JPS60173891A - Formation of magnetoresistance effect type thin film - Google Patents

Formation of magnetoresistance effect type thin film

Info

Publication number
JPS60173891A
JPS60173891A JP59024339A JP2433984A JPS60173891A JP S60173891 A JPS60173891 A JP S60173891A JP 59024339 A JP59024339 A JP 59024339A JP 2433984 A JP2433984 A JP 2433984A JP S60173891 A JPS60173891 A JP S60173891A
Authority
JP
Japan
Prior art keywords
mask
film
lift
thin film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59024339A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nagai
靖浩 永井
Keiichi Yanagisawa
佳一 柳沢
Tomoyuki Toshima
戸島 知之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59024339A priority Critical patent/JPS60173891A/en
Publication of JPS60173891A publication Critical patent/JPS60173891A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To enable the formation of thin film patterns of submicron order width by a method wherein a lift-off mask is formed on a substrate, and then a magnetic thin film is formed over the entire surface; further, this thin film is etched by oblique incidence of ion beams by using the lift-off mask as a shadow mask. CONSTITUTION:The lift-off mask 11 made of organic resist or the like having an aperture 11a at the part of MR element film formation is formed on the substrate 10 made of non magnetic material. Next, an Ni-Fe film 12 for preparation of an MR element film is formed on the exposed part of this substrate 10 and on the lift-off mask 11. Then, the film 12 is etched by shadow by obliquely irradiating the normal A of the substrate 10 with Ar ions beams 13 from the direction of an angle thetaT. Thereby, the film 12 remains only at the part corresponding to the shadow of the side wall 11b of the mask 11 without being etched, and the other part is completely removed by etching. Finally, the MR element film 14 having a submicron order width is formed by patterning on the substrate 10 by removing this mask 11 with flux.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は磁気抵抗効果形溝膜の形成方法に係わり、特に
その微細パターンの形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming a magnetoresistive groove film, and particularly to a method for forming a fine pattern thereof.

〔従来技術〕[Prior art]

第1図は磁気抵抗効果形薄膜パターンを用いて形成でれ
る磁気抵抗効果形薄膜ヘッド(以下MRへ・ン ト0 
、μ禾♀す7−、)1/i’i9に千A MTI η第
一一 μn吃俯垂−令シカ故体との位置関係を示す要部
拡大構成図である。同図において、1はほぼ直方体形状
を有するMR素子、2は磁性材よりなる磁気記録媒体(
以下記録媒体と称する)、3は記録媒体2中の磁化遷移
領域であシ、この記録媒体2は図中X方向に移動するも
のとする。。
Figure 1 shows a magnetoresistive thin film head (hereinafter referred to as MR) that can be formed using a magnetoresistive thin film pattern.
,μ禾♀す7-、)1/i'i9 1000A MTI η11μn It is an enlarged configuration diagram of the main part showing the positional relationship with the dead deer body. In the figure, 1 is an MR element having a substantially rectangular parallelepiped shape, and 2 is a magnetic recording medium (2) made of a magnetic material.
(hereinafter referred to as a recording medium), 3 is a magnetization transition region in the recording medium 2, and this recording medium 2 is assumed to move in the X direction in the figure. .

このような構成において、記録媒体2上の磁化遷移領域
3からは漏れ磁束が生じ、この漏れ磁束は記録媒体2上
の空間を広がって隣接する磁化遷移領域で吸収される。
In such a configuration, leakage magnetic flux is generated from the magnetization transition region 3 on the recording medium 2, and this leakage magnetic flux spreads over the space on the recording medium 2 and is absorbed by the adjacent magnetization transition region.

そして、この空間の中にMR素子1を配置すると、この
MR素子1のYZ平面に存在する磁化ベクトルは、この
漏れ磁束に感応し、YZ平面内で磁化ベクトルの方向を
変化でぜる。このとき、MR素子1のZ方向に一定電波
を流し、この電流ベクトルと磁化ベクトルとのなす角度
をθとすると、MR素子1内2方回の比抵抗は次式で表
わすことができる。
When the MR element 1 is placed in this space, the magnetization vector existing in the YZ plane of the MR element 1 is sensitive to this leakage magnetic flux, and the direction of the magnetization vector changes within the YZ plane. At this time, if a constant radio wave is passed in the Z direction of the MR element 1 and the angle between this current vector and the magnetization vector is θ, then the two-way specific resistance within the MR element 1 can be expressed by the following equation.

ρ=ρ。+Δρ・cos 2θ ・・・・(1)ただし
、ρ。は磁化ベクトルの方間変化に依存しない比抵抗、
Δρ・CO32θは磁化ベクトルの方向変化に依存する
比抵抗である。
ρ=ρ. +Δρ・cos 2θ (1) However, ρ. is the specific resistance that does not depend on the direction change of the magnetization vector,
Δρ·CO32θ is a resistivity that depends on the direction change of the magnetization vector.

このとき、MR素子1の長ざをt、断面積をS。At this time, the length of the MR element 1 is t, and the cross-sectional area is S.

Z方向の定電流を1とすれば、MR素子1の両端に発生
する電圧Eは次式で与えられる。
Assuming that the constant current in the Z direction is 1, the voltage E generated across the MR element 1 is given by the following equation.

E−(ρ。+Δρ’cos”θ)(z/s)−■−山(
2)したがって、MRヘッドの出力はMR素子1内磁化
ベクトルの角度変化分に対応した電圧変化として取り出
すことができる。
E-(ρ.+Δρ'cos”θ)(z/s)-■-Mountain(
2) Therefore, the output of the MR head can be extracted as a voltage change corresponding to the angular change in the magnetization vector within the MR element 1.

このように構成されるMRヘッドにおいて、その再生分
解能を向上はせるには、MR素子1内の磁化ベクトルを
磁化遷移に伴なう漏れ磁束に対応して忠実に変化させれ
ば良い。このためにはMR素子1と記録媒体2との間の
浮上財を小烙<シ、同時にMR素子1のY方向の幅を小
さくする必要がある。−また、トラック方向(Z方向)
の記録密度を上げる必要から、MR素子1の長さくZ方
向)は約10μm以下とすることが望ましい。埒らに進
素子1内に存在する磁区構造の制御を容易にし、信号再
生の出力電圧を増加するためには、次式で定義するアス
ペクト比を大きくすることが必要である。
In order to improve the reproducing resolution of the MR head constructed in this way, it is sufficient to faithfully change the magnetization vector within the MR element 1 in accordance with the leakage magnetic flux accompanying the magnetization transition. For this purpose, it is necessary to reduce the floating material between the MR element 1 and the recording medium 2, and at the same time to reduce the width of the MR element 1 in the Y direction. -Also, track direction (Z direction)
In order to increase the recording density, it is desirable that the length of the MR element 1 (in the Z direction) be approximately 10 μm or less. In addition, in order to facilitate control of the magnetic domain structure present in the radial element 1 and increase the output voltage for signal reproduction, it is necessary to increase the aspect ratio defined by the following equation.

アスペクト比−(MR素子1の長’g/MRJ子1の幅
) 以上説明したことから、MR素子1を磁束感応セン丈と
したMRヘッドを用いて高密度信号再生を実現するには
、MR素子1の幅を1〜2μm以下とすることが必要で
ある。
Aspect ratio - (length 'g of MR element 1/width of MRJ element 1) From the above explanation, in order to realize high-density signal reproduction using an MR head in which the MR element 1 has a magnetic flux sensitive sensor length, the MR It is necessary that the width of the element 1 is 1 to 2 μm or less.

しかしながら、従来のフォトリソグラフィ技術を用いて
約1μm前後のパターン幅を実現するときには、露光装
置症が犬がかりとなったり、生産歩留りを低下をせるな
どの欠点がめった。
However, when realizing a pattern width of about 1 μm using conventional photolithography techniques, there are often disadvantages such as exposure device failure and a decrease in production yield.

〔発明の概要〕[Summary of the invention]

したがって本発明は前述した従来の欠点を除去するため
になされたものであり、その目的とするところは、MR
素子パターンをリフトオフ法により形成した後、このリ
フトオフ用マスクをンヤドウマスクとしてイオンビーム
を斜め方向から入射してエツチングすることによシ、サ
ブミクロン幅の薄膜パターン形成を可能にした磁気抵抗
効果形薄膜の形成方法を提供することにある。以下、図
面を用いて本発明の実施例を詳細に説明する。
Therefore, the present invention has been made to eliminate the above-mentioned conventional drawbacks, and its purpose is to improve the MR
After forming the device pattern by the lift-off method, the lift-off mask is used as a reverse mask and an ion beam is incident from an oblique direction for etching. This makes it possible to form a thin film pattern with a submicron width. The object of the present invention is to provide a forming method. Embodiments of the present invention will be described in detail below with reference to the drawings.

〔発明の実施例〕[Embodiments of the invention]

第2図(a)〜(e)は本発明による磁気抵抗効果形薄
膜の形成方法をMRヘッドの形成方法に適用した一例を
説明するだめの要部断面工程図である。同図において、
捷ず同図(a)に示すように例えばMn−2nなどの非
磁性材よりなる基板10上に、MR素子膜形成部位に開
口部11aを有する例えばAZ系の有機レジスト等より
なるリフトオフ用マスク11を約2μmの厚でに形成す
る。次に同図(b)に示すようにこの基板10の露出部
2よびリフトオフ用マスク11上にMR素子膜形成用の
N1−F8膜12を真空蒸着あるいはスパッタリング法
により約50OAの厚でに形成する。この場合、MR素
子幅は約jOl1m′″Cめる。次に同図(C)に示す
ようにこのNi−1”、膜12上に、基板10の法線A
に対して角度θ。の方向から約0.5KeV g度の強
さのArイオンビーム13を斜方照射してこのNi−F
e膜12をシャドウエツチング妊せる。これによって、
同図(d)に示すようにリフトオフ用マスク11の側壁
11bの影の部分に相当する部位のみにN、 −Fe膜
12がエツチングされずに残り、他の部位は完全にエツ
チング除去される。次にこのシ(板10上のリフトオフ
用マスク11を溶剤を用いて除去することにより、同図
(e)に示すように基板10上にサブミクロンの幅をも
ったMR累子膜14がパターン形成される。
FIGS. 2(a) to 2(e) are cross-sectional process diagrams of essential parts for explaining an example in which the method for forming a magnetoresistive thin film according to the present invention is applied to a method for forming an MR head. In the same figure,
As shown in FIG. 5A, a lift-off mask made of, for example, an AZ-based organic resist or the like having an opening 11a at the MR element film forming area is placed on a substrate 10 made of a non-magnetic material such as Mn-2n. 11 is formed to have a thickness of about 2 μm. Next, as shown in FIG. 2B, an N1-F8 film 12 for forming an MR element film is formed to a thickness of about 50 OA on the exposed portion 2 of the substrate 10 and the lift-off mask 11 by vacuum evaporation or sputtering. do. In this case, the MR element width is approximately jOl1m'''C.Next, as shown in the same figure (C), the normal A of the substrate 10 is
Angle θ with respect to. This Ni-F is obliquely irradiated with an Ar ion beam 13 with an intensity of about 0.5 KeV g from the direction of
The e-film 12 can be shadow etched. by this,
As shown in FIG. 3D, the N, -Fe film 12 remains unetched only in the portion corresponding to the shadow of the side wall 11b of the lift-off mask 11, and is completely etched away in the other portions. Next, by removing the lift-off mask 11 on the substrate 10 using a solvent, a pattern of the MR transponder film 14 with a submicron width is formed on the substrate 10, as shown in FIG. It is formed.

このような方法によると、リフトオフ用マスク11の高
さとイオンビーム13の入射角度OT とによって決定
されるサブミクロン幅を有するMR素子膜14が容易に
形成できる。ここで、前述したようにリフトオフ用マス
ク11の高さを2μm。
According to such a method, the MR element film 14 having a submicron width determined by the height of the lift-off mask 11 and the incident angle OT of the ion beam 13 can be easily formed. Here, as described above, the height of the lift-off mask 11 is 2 μm.

MR素子形成用N1−F、膜12の膜厚を5[H)A。N1-F for MR element formation, the film thickness of the film 12 was 5 [H)A.

またAr イオンエツチングビーム13の強さを0.5
 K e Vとしてエツチングビーム13の入射角度θ
1をそれぞれ変化させた場合、第3図に点線の曲線Iで
示すように入射角度θ。を小さくするにともなってパタ
ーン幅の小さいMR素子H14を得ることができる。な
お、第3図において実線で示す曲線■は曲線■の実測値
を確認するための計算値である。した7):つて、この
実施例ではエツチングビーム13の入射角度θTを約3
0度以下に設定することにより、約1μmのサブミクロ
ン幅をもったMR素子膜14を得ることができた。
In addition, the intensity of the Ar ion etching beam 13 was set to 0.5.
Incident angle θ of the etching beam 13 as K e V
1, the incident angle θ is changed as shown by the dotted curve I in FIG. As the pattern width is reduced, the MR element H14 can be obtained with a smaller pattern width. In addition, the curve ■ shown by a solid line in FIG. 3 is a calculated value for confirming the actually measured value of the curve ■. 7): In this embodiment, the incident angle θT of the etching beam 13 is set to about 3
By setting the angle to 0 degrees or less, it was possible to obtain the MR element film 14 with a submicron width of approximately 1 μm.

このような方法によれば、MR素子膜14がサブミクロ
ンのパターン幅で容易に形成できるので、高密度記録再
生用MRヘッドを歩留り良く製作することができる。
According to such a method, the MR element film 14 can be easily formed with a submicron pattern width, so that an MR head for high-density recording/reproduction can be manufactured with good yield.

なお、前述した実施例においては、磁気抵抗効果形薄膜
をMRヘッドの素子パターンの形成に適用した場合につ
いて説明したが、本発明はこれに限定されるものではな
く、例えば磁気バブルメモリ素子等の薄膜デバイスのサ
ブミクロン幅のパターン形成に適用しても前述と同様の
効果が得られることは勿論である。
In the above-described embodiments, the case where the magnetoresistive thin film is applied to the formation of an element pattern of an MR head has been described, but the present invention is not limited thereto, and can be applied to, for example, a magnetic bubble memory element, etc. It goes without saying that the same effects as described above can be obtained even when applied to the formation of submicron width patterns for thin film devices.

〔発明の効果J 以上説明したように本発明によれば、基板上にリフトオ
フ用マスクを形成した後、全面に磁性薄膜を形成し、リ
フトオフ用マスクをシャドウマスクとしてこの磁性薄膜
にイオンビームを斜め方向から入射させてエツチングす
ることにより、ザブミクロン幅をもった磁性膜パターン
が容易に形成できるので、従来の如き犬がかりな露光装
置が不要となり、生産歩留りを大幅に向上きせることか
できるという極めて優れた効果が(ifられる。
[Effect of the Invention J As explained above, according to the present invention, after a lift-off mask is formed on a substrate, a magnetic thin film is formed on the entire surface, and an ion beam is obliquely directed onto this magnetic thin film using the lift-off mask as a shadow mask. By etching with incident light from the same direction, it is possible to easily form a magnetic film pattern with a submicron width, which eliminates the need for conventional exposure equipment and greatly improves production yields. The effect is (if).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMRヘッドと記憶媒体との配置関係を示す構成
図、第2図(a)〜(e)は本発明による磁気抵抗効果
形薄膜の形成方法の一例を示す安部断面工程図、第3図
はイオンビームの入射角θTに対するパターン幅の関係
を示す図である。 1・・・・磁気抵抗効果形薄膜素子(MR素子)、2・
・・・磁気記録媒体(記録媒体)、3・・・・磁化遷移
領域、10・・・・基板、11・・・・リフトオフ用マ
スク、11a・・・・開l」部、11b・・・・側壁、
12・・・・Ne−Fe膜、13・・・・イオンビーム
、14・・・・fvIR素子!。 第1図
FIG. 1 is a block diagram showing the arrangement relationship between an MR head and a storage medium, and FIGS. FIG. 3 is a diagram showing the relationship between the pattern width and the incident angle θT of the ion beam. 1... Magnetoresistive thin film element (MR element), 2.
. . . Magnetic recording medium (recording medium), 3 . . . Magnetization transition region, 10 . . . Substrate, 11 . . . Lift-off mask, 11a . . .・Side wall,
12... Ne-Fe film, 13... ion beam, 14... fvIR element! . Figure 1

Claims (1)

【特許請求の範囲】[Claims] 非磁性基板上にリフトオフマスクを形成し、少なくとも
前記非磁性基板上のリフトオフマスク開口部に磁性薄膜
を形成した後に該リフトオフマスクをシャドウマスクと
してイオンビームを斜方向から入射式せ、該磁性薄膜を
エツチングしてパターン形成することを%徴とした磁気
抵抗効果形溝膜の形成方法。
A lift-off mask is formed on a non-magnetic substrate, and a magnetic thin film is formed at least in the opening of the lift-off mask on the non-magnetic substrate, and then an ion beam is incident from an oblique direction using the lift-off mask as a shadow mask to form the magnetic thin film. A method for forming a magnetoresistive groove film that includes etching to form a pattern.
JP59024339A 1984-02-14 1984-02-14 Formation of magnetoresistance effect type thin film Pending JPS60173891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59024339A JPS60173891A (en) 1984-02-14 1984-02-14 Formation of magnetoresistance effect type thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024339A JPS60173891A (en) 1984-02-14 1984-02-14 Formation of magnetoresistance effect type thin film

Publications (1)

Publication Number Publication Date
JPS60173891A true JPS60173891A (en) 1985-09-07

Family

ID=12135421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024339A Pending JPS60173891A (en) 1984-02-14 1984-02-14 Formation of magnetoresistance effect type thin film

Country Status (1)

Country Link
JP (1) JPS60173891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227699A (en) * 2006-02-24 2007-09-06 Sharp Corp Magnetoresistance effect element and its manufacturing method
US7580230B2 (en) 2006-10-24 2009-08-25 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having shape enhanced pinning, a flux guide structure and damage free virtual edges

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227699A (en) * 2006-02-24 2007-09-06 Sharp Corp Magnetoresistance effect element and its manufacturing method
US7580230B2 (en) 2006-10-24 2009-08-25 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having shape enhanced pinning, a flux guide structure and damage free virtual edges

Similar Documents

Publication Publication Date Title
US5751526A (en) Flux enhanced write transducer and process for producing the same in conjunction with shared shields on magnetoresistive read heads
US20060198051A1 (en) Thin film magnetic head and magnetic disk apparatus including the same
JPH03125311A (en) Converter for reading reluctance with hard magnetic bias and method of manufacturing the same
US20070008658A1 (en) Thin-film magnetic head and method of making the same
US5880910A (en) Magneto-resistive reading head with two slanted longitudinal bias films and two slanted leads
US7605006B2 (en) Method of manufacturing a magnetic head
US5926348A (en) Magnetoresistive head having a magnetoresistive element with bent portions located at points of high longitudinal bias magnetic field intensity
JP2007184036A (en) Magnetic head and manufacturing method thereof
US6741429B1 (en) Ion beam definition of magnetoresistive field sensors
US8298430B2 (en) Method of etching magnetoresistive film by using a plurality of metal hard masks
JPS60173891A (en) Formation of magnetoresistance effect type thin film
US7018548B2 (en) Conductive thin film pattern and method of forming the same, method of manufacturing thin film magnetic head, method of manufacturing thin film inductor, and method of manufacturing micro device
US5896251A (en) Magnetoresistance effect head with conductor film pair and magnetic field proving film pair disposed between substrate and magnetoresistance effect film
US5959809A (en) Magnetoresistive head and method of manufacturing the same and magnetic recording apparatus
US6928724B2 (en) Magnetoresistance effect element and method for producing same
US7311850B2 (en) Method of forming patterned thin film and method of fabricating micro device
US6821715B2 (en) Fully undercut resist systems using E-beam lithography for the fabrication of high resolution MR sensors
JP2002026428A (en) Method of forming photoresist pattern and method of manufacturing magnetoresistive effect thin film magnetic head
US6558516B1 (en) Method of frame plating and method of forming magnetic pole of thin-film magnetic head
US7245460B2 (en) Magnetoresistive effective type element, method for fabricating the same, thin film magnetic head, magnetic head device and magnetic disk drive device
JP3576324B2 (en) Magnetic head and recording / reproducing integrated magnetic head using the same
JPS5829116A (en) Magnetoelectric signal converter
JP2003272118A (en) Method for manufacturing thin-film magnetic head, method for manufacturing magneto-resistive element aggregate, and method for manufacturing magnetic head slider
JPS5987617A (en) Thin film magnetic head
JP2001256613A (en) Thin-film magnetic head and method of manufacture