JPS60173466A - Quantitative determination method of sulfur - Google Patents

Quantitative determination method of sulfur

Info

Publication number
JPS60173466A
JPS60173466A JP2865484A JP2865484A JPS60173466A JP S60173466 A JPS60173466 A JP S60173466A JP 2865484 A JP2865484 A JP 2865484A JP 2865484 A JP2865484 A JP 2865484A JP S60173466 A JPS60173466 A JP S60173466A
Authority
JP
Japan
Prior art keywords
sample
sulfur
soln
liquid
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2865484A
Other languages
Japanese (ja)
Inventor
Masao Taniguchi
谷口 政男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP2865484A priority Critical patent/JPS60173466A/en
Publication of JPS60173466A publication Critical patent/JPS60173466A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/223Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To analyze trace S with a small amt. of a sample and with good accuracy by burning the sample in gaseous oxygen flow, passing the combustion gas through an absorption part contg. a small amt. of absorbent liquid to have gaseous SO2 absorbed and adding a decolored Para Rosaniline soln. and H2CO soln. to the absorbent liquid so that said liquid forms a color. CONSTITUTION:The gaseous oxygen flow formed by passing oxygen of the first class level through a chromium-satd. sulfuric acid 7 and a silica gel column 8 to clean up said oxygen is fed to a quartz tube 6 heated by a combustion furnace 3 to burn S in the sample weighed in the boat 2 in the tube 6. An absorption part 4 contg. potash bulbs 4-1 in a support table 4-2 formed by opening a hole to foamed polystyrene is connected by a silicone tube, etc. to the tube 6 so that the generated SO2 is absorbed therein. The absorbent liquid is then delivered by gaseous O2, etc. to a beaker, etc. and a specified amt. thereof is exactly separated and respectively a specified volume of a soln. decolored by adding HCl to 0.2V/V% soln. of Para Rosaniline and 0.5%V/V soln. of H2CO are added to the separated liquid. Part of the liquid is taken after resting for about 20min and the absorbancy at 550nm wavelength is measured. The measured absorbancy is compared with a preliminarily obtd. calibration curve and the S in the sample is quantitatively determined with high accuracy.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、硫黄の定量分析法、詳しくは少量の 。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method for quantitative analysis of sulfur, specifically a small amount of sulfur.

試料で微量の硫黄を精度よく分析する方法に関する。Concerning a method for accurately analyzing trace amounts of sulfur in samples.

〔従来技術とその問題点〕[Prior art and its problems]

硫黄の定量分析法としては、試料を酸素気流中で燃焼さ
せ、全硫黄を酸化して亜硫酸ガスとし、過酸化水素水に
吸収させて中和滴定する方法及び塩酸に吸収させてよう
素により滴定する燃焼容量法、又は前記と同様に燃焼さ
せ、燃焼ガスを四塩化水銀ナトリウム溶液に吸収させて
バラロー妾アニリンによる吸光光度法によって硫黄を定
量する方法が一般に行われている(例えば、JIat法
で規定された鉄鋼及び銅製品中の硫黄の定量法)。
Quantitative analysis methods for sulfur include burning the sample in an oxygen stream, oxidizing all the sulfur to sulfur dioxide gas, absorbing it in hydrogen peroxide and neutralization titration, and absorbing it in hydrochloric acid and titrating with iodine. Generally, sulfur is determined by the combustion volume method, or by burning in the same manner as described above, absorbing the combustion gas into a sodium mercury tetrachloride solution, and determining sulfur by the spectrophotometric method using Ballarot aniline (for example, by the JIat method). Specified method for determining sulfur in steel and copper products).

しかしながら、前記の燃焼容量法は、試料11用いて硫
黄の含有量数6 ppm (μ7/1)オーダの信頼度
しかなく、硫黄を精度よく分析する微量分析には応用で
きない。また、前記の燃焼吸光光度法は比較的感度はよ
いが、硫黄含有量10〜40 ppmに適し、μ7オー
ダの微量分析を行うには不十分である。
However, the combustion volume method described above has only a reliability of the order of 6 ppm (μ7/1) of sulfur content using sample 11, and cannot be applied to trace analysis for accurately analyzing sulfur. Further, although the combustion spectrophotometry method described above has relatively good sensitivity, it is suitable for sulfur contents of 10 to 40 ppm, and is insufficient for performing trace analysis on the order of μ7.

他方、この種の硫黄の定量分析法に用いられる装置とし
ては、燃焼炉に高周波誘導加熱装置及び管状電気炉が一
般に用いられる。
On the other hand, as devices used for this type of quantitative analysis of sulfur, a high-frequency induction heating device and a tubular electric furnace are generally used as a combustion furnace.

高周波誘導加熱装置は、温度範囲が狭く、かつ高周波発
振の影響付近での分析は問題となる。また、管状反応器
にあっては、JIS法による場合、寸法の規定があり、
燃焼部のみでも700〜800 mmと大きいことから
試料の少量化及び微量分析用としては不都合である。
High-frequency induction heating devices have a narrow temperature range, and analysis near the effects of high-frequency oscillation poses problems. In addition, for tubular reactors, there are dimensions stipulated according to the JIS law.
Since the combustion section alone is large, 700 to 800 mm, it is inconvenient for small sample size and trace analysis.

〔発明の目的〕[Purpose of the invention]

本発明は、これら従来法の欠点を解決することを目的と
するもので、詳しくは試料中に含まれる微量の硫黄を精
度よく少量の試料で分析するのを可能ならしめる定量分
析法を提供するものである。
The purpose of the present invention is to solve the drawbacks of these conventional methods. Specifically, the present invention provides a quantitative analysis method that enables accurate analysis of trace amounts of sulfur contained in a sample using a small amount of sample. It is something.

〔発明の要点〕[Key points of the invention]

前述の目的を達成するため、本発明方法は、試料を酸素
気流中で燃焼させ、この燃焼ガスを少量の吸収液を入れ
た吸収部に通流させて燃焼ガス中の亜硫酸ガスを吸収さ
せ、その吸収液に脱色ノクラローズアニリン溶液、ホル
ムアルデヒド溶液を添加して発色させ、その発色量を測
定することにより試料中の硫黄を算出して定量すること
を特徴とする。
In order to achieve the above object, the method of the present invention involves burning a sample in an oxygen stream, passing the combustion gas through an absorption section containing a small amount of absorption liquid to absorb sulfur dioxide gas in the combustion gas, The method is characterized by adding a decolorizing rose aniline solution and a formaldehyde solution to the absorption liquid to develop a color, and by measuring the amount of color development, the amount of sulfur in the sample is calculated and quantified.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の硫黄の定量分析法について実施例により
説明する。
Hereinafter, the quantitative analysis method for sulfur of the present invention will be explained with reference to Examples.

第1図は、本発明方法を実施するために使用される装置
を例示する説明図である。以下では、第1図に示された
装置と関連させながら、本発明による試料中の硫黄の定
量分析法を説明する。
FIG. 1 is an explanatory diagram illustrating an apparatus used to carry out the method of the present invention. In the following, a method for quantitatively analyzing sulfur in a sample according to the present invention will be explained in conjunction with the apparatus shown in FIG.

まず、本発明の方法では、試料が酸素気流中で燃焼され
る。支燃ガスは酸素を用い、金及び銅製品における場合
の酸素流量は0.15±Q、Q3L/minが最適であ
り、また試料の燃焼温度は1150±20℃が最適であ
る。
First, in the method of the present invention, a sample is burned in an oxygen stream. Oxygen is used as the combustion supporting gas, and in the case of gold and copper products, the optimum oxygen flow rate is 0.15±Q, Q3L/min, and the optimum combustion temperature of the sample is 1150±20°C.

支燃ガスの清浄には、クロム飽和硫酸7及びシリカゲル
塔8を通じて系内に導く。この際、一般には、前記の7
及び8以外に、ソーダ石灰や固体水酸化ナトリウム、活
性アルミナ、硫酸などの清浄器を通じて清浄にするが、
本発明の方法による場合、通常の1級品レベルの酸素で
空試験を行った結果7及び8の2種のみによる清浄化で
十分使用可能であることがわかった。したがって、簡易
化の点から、一般に行われるように必らずしも全部を使
用する必要がない。
To purify the combustion-supporting gas, it is introduced into the system through a chromium-saturated sulfuric acid 7 and a silica gel column 8. In this case, generally the above 7
In addition to 8 and 8, it can be cleaned using soda lime, solid sodium hydroxide, activated alumina, sulfuric acid, etc.
In the case of the method of the present invention, as a result of conducting a blank test using ordinary grade 1 oxygen, it was found that cleaning using only two types 7 and 8 is sufficient for use. Therefore, from the point of view of simplicity, it is not necessary to use all of them, as is generally done.

燃焼炉3は、試料の少量及び微量分析用として作製した
ものである。
The combustion furnace 3 was prepared for small-volume and trace analysis of samples.

図中で3−1は、加工性の優れたマグネシアレンガの2
枚を半円筒形に削1す、保温材としたものである。この
中に磁製保護管3−3を入れる。この内部に発熱体とし
てら管シリコニット3−2を入れ、燃焼炉3が構成され
る。また、石英管6の外径は18mm、内径は15朝と
し、既知試料ボート2を用いる場合には、試料を少量化
する目的から寸法は小さいもので高さ12+nm、幅8
謹、長さ80mmのもの、又はそれよりも小さいものを
用いることが望ましい。前記燃焼炉3は、安価で容易に
作製し得る特徴を有し、JIS法等の一般分析法よりも
1〜2ケタ程度微量比するだめの付属装置として不法で
は重要である。また、小形なために折りたたみ式のワゴ
ンを使用することにより運搬に便利である。
In the figure, 3-1 is a magnesia brick with excellent workability.
It is a heat insulating material made by cutting a sheet into a semi-cylindrical shape. Place the porcelain protection tube 3-3 into this. The combustion furnace 3 is constructed by inserting a silicone silicone tube 3-2 as a heating element inside the combustion chamber. In addition, the outer diameter of the quartz tube 6 is 18 mm and the inner diameter is 15 mm, and when using the known sample boat 2, the dimensions are small for the purpose of reducing the amount of sample, such as 12 + nm in height and 8 nm in width.
However, it is preferable to use one with a length of 80 mm or smaller. The combustion furnace 3 has the feature that it can be manufactured easily at a low cost, and is important in illegal cases as an accessory device that has a one- to two-digit amount difference compared to general analysis methods such as the JIS method. Also, because of its small size, it is convenient to transport by using a foldable wagon.

−1−記で生じた燃焼ガスは、次いで吸収液中に流通さ
′れ、亜硫酸ガスを吸収される。図中で4の吸収部(カ
リ球)は、燃焼ガスを吸収するもので、容積約]0rn
lの少量で効率よく吸収することを目的としている。こ
れにより試料の少量化及び微量化を可能にしている。一
般に用いられている吸収部の容積は50 me又は10
(h++/!であるので、その115〜1/1oの微量
化が可能となる。
The combustion gas generated in -1- is then passed through the absorption liquid and sulfur dioxide gas is absorbed therein. The absorption part (potash bulb) numbered 4 in the figure absorbs combustion gas, and has a volume of approximately ]0rn.
The aim is to absorb efficiently with a small amount of 1. This makes it possible to reduce the amount and trace amount of the sample. The volume of the absorbent section commonly used is 50 me or 10
(h++/!), so it is possible to reduce the amount by 115 to 1/1o.

温度制御装置5は20℃程度の温度誤差内のもので十分
である。
It is sufficient that the temperature control device 5 has a temperature error of about 20°C.

吸収部の支持台4−2は、カリ球4が不安定なため、シ
リコンチューブ等で石英管6と連結する際に軽くて操作
し易い発泡スチロールに穴をあけたものを用いると便利
である。
Since the potash bulb 4 is unstable, it is convenient to use a light and easy-to-operate styrene foam support base 4-2 for the absorption part when connecting it to the quartz tube 6 using a silicon tube or the like.

上記の分析装置で試料を燃焼させ、その燃焼ガスを効率
よく吸収させるための燃焼時間は、金及び銅の試料0.
05〜12程度で実施する場合には14分以下ではやや
不完全燃焼となるが、15分以上であれば完全に燃焼す
る3、好ましくは燃焼は20分で十分である。
The combustion time required to burn the sample with the above analyzer and efficiently absorb the combustion gas is 0.05 for the gold and copper samples.
When carried out at about 0.5 to 12 minutes, combustion will be slightly incomplete if it is less than 14 minutes, but combustion will be complete if it is more than 15 minutes.3, Preferably, 20 minutes is sufficient for combustion.

以上の操作により硫黄を吸収させた溶液を約20m1〜
50 mlのビーカーに酸素ガス等で送り出し、この溶
液の一定量、例えば10 mlのメスフラスコに8nr
eを正確に分液する。
Approximately 20ml of the solution that has absorbed sulfur through the above operations
Pour a certain amount of this solution into a 50 ml beaker using oxygen gas, for example, 8nr into a 10 ml volumetric flask.
Separate the liquid accurately.

次いで、これに脱色バラローズアニリン溶液(バラロー
ズアニリン0.2%(VA:+溶液20 meに塩酸8
 mlを加えて十分脱色した後に水で100++!!と
する)0.5me番加える。次にホルムアルデヒド溶液
(0,5%(VA)溶液) 0.5 meを加えた後、
水で10meとする。20分間放置した後、その一部を
lOmmのセルにとり、波長550nm における吸光
度を分光光度計により測定する。得られ水測定値を予め
作製しておいた検量線と対比させて硫黄の濃度をめ、試
料中の硫黄を算出して定量する。
Next, this was added with a decolorized rose rose aniline solution (rose rose aniline 0.2% (VA: + solution 20 me to hydrochloric acid 8.
10++! ! ) Add 0.5me number. Next, after adding 0.5 me of formaldehyde solution (0.5% (VA) solution),
Add water to 10me. After standing for 20 minutes, a portion of the sample was placed in a 10 mm cell, and the absorbance at a wavelength of 550 nm was measured using a spectrophotometer. The concentration of sulfur is determined by comparing the obtained water measurement value with a calibration curve prepared in advance, and the sulfur in the sample is calculated and quantified.

セルの発色容積は、一般的方法では50〜100m+e
であるが、本発明の方法では微量化を目的として10m
eとするので、発色の際の添加試薬、バラローズアニリ
ンの脱色に用いる塩酸の濃度は測定に影響し、したがっ
て8%(V/v) とすることが重要である。
The coloring volume of the cell is 50 to 100m+e in the general method.
However, in the method of the present invention, 10 m
Since the concentration of hydrochloric acid used to decolorize roserose aniline, which is an added reagent during color development, affects the measurement, it is therefore important to set it to 8% (V/v).

次に、前記の硫黄の定量分析方法の正確性を確認するだ
め、標準試料の簡革な作製方法並びにその標準試料によ
る正確性の確認方法について説明する。
Next, in order to confirm the accuracy of the quantitative analysis method for sulfur, a simple method for preparing a standard sample and a method for confirming accuracy using the standard sample will be explained.

まず、硫化物、例えば鍾化鉛の1級又は特級の試薬を用
意する1、この試料中の硫黄含有量は、重量法又は容量
法などの適当な方法によって分析する。次に金属試料の
場合、類似の純金属箔を用意する。これをハサミ等で適
当な寸法に切−テし、ピノセット等を用いて箱形に折る
。これを化学天秤に載せ、重F土を秤り、前記の硫黄量
既知の試薬を少量入れて秤った後、折りたたみ、これを
標準試料とする。
First, a first-class or special-grade reagent of sulfide, such as lead chloride, is prepared 1. The sulfur content in this sample is analyzed by a suitable method such as a gravimetric method or a volumetric method. Next, in the case of a metal sample, prepare a similar pure metal foil. Cut this into an appropriate size using scissors, etc., and fold it into a box shape using a pinot set, etc. Place this on a chemical balance, weigh out the heavy F soil, add a small amount of the reagent with a known sulfur content, weigh it, fold it, and use this as a standard sample.

この標準試料を本発明の方法により燃焼さぜ、燃焼ガス
を吸収させて硫黄量をめ正確性を調へる。この確認分析
方法は、特に入手しにぐい金属の標準試料として有用な
ものである。
This standard sample is burned according to the method of the present invention, the combustion gas is absorbed, and the amount of sulfur is measured to check the accuracy. This confirmation analysis method is particularly useful for standard samples of metals that are difficult to obtain.

第2図は、本発明方法の正確性の確認分析結果の一例で
あって、前記のように金箔及び銅箔を箱形に折り、硫化
物の試薬を入れて本発明方法で分析し、硫黄量と吸光度
との関係線を示したものである。この関係線は、金箔及
び銅箔を用いて前記方法により正確性を確認したもので
ある。両金属とも一致したほか、硫黄量と吸光度におい
てもベールに従った良い直線性が認められる。さらに、
この正確性を確認するため、純物質の硫化物塩で燃焼さ
せずに直接発色させて測定したものと一致した。したが
って、本発明の定量分析法は十分な精度を有することが
わかる。
Figure 2 shows an example of the analysis results for confirming the accuracy of the method of the present invention.As mentioned above, gold foil and copper foil are folded into a box shape, a sulfide reagent is added thereto, and the sulfur This shows a relationship line between amount and absorbance. The accuracy of this relationship line was confirmed by the method described above using gold foil and copper foil. In addition to agreement for both metals, good linearity was observed in sulfur content and absorbance in accordance with Beer. moreover,
In order to confirm the accuracy of this, the results matched those measured by directly developing color with a pure sulfide salt without burning it. Therefore, it can be seen that the quantitative analysis method of the present invention has sufficient accuracy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、試料を少届にしても精度よく分析する
ことが可能である。しかも、従来法と異なって、微量分
析が可能である0、 さらに、そのだめの分析装置は、小型でスペースをとる
こと々く安価で簡易に作製し得る。特に、規格されてい
ない構造材料の解析に有用である。
According to the present invention, it is possible to analyze accurately even if a small number of samples are delivered. Moreover, unlike conventional methods, it is possible to perform trace analysis.Furthermore, the analyzer is small and takes up a lot of space, and can be easily manufactured at low cost. It is particularly useful for analyzing unstandardized structural materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法を実施するための装置の一具体
例の説明図である。 第2図は、本発明の硫黄の定量分析法の正確性を確認し
た実施の一例を示すグラフである。 2は試料ボート、3は燃焼炉、4は吸収部(カリ球)、
5は温度制御装置、6は石英燃焼管、7及び8は支燃ガ
ス清浄器。
FIG. 1 is an explanatory diagram of a specific example of an apparatus for carrying out the method of the present invention. FIG. 2 is a graph showing an example of the accuracy of the sulfur quantitative analysis method of the present invention. 2 is a sample boat, 3 is a combustion furnace, 4 is an absorption part (potash sphere),
5 is a temperature control device, 6 is a quartz combustion tube, and 7 and 8 are combustion supporting gas purifiers.

Claims (1)

【特許請求の範囲】 1)試料を酸素気流中で燃焼させ、この燃焼ガスを少量
の吸収液を入れた吸収部に通流させて燃焼ガス中の亜硫
酸ガスを吸収させ、その吸収液に脱色パラローズアニリ
ン溶液、ホルムアルデヒド溶液を添加して発色させ、そ
の発色針を測定することにより試料中の硫黄を算出する
ことからなる硫黄の定量″分析方法。 2、特許請求の範囲第1項記載の方法において、燃焼ガ
スの吸収部がカリ球から構成されることを特徴とする硫
黄の定量分析法。 −
[Claims] 1) Burn the sample in an oxygen stream, pass this combustion gas through an absorption section containing a small amount of absorption liquid to absorb sulfur dioxide gas in the combustion gas, and decolorize the absorption liquid. A sulfur quantitative analysis method comprising adding a pararose aniline solution and a formaldehyde solution to develop a color, and calculating the amount of sulfur in a sample by measuring the colored needle.2. A quantitative analysis method for sulfur, characterized in that the absorption part for combustion gas is composed of potash spheres.
JP2865484A 1984-02-20 1984-02-20 Quantitative determination method of sulfur Pending JPS60173466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2865484A JPS60173466A (en) 1984-02-20 1984-02-20 Quantitative determination method of sulfur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2865484A JPS60173466A (en) 1984-02-20 1984-02-20 Quantitative determination method of sulfur

Publications (1)

Publication Number Publication Date
JPS60173466A true JPS60173466A (en) 1985-09-06

Family

ID=12254490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2865484A Pending JPS60173466A (en) 1984-02-20 1984-02-20 Quantitative determination method of sulfur

Country Status (1)

Country Link
JP (1) JPS60173466A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981290A (en) * 1997-04-07 1999-11-09 The United States Of America As Represented By The Secretary Of Transportation Microscale combustion calorimeter
WO2002052234A1 (en) * 2000-12-22 2002-07-04 United States Department Of Transportation Heat release rate calorimiter for milligram samples
CN105116097A (en) * 2015-08-26 2015-12-02 常州大学 Neutralization-process sulfur detector with oxygen flow rate control function
CN105158402A (en) * 2015-08-25 2015-12-16 常州大学 Sulfur detector with filtering and cleaning function

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981290A (en) * 1997-04-07 1999-11-09 The United States Of America As Represented By The Secretary Of Transportation Microscale combustion calorimeter
WO2002052234A1 (en) * 2000-12-22 2002-07-04 United States Department Of Transportation Heat release rate calorimiter for milligram samples
US6464391B2 (en) * 2000-12-22 2002-10-15 The United States Of America As Represented By The Secretary Of Transportation Heat release rate calorimeter for milligram samples
CN105158402A (en) * 2015-08-25 2015-12-16 常州大学 Sulfur detector with filtering and cleaning function
CN105116097A (en) * 2015-08-26 2015-12-02 常州大学 Neutralization-process sulfur detector with oxygen flow rate control function

Similar Documents

Publication Publication Date Title
Banks et al. Spectrophotometric determination of ruthenium with 1, 10-phenanthroline
Kirsten Recent developments in quantitative organic microanalysis
Stoner Spectrophotometric determination of ruthenium
JPS60173466A (en) Quantitative determination method of sulfur
Greenblatt et al. Determination of calcium in biological fluids
Amin Utilization of solid phase spectrophotometry for determination of trace amounts of beryllium in natural water
Archer The argentimetric titration of halide and cyanide ions with dithizone as indicator
Field et al. Determination of hydrogen sulfide in gases
US3058813A (en) Apparatus for oxidation of organic liquids
Troy Measurement of atmospheric pollution by ultraviolet photometry
Colson The rapid micro-analytical determination of carbon and hydrogen in organic compounds
Vurek et al. A colorimeter for measurement of picomole quantities of urea
Milner Determination of fluorine (and carbon) in fluorinated hydrocarbons
Trenner et al. A general infrared spectrophotometric technique for the determination of deuterium in organic compounds
Pinillos et al. Simultaneous determination of sulphide and sulphite by gas-phase molecular absorption spectrometry. Comparative study of different calculation methods
Turek et al. Determination of chemical water in rock analysis by Karl Fischer titration
Belcher et al. The Quantitative Analysis of Carbon Compounds and the Determination of Physical Constants and Molecular Weights
JPS60143767A (en) Total carbon measurement
Hudy et al. Determination of Traces of Sulfur in Organic Compounds
Smolkova-Keulemansova et al. Analysis of substances in the gaseous phase
Sanz et al. Some observations on the determination of germanium using hydride generation-ultraviolet-visible molecular absorption spectrometry with a diode-array detector
Coleman The determination of lead in gasoline by atomic absorption spectrometry
WO1995022049A1 (en) Apparatus for simultaneous measurement of sulfur and non-sulfur containing compounds
Levin et al. Determination of Carbon and Hydrogen
Gardner et al. Method for the estimation of small amounts of carbon in steel