JPS6017363B2 - Method for producing polymer complex having gas adsorption/desorption ability - Google Patents

Method for producing polymer complex having gas adsorption/desorption ability

Info

Publication number
JPS6017363B2
JPS6017363B2 JP54167648A JP16764879A JPS6017363B2 JP S6017363 B2 JPS6017363 B2 JP S6017363B2 JP 54167648 A JP54167648 A JP 54167648A JP 16764879 A JP16764879 A JP 16764879A JP S6017363 B2 JPS6017363 B2 JP S6017363B2
Authority
JP
Japan
Prior art keywords
polymer
metal
manufacturing
compound
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54167648A
Other languages
Japanese (ja)
Other versions
JPS5690815A (en
Inventor
雅之 加藤
宏之 西出
英俊 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP54167648A priority Critical patent/JPS6017363B2/en
Publication of JPS5690815A publication Critical patent/JPS5690815A/en
Publication of JPS6017363B2 publication Critical patent/JPS6017363B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明はガス吸脱着館を有する重合体緒体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a polymeric body having a gas adsorption/desorption chamber.

従来、ガス吸脱着能を有する高分子金属鍵体の製造方法
について多数の報告がある。
Conventionally, there have been many reports on methods for manufacturing polymeric metal keys having gas adsorption/desorption capabilities.

例えば、ガス吸脱着館を有する低分子金属鈴体の藤配位
子を溶液中において配位子置換反応によって高分子配位
子と直摸させて高分子金属錆体を製造し、中心金属を前
記配位子置換反応の前後またはそれと同時に還元剤によ
って低原子価状態に還元させる方法である。しかしなが
ら、従来の方法によって得た高分子金属鍔体には次に記
すようないくつかの問題点がある。‘1’溶液中、特に
水溶液中ではガス吸脱着速度は比較的早いものの中心金
属が酸化劣化しやすく、葵用性に乏しい。
For example, a polymeric metal rust body is produced by directly imitating a low-molecular metal rust body ligand with a polymeric ligand through a ligand substitution reaction in a solution, and the central metal is This is a method in which the ligand is reduced to a low valence state using a reducing agent before or at the same time as the ligand substitution reaction. However, the polymeric metal collar body obtained by the conventional method has several problems as described below. In a '1' solution, especially in an aqueous solution, the gas adsorption/desorption rate is relatively fast, but the central metal is easily oxidized and deteriorated, resulting in poor usability.

‘21 固体粉末や皮膜の形態では安定性は向上するも
ののガス吸脱着速度が早くない。
'21 Although the stability is improved in the form of solid powder or film, the rate of gas adsorption and desorption is not fast.

【31 中心金属イオンの還元操作が必要なため還元剤
断片等の不純物が混入しやすく、安定性が悪くなる。
[31] Since a reduction operation of the central metal ion is required, impurities such as reducing agent fragments are likely to be mixed in, resulting in poor stability.

‘41溶解性や安定性の点で問題があるので皮膜の形態
に調製することが困難である。
'41 has problems in solubility and stability, making it difficult to prepare it in the form of a film.

この発明は上記事情を背景になされたものであって、ガ
ス吸脱着館を有し、かつ容易に皮膜の形態に調製できる
重合体鍔体を製造するための方法を提供することを目的
とする。
The present invention was made against the background of the above circumstances, and an object of the present invention is to provide a method for producing a polymer collar body that has a gas adsorption/desorption chamber and can be easily prepared in the form of a film. .

この発明に従うガス吸脱着能を有する重合体錆体の製造
方法は、配位性基を有する高分子化合物の当該配位性基
に高原子価状態の鉄もしくはコバルトを中心金属として
有しかつボルフィリン、フタロシアニンもしくはビス(
サリチルアルデヒド)エチレンジイミン骨格を配位子と
して有する低分子金属鈴体が配位してなる高分子金属銭
体とビニル系化合物とを溶液状態で酸素の不存在下に放
射線を照射することによって反応させるとともに該金属
を低原子価状態に還元することを特徴とするものである
The method for producing a polymeric rust body having gas adsorption/desorption ability according to the present invention is characterized in that a polymer compound having a coordinating group has iron or cobalt in a high valence state as a central metal in the coordinating group, and voluphyrin , phthalocyanine or bis(
Salicylaldehyde) is produced by irradiating a vinyl compound and a high-molecular metal body coordinated with a low-molecular metal body having an ethylenediimine skeleton as a ligand with radiation in the absence of oxygen. It is characterized by reacting and reducing the metal to a low valence state.

すなわち、この発明においては、高分子金属銭体(以後
これを反応体1という)をピニル系化合物を放射線照射
下に反応させる。
That is, in the present invention, a polymer metal body (hereinafter referred to as reactant 1) is reacted with a pinyl compound under radiation irradiation.

この高分子金属鈴体は配位性基を(多数)有する高分子
化合物すなわち高分子配位子と低分子金属銭体とをこれ
ら双方を溶解する溶媒中で配位子置換反応によって反応
させることによって得られる。この場合、高分子配位子
の配位基単位と低分子金属銭体との仕込みモル比は一般
に1:1ないし10000:1好ましくは100:1な
いし1000:1である。高分子配位子としては一級ア
ミノ基、二級アミノ基、三級アミノ基、窒素後素環基、
シツフ塩基、カルボキシル基、アルコール性水酸基等の
配位能を備えた基を多数含む高分子化合物であれば、い
ずれも使用できる。しかし、そのうちからガスを可逆的
に吸脱着させるという目的に特に適したものを挙げると
、ビニルピリジン、ビニルイミダゾールまたはこれらの
譲導体等の含窒素ビニル系単豊体の単独重合体または共
重合体、側鎖にアミノ基を多数有するポリアミノ酸等で
ある。この発明において用いられる低分子金属鍵体は、
中心金属としてガスとの親和力の大きいところの鉄また
はコバルトを高原子価状態で有するものである。この種
の低分子金属鏡体は、当該技術分野でよく知られている
ように、前記遷移金属の塩に対して2なし、し4塵キレ
ート配位子例えばポルフィリン、フタロシアニン、ビス
(サリチルアルデヒド)エチレンジィミン等を反応させ
ることによって容易に得られる。なお、このキレート配
位子としては側鎖に配位性基を持つものも用いられる。
反応体1とビニル系化合物との反応は溶液中において酸
素の不存在下にy線、電子線等の放射線の照射下におこ
なう。
This high-molecular metal body is produced by reacting a high-molecular compound having (a large number of) coordinating groups, that is, a high-molecular ligand, and a low-molecular metal body through a ligand substitution reaction in a solvent that dissolves both. obtained by. In this case, the molar ratio of the coordination group unit of the polymeric ligand to the low-molecular weight metal body is generally from 1:1 to 10,000:1, preferably from 100:1 to 1,000:1. Examples of polymeric ligands include primary amino groups, secondary amino groups, tertiary amino groups, nitrogen atom ring groups,
Any polymer compound can be used as long as it contains a large number of groups with coordinating ability such as Schiff's base, carboxyl group, and alcoholic hydroxyl group. However, among them, those particularly suitable for the purpose of reversibly adsorbing and desorbing gas are homopolymers or copolymers of nitrogen-containing vinyl monopolymers such as vinylpyridine, vinylimidazole, or derivatives thereof. , polyamino acids having many amino groups in their side chains, etc. The low-molecular metal key body used in this invention is
It has iron or cobalt, which has a high affinity with gas, as a central metal in a high valence state. This type of low-molecular-weight metal enantiomer can be used, as is well known in the art, to provide two or four chelating ligands to the salts of the transition metals, such as porphyrins, phthalocyanines, bis(salicylaldehydes), etc. It can be easily obtained by reacting ethylenedimine or the like. Note that as this chelate ligand, one having a coordinating group in the side chain can also be used.
The reaction between the reactant 1 and the vinyl compound is carried out in a solution in the absence of oxygen and under irradiation with radiation such as Y-rays and electron beams.

実際上、この反応は反応溶液を脱気後封管し、室温下で
放射線を照射することによっておこなう。照射線量は、
その照射効果および鰭体が破壊しないという観点から、
1なし、し5メガラドが適当である。この反応に用いる
ビニル系化合物は可溶性のものであればいずれのものも
使用できる。その代表的な例を挙げると、アクリル酸ェ
ステル、アクリル酸アミド、スチレン、ビニルピロリド
ン、あるいはこれらの誘導体等である。また、このピニ
ル系化合物の反応溶液中の濃度は10ないし2の重量%
が好ましい。反応時間は3なし、し5時間程度である。
なお、反応体1(鏡体部単位)の濃度は10‐2〜10
‐4モル/1が好ましい。上記放射線照射反応によって
、ピニル系化合物が重合して反応体1を取り込むととも
に反応体1と反応し、こうして任意の割合の溶媒を保持
した状態で鍔体が均一に分散した強鰯な重合体が皮膜あ
るいはシートの形態で得られる。
In practice, this reaction is carried out by degassing the reaction solution, sealing the tube, and irradiating it with radiation at room temperature. The irradiation dose is
From the viewpoint of the irradiation effect and the fact that the fin body is not destroyed,
1 and 5 megarads are appropriate. Any soluble vinyl compound can be used in this reaction. Typical examples include acrylic ester, acrylic amide, styrene, vinylpyrrolidone, and derivatives thereof. The concentration of this pinyl compound in the reaction solution is 10 to 2% by weight.
is preferred. The reaction time is about 3 to 5 hours.
In addition, the concentration of reactant 1 (unit unit) is 10-2 to 10
-4 mol/1 is preferred. Through the above radiation irradiation reaction, the pinyl compound polymerizes and takes in reactant 1 and reacts with reactant 1, thus forming a strong polymer in which the collar bodies are uniformly dispersed while retaining a desired proportion of the solvent. Obtained in the form of a film or sheet.

これら反応では、放射線の照射によって溶媒分子からた
たき出される自由電子を鍔体の中心金属が受け取ること
によって当該中心金属の還元がおこなわれる。したがっ
て、従来方法で必要としていた還元剤による還元操作は
不要となり、その結果純粋な重合体鈴体が得られる。な
お、これら鰭形成反応および還元反応の進行状況は反応
溶液および生成物の可視スペクトルの経時変化を追跡す
ることによって適確に把握することができる。以上のよ
うにして得られた生成物は、例えば窒素のような不活性
雰囲気下で反応溶液の溶媒と同様の溶媒中に放直して未
反応物を除去する等非常に簡単な方法で精製することが
できる。
In these reactions, the central metal of the collar body receives free electrons ejected from solvent molecules by radiation irradiation, thereby reducing the central metal. Therefore, the reduction operation using a reducing agent, which is required in the conventional method, is not necessary, and as a result, a pure polymer body can be obtained. Note that the progress of these fin-forming reactions and reduction reactions can be accurately grasped by tracking changes over time in the visible spectra of the reaction solution and products. The product obtained in the above manner is purified by a very simple method, for example, by placing it in a solvent similar to that of the reaction solution under an inert atmosphere such as nitrogen to remove unreacted substances. be able to.

この発明の方法によって得た重合体鈴体はこれをガス(
02,C○,CQ,N○x)と接触させると鞠配位座に
ある配位子がガス分子と贋摸して軸配位子の一つとして
ガス分子が吸着結合し安定なガス鍵体を形成し、またこ
れを不活性雰囲気下例えば窒素雰囲気下あるいは真空下
に置くと吸着したガスが離脱して元の鍵体構造に戻る。
The polymer polymer obtained by the method of this invention is a gas (
When brought into contact with 02, C○, CQ, N○x), the ligand in the mari coordination site imitates a gas molecule, and the gas molecule adsorbs and binds as one of the axial ligands, creating a stable gas key. When a key body is formed and placed in an inert atmosphere, such as a nitrogen atmosphere or a vacuum, the adsorbed gas is released and the original key body structure is restored.

(このような現象は可視スペクトル測定や透過ガスの分
析等によって捉えることができる。)また、この発明に
よって得た重合体鏡体は既述のように任意の割合で溶媒
を含んでいるので、これをそのまま用いれば固体状態に
ありながら溶液系と同機にガスの吸収速度が非常に早く
、またガスの吸収基も多い。さらに、この重合体鍔体は
中心活性金属が高分子領内部に強固に固定されているた
め前記ガス鍔体は非常に長時間に渡って安定に存在し得
、また中心活性金属の不可逆的酸化による失宿も大幅に
減少するので繰返し使用することができる。この発明に
よって得た重合体は以上述べた性質を利用して、空気中
から特定ガスを捕捉する固定化触媒、容易にガスを離脱
できるガス担持体、さらには光導電性高分子、感光性材
料、常磁性材料として使用できる。また、酸素運搬体と
して広範な用途が開ける他、人工赤血球の重要な素材と
しての用途も期待できる。また、溶媒を除去してそのま
まあるいは粒子化して用いてもよい。以下実施例に沿っ
てこの発明を説明する。
(Such phenomena can be detected by visible spectrum measurements, transmitted gas analysis, etc.) Furthermore, since the polymer mirror obtained by this invention contains a solvent in any proportion as described above, If it is used as is, it will absorb gas at a very high speed in the same way as a solution system, even though it is in a solid state, and there are many gas absorption groups. Furthermore, since the central active metal of this polymeric body is firmly fixed within the polymer region, the gaseous body can exist stably for a very long time, and the central active metal can be irreversibly oxidized. It can be used repeatedly as it also greatly reduces the loss of accommodation caused by this. Utilizing the properties described above, the polymer obtained by this invention can be used as an immobilized catalyst that captures specific gases from the air, as a gas carrier that can easily release gas, as well as as a photoconductive polymer and a photosensitive material. , can be used as a paramagnetic material. In addition to opening up a wide range of uses as an oxygen carrier, it is also expected to be used as an important material for artificial red blood cells. Alternatively, the solvent may be removed and used as it is or in the form of particles. The present invention will be described below with reference to Examples.

実施例 1 式 で示されるクooヘミンをNaHC03一NらC03の
対lq簾衝液とメタノールとの3:2混合溶媒5私に溶
解し(〔クロロヘミン〕=0.1mM)、これに、高分
子配位子として1ービニル−2−メチルイミダゾール/
1−ピニルビロリドン共重合体(分子量6万、1ービニ
ルピロリドン単位含量58%、以下PMIP)0.06
夕を加えてよく蝿拝した。
Example 1 Chlorohemin represented by the formula is dissolved in a 3:2 mixed solvent of NaHC03-N, C03 and methanol ([chlorohemin] = 0.1mM), and a polymer is added to this. 1-vinyl-2-methylimidazole/ as a ligand
1-Pinylpyrrolidone copolymer (molecular weight 60,000, 1-vinylpyrrolidone unit content 58%, hereinafter referred to as PMIP) 0.06
I often worshiped flies in the evening.

この溶液にビニル系化合物としてメタクリル酸ヒドロキ
シェチル1私を加えた。この反応溶液に対して窒素雰囲
気下室温でのCOからのy線を5×1ぴラド/時間の線
量率で4時間照射した(照射線量2メガラド)。こうし
て厚さ2脚の赤褐色透明膜を得た。これを窒素雰囲気中
同一溶媒で洗浄した。この膜は中心金属Fe(m)がF
e(0)へと遼元された還元型へム銭体構造を持ち、上
記反応過程を可視吸収スペクトル測定で追跡したところ
第1図に示す結果を得た。この図からわかるように、反
応が進行するにつれ、39帥m,56帥皿および59紬
血に存在する酸化型へムに特有の吸収極大が漸減し、吸
収極大が次第に長波長側に移行し、424mmおよび5
47mmに還元型へムに特有の吸収極大が出現した。上
記膜に酸素を通過させ、飽和した後可視吸収スペクトル
を測定すると41かm,52紬mおよび561mmを吸
収極大とする新しい吸収帯が観測された。
To this solution was added 1 part of hydroxyethyl methacrylate as a vinyl compound. This reaction solution was irradiated with y-rays from CO under a nitrogen atmosphere at room temperature for 4 hours at a dose rate of 5×1 pyrad/hour (irradiation dose: 2 megarads). In this way, a reddish-brown transparent film with a thickness of two legs was obtained. This was washed with the same solvent in a nitrogen atmosphere. This film has a central metal Fe (m) of F
It has a reduced heme structure that is converted to e(0), and the reaction process was followed by visible absorption spectrum measurement, and the results shown in FIG. 1 were obtained. As can be seen from this figure, as the reaction progresses, the absorption maximum characteristic of the oxidized heme present in 39-m, 56-m, and 59-tsumugi gradually decreases, and the absorption maximum gradually shifts to the longer wavelength side. , 424mm and 5
At 47 mm, an absorption maximum peculiar to reduced heme appeared. When oxygen was passed through the membrane and the visible absorption spectrum was measured after saturation, new absorption bands with maximum absorption at 41 mm, 52 mm, and 561 mm were observed.

これに窒素ガスを吹込むと、41初m,52桝血および
561mmに吸収極大を持つ吸収帯が424mmおよび
私7mmに吸収極大を持つ元の吸収帯に戻った。このこ
とから前記新しい吸収帯はへムの鞠配位座に分子状酸素
が結合した酸素鍔体に帰属するものであることがわかっ
た。また、前記還元型へム鏡体構造を取る膜にそれぞれ
COおよびNOを吹込んだところ、それぞれ41幻血.
531mmおよび55帥血に吸収極大を持つ吸収帯およ
び41幻皿,527mmおよび55かmに吸収極大を持
つ吸収帯が現われ、窒素ガスで置換するとそれぞれ元の
吸収帯に戻った。
When nitrogen gas was blown into this, the absorption bands with absorption maxima at 41mm, 52mm, and 561mm returned to the original absorption bands with absorption maxima at 424mm and 7mm. From this, it was found that the new absorption band was attributed to an oxygen ring body in which molecular oxygen was bonded to the heme marker coordination site. In addition, when CO and NO were injected into the membranes having the reduced heme mirror structure, 41.
Absorption bands with absorption maxima at 531 mm and 55 mm, and absorption bands with absorption maxima at 41 mm, 527 mm, and 55 mm, respectively, returned to their original absorption bands when replaced with nitrogen gas.

なお、以上の操作は繰返しおこなえた。実施例 2 メタクリル酸ヒドロキシェチルの代りにビニルピロリド
ンを用いた以外は実施例1と同様に反応させて還元型へ
ム銭体構造を取る所望重合体を得た。
Note that the above operations could be repeated. Example 2 A desired polymer having a reduced heme structure was obtained by reacting in the same manner as in Example 1 except that vinylpyrrolidone was used instead of hydroxyethyl methacrylate.

これに、Q,COまたはNOを吹込むとこれらが吸着さ
れ、これを不活性ガス下に放置すると、吸着ガスが離脱
することを可視吸収スペクトル測定によって確認した。
この結果を実施例1の結果と併せて下記表1に示す。表
1 (可視,吸収極大波長 ) 3 式 で示されるゴバルトービス(サリチルアルデヒド)エチ
レンジィミン鍔体を0.1mMの割合で含有するトルェ
ン溶液にスチレン/4−ビニルピリジン共重合体(分子
量1万、4−ビニルピリジン単位舎量23%)0.05
夕およびスチレン1の‘を加えてよく蝿拝し、これに窒
素雰囲気下室温で60COからy線を3メガラド照射し
た。
It was confirmed by visible absorption spectrum measurement that when Q, CO, or NO was blown into this, these were adsorbed, and when this was left under an inert gas, the adsorbed gas was released.
The results are shown in Table 1 below together with the results of Example 1. Table 1 (Visible, maximum absorption wavelength) Styrene/4-vinylpyridine copolymer (molecular weight 10,000, 4-vinylpyridine unit quantity 23%) 0.05
After adding 100% of styrene and 10% of styrene and stirring well, the mixture was irradiated with 3 megarads of y-rays from 60 CO at room temperature under a nitrogen atmosphere.

こうして澄色の透明な所望重合体膜を得た。これを窒素
雰囲気下にトルェンで洗浄後、酸素を吹込むと次第に濃
紫色に変化した。この濃紫色の膜に窒素ガスを吹込んだ
り熱したりすると再び元の燈色に戻った。この変化を可
視吸収スペクトルによって測定すると第2図に示すスペ
クトルが得られた。すなわち、初めは357mmおよび
41節mに吸収極大を持ち、50M帆に暦を有する吸収
帯であったが、酸素を吹込むと、357mmおよび41
郎mにおける吸光度が次第に減少し、56仇血に吸収極
大を持つ新しい吸収帯が出現した。
In this way, a clear transparent desired polymer film was obtained. After washing this with toluene under a nitrogen atmosphere and blowing oxygen into it, the color gradually changed to deep purple. When nitrogen gas was blown into the dark purple film or it was heated, it returned to its original light color. When this change was measured by visible absorption spectrum, the spectrum shown in FIG. 2 was obtained. That is, initially the absorption maximum was at 357 mm and 41 m, and the absorption band had an ephemeris at 50 M sail, but when oxygen was injected, the absorption maximum was at 357 mm and 41 m.
The absorbance at 56°C gradually decreased, and a new absorption band appeared with an absorption maximum at 56°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明によって得た一例の重合体鎖体の反応
過程における可視吸収スペクトル線図、および第2図は
この発明によって得た他の重合体鍔体の酸素吸脱着に伴
なう可視吸収スペクトル線図。 1・ 第2図
Fig. 1 shows a visible absorption spectrum diagram during the reaction process of one example of a polymer chain body obtained by this invention, and Fig. 2 shows a visible absorption spectrum diagram accompanying oxygen adsorption/desorption of another polymer chain body obtained by this invention. Absorption spectrum diagram. 1. Figure 2

Claims (1)

【特許請求の範囲】 1 配位性基を有する高分子化合物の当該配位性基に高
原子価状態の鉄もしくはコバルトを中心金属として有し
かつポルフイリン、フタロシアニンもしくはビス(サリ
チルアルデヒド)エチレンジイミン骨格を配位子として
有する低分子金属錯体が配位してなる高分子金属錯体と
ビニル系化合物とを溶液状態で酸素の不存在下に放射線
を照射することによつて反応させるとともに該金属を低
原子価状態に還元することを特徴とするガス吸脱着能を
有する重合体錯体の製造方法。 2 高分子化合物が含窒素ビニル系単量体の単独もしく
は共重合体またはポリアミノ酸である特許請求の範囲第
1項記載の製造方法。 3 含窒素ビニル系単量体がビニルピリジンまたはビニ
ルイミダゾールである特許請求の範囲第2項記載の製造
方法。 4 ビニル系化合物がアクリル酸エステル、アクリル酸
アミド、スチレンまたはビニルピロリドンである特許請
求の範囲第1項ないし第3項のいづれか1項に記載の製
造方法。 5 ビニル系化合物が反応系全体の10ないし20重量
%の割合で存在している特許請求の範囲第1項ないし第
4項のいづれか1項に記載の製造方法。 6 放射線がγ線または電子線である特許請求の範囲第
1項ないし第5項のいづれか1項記載の製造方法。 7 放射線の照射線量が1ないし5メガラドである特許
請求の範囲第1項ないし第6項のいづれか1項に記載の
製造方法。
[Scope of Claims] 1. A polymer compound having a coordinating group, which has iron or cobalt in a high valence state as a central metal in the coordinating group, and which has porphyrin, phthalocyanine, or bis(salicylaldehyde)ethylenediimine. A polymer metal complex formed by coordination of a low-molecular metal complex having a skeleton as a ligand is reacted with a vinyl compound in a solution state by irradiation with radiation in the absence of oxygen, and the metal is 1. A method for producing a polymer complex having gas adsorption/desorption ability, which is characterized by reduction to a low valence state. 2. The production method according to claim 1, wherein the polymer compound is a single or copolymer of a nitrogen-containing vinyl monomer or a polyamino acid. 3. The manufacturing method according to claim 2, wherein the nitrogen-containing vinyl monomer is vinylpyridine or vinylimidazole. 4. The manufacturing method according to any one of claims 1 to 3, wherein the vinyl compound is an acrylic ester, an acrylic amide, styrene, or vinylpyrrolidone. 5. The production method according to any one of claims 1 to 4, wherein the vinyl compound is present in a proportion of 10 to 20% by weight of the entire reaction system. 6. The manufacturing method according to any one of claims 1 to 5, wherein the radiation is a gamma ray or an electron beam. 7. The manufacturing method according to any one of claims 1 to 6, wherein the radiation dose is 1 to 5 megarads.
JP54167648A 1979-12-25 1979-12-25 Method for producing polymer complex having gas adsorption/desorption ability Expired JPS6017363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54167648A JPS6017363B2 (en) 1979-12-25 1979-12-25 Method for producing polymer complex having gas adsorption/desorption ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54167648A JPS6017363B2 (en) 1979-12-25 1979-12-25 Method for producing polymer complex having gas adsorption/desorption ability

Publications (2)

Publication Number Publication Date
JPS5690815A JPS5690815A (en) 1981-07-23
JPS6017363B2 true JPS6017363B2 (en) 1985-05-02

Family

ID=15853654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54167648A Expired JPS6017363B2 (en) 1979-12-25 1979-12-25 Method for producing polymer complex having gas adsorption/desorption ability

Country Status (1)

Country Link
JP (1) JPS6017363B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735417B2 (en) * 1985-07-12 1995-04-19 エヌオーケー株式会社 Polymer complex ultra thin film manufacturing method
US5211875A (en) * 1991-06-27 1993-05-18 W. R. Grace & Co.-Conn. Methods and compositions for oxygen scavenging
JP7126247B2 (en) * 2017-09-06 2022-08-26 国立研究開発法人物質・材料研究機構 Copolymers, immune adjuvants and methods of immunizing non-human animals

Also Published As

Publication number Publication date
JPS5690815A (en) 1981-07-23

Similar Documents

Publication Publication Date Title
Dördelmann et al. CuAAC click functionalization of azide-modified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn (CO) 3 (tpm)]+
Suslick et al. Photochemical reduction of nitrate and nitrite by manganese and iron porphyrins
Wang et al. Postsynthetic modification of metal–organic frameworks
Sharma et al. Design, synthesis, and characterization of templated metal sites in porous organic hosts: application to reversible dioxygen binding
Steenhaut et al. Aluminium-based MIL-100 (Al) and MIL-101 (Al) metal–organic frameworks, derivative materials and composites: synthesis, structure, properties and applications
Wohrle et al. Synthesis, redox behavior, sensitizer activity, and oxygen transfer of covalently bound polymeric porphyrins
CN110408384B (en) Preparation and application of rare earth metal organic framework material
CN108586623A (en) A kind of cellulose base Schiff base catalyst and its preparation method and application
Zeng et al. Synthesis and characterization of site-selective ion-exchange resins templated for lead (II) ion
JPS6017363B2 (en) Method for producing polymer complex having gas adsorption/desorption ability
Allcock et al. Synthesis, oxygen-binding behavior, and Moessbauer spectroscopy of covalently bound polyphosphazene-heme complexes
CN112979893B (en) Preparation of magnetic fluorescent material @ molecularly imprinted particle and method for preparing composite membrane by using same
CN110143943B (en) Barium-based complex, preparation method thereof and application thereof in field of fluorescence recognition
Suslick et al. Structure and photochemistry of manganese porphyrin sulfate complexes
Ferraudi Photochemical primary processes in copper (I) complexes. A probe for charge transfer to solvent and charge transfer to ligand excited states
Closs et al. Structure and dynamics of the trimethylcyclopropenyl radical as determined by electron and nuclear magnetic resonance
Volz et al. Isolation and Characterization of a Porphinatomanganese (IV) Complex from the Reaction of Dichloro Monoxide with 5, 10, 15, 20‐Tetrakis‐(2, 6‐dichloropheny) porphinatomanganese (III) Chloride [Mn (EDCPP) CI]
Cameron et al. Polymer-supported cobalt (II) tetraaza macrocyclic complexes and their reaction with dioxygen
Kimura et al. Functional metallomacrocycles and their polymers, 27. Catalase‐like activity of water‐soluble polymer containing a phthalocyanine‐manganese complex
Toshima et al. The removal of nitrogen monoxide by the dry iron (II) complex immobilized on chelate resin. The preparation and characterization of the complex
Nishide et al. Immobilization of heme complex by radiation polymerization
Burrows et al. Tuning the Properties of Metal–Organic Frameworks by Post‐synthetic Modification
Saraydın et al. Radiation induced hydrogels: acrylamide/itaconic acid and acrylamide/maleic acid copolymers for adsorption of heavy metal ions
WO2024037615A1 (en) Ionic covalent organic framework material, solid-phase synthesis method thereof, and use thereof
Funahashi et al. Activation volume for the cobalt (II) ion complexation with N-methyltetraphenylporphine. Evidence for a dissociative interchange mechanism