JPS6159061B2 (en)
JPS60255053A (en) Stepping motor
JPS63121460A (en) Brushless motor of high efficiency
JPS61170265A (en) Synchronous motor
JP3138627B2 (en) Driving method of hybrid type step motor
JPS60241759A (en) Synchronous motor
JPH10229669A (en) Motor
JPS60229658A (en) Synchronous motor
JPH09201034A (en) Hybrid stepping motor
JPS62189965A (en) Stepping motor