JPS60173228A - Operation mechanism for working machine - Google Patents

Operation mechanism for working machine

Info

Publication number
JPS60173228A
JPS60173228A JP59029221A JP2922184A JPS60173228A JP S60173228 A JPS60173228 A JP S60173228A JP 59029221 A JP59029221 A JP 59029221A JP 2922184 A JP2922184 A JP 2922184A JP S60173228 A JPS60173228 A JP S60173228A
Authority
JP
Japan
Prior art keywords
pressure
oil
main circuit
pilot
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59029221A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukaya
浩 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANDOOTHE- KOGYO KK
HANDOZER IND CO Ltd
Original Assignee
HANDOOTHE- KOGYO KK
HANDOZER IND CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANDOOTHE- KOGYO KK, HANDOZER IND CO Ltd filed Critical HANDOOTHE- KOGYO KK
Priority to JP59029221A priority Critical patent/JPS60173228A/en
Publication of JPS60173228A publication Critical patent/JPS60173228A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40523Flow control characterised by the type of flow control means or valve with flow dividers
    • F15B2211/4053Flow control characterised by the type of flow control means or valve with flow dividers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5157Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lifting Devices For Agricultural Implements (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To save energy to be required for an operation mechanism by connecting the pressure oil of the third oil-pressure pump of the first - third oil-pressure pumps to be driven by one engine to the first and second oil-pressure circuits through a switch valve to be switched and operated by a pilot pressure. CONSTITUTION:The pressure oil of the first oil-pressure pump P1 is connected to a multiple control valve C/V through the main circuit 1 and a pressure control valve 2. On the other hand, the pressure oil of the second oil-pressure pump P2 is connected to another multiple control valve C/V through the main circuit 1 and the control valve 2. The pressure oil of the third oil-pressure pump P3 is led to the main circuit of the first and second oil-pressure pumps through a pilot direction switch valve 3 and a flow-dividing valve 7. The switch valve 3 is operated by the pilot pressure of each main circuit, and the pressure oil of the pump P3 is discharged to the tank T through the flow path 6 and also the first, second, and third pumps are connected to the same engine.

Description

【発明の詳細な説明】 本発明は、土木建設作業、農作業などに使用するエンジ
ンの回転数を作業の状況に応じて調整して運転すること
ができないタイプの作業機の操作機構の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the operating mechanism of a type of work machine used in civil engineering construction work, agricultural work, etc. in which the engine rotational speed cannot be adjusted and operated according to the work situation.

従来のこの種の作業機の操作機構は、第1図に示すよう
に、圧力と流量のエンジン馬力に対する関係が固定容量
システムとなっている。換言すれば、圧力、流量が一定
である。これを縦軸を圧力、横軸を流量とする座標の点
(P、Q)で表すことにする。それで、この固定容量シ
ステムにおいて、例えば、平地を速く移動するような軽
作業の場合には、速さを出すために流量を多くする必要
がある一方、圧力は低くてよい。この軽作業のときの座
標の点を< P、 、 Q )とすると、それに必要な
馬力はその点(P、 、 Q )を通る低馬方に相当す
るもので足りるにも拘わらず、依然として最大の馬力(
点(P、Q)を通る)で運転することになり、p −p
、に相当するものは余剰な(無駄な)馬力となる。
As shown in FIG. 1, the conventional operating mechanism of this type of work machine is a fixed capacity system in which the relationship between pressure and flow rate and engine horsepower is determined. In other words, the pressure and flow rate are constant. This will be expressed as a coordinate point (P, Q) with pressure on the vertical axis and flow rate on the horizontal axis. So, in this fixed capacity system, for example, for light work such as moving quickly on level ground, a high flow rate is required to achieve speed, while a low pressure may be required. If the coordinate point for this light work is < P, , Q ), the horsepower required for it is equivalent to the low horse that passes through that point (P, , Q ), but it still has the maximum horsepower. horsepower (
pass through the point (P, Q)), and p - p
The equivalent of , is surplus (wasted) horsepower.

また、このような固定容量システムにおいて、例えば、
硬い部分の掘削のように、力を出すため圧力を高くする
ときには、従って重作業の場合には、流量は少くなる。
In addition, in such fixed capacity systems, for example,
When the pressure is high to produce force, such as when drilling hard parts, and therefore during heavy work, the flow rate is low.

この重作業のときの座標を(P、Q、)とすると、これ
に必要な馬力はその座標(P、Q+)を通る低馬力に相
当するもので足りるにも拘わらず、依然として座標CP
、Q)を通る最大の馬力で運転することになり、Q −
Q、 K相当するものは余剰な(無駄な)馬力となる。
If the coordinates for this heavy work are (P, Q,), the horsepower required for this is equivalent to the low horsepower that passes through the coordinates (P, Q+), but it still remains at the coordinates CP.
, Q), and Q −
Anything equivalent to Q or K results in surplus (wasted) horsepower.

このような問題を解決するために、第2図に示すような
、可変容置システムにおいて、定馬力制御方式の採用が
考えられるけれども、前述の固定容量システムよりも6
倍ぐらいコスト高となり、実用性に欠ける。
In order to solve this problem, it is possible to adopt a constant horsepower control method in a variable capacity system as shown in Figure 2, but it is possible to
The cost is about twice as high and it lacks practicality.

本発明は、このような問題点に鑑みて、鋭意研究したと
ころ、第3図に示すように、可変容量システムにおいて
二圧制御方式を採用すれば、力を出す必要のある高圧作
業(重作業)にも、速ざな出す必要のある低圧作業(軽
作業)にも、低馬力の出力のエンジンを使用できるとい
う知見を得、この新知見に基づいて完成されたものであ
る。
In view of these problems, the present invention has been developed through intensive research.As shown in Fig. 3, if a dual-pressure control method is adopted in a variable capacity system, it will be possible to perform high-pressure work (heavy work) that requires exerting force. ), and also for low-pressure work (light work) that requires rapid performance, it was discovered that an engine with a low horsepower output could be used, and it was completed based on this new knowledge.

即ち、本発明は、低馬力のエンジンで、作業の種類に応
じて、自動的に適正な容量に切換え省エネルギーの下で
作業を行なうコスト安で効率のよい新規な作業機の操作
機構を提供することを目的とする。
That is, the present invention provides a new operating mechanism for a work machine that is low-cost and efficient, in which a low-horsepower engine is automatically switched to an appropriate capacity depending on the type of work to perform work in an energy-saving manner. The purpose is to

この目的のために、本発明の作業機の操作機構では、タ
ンクと作業部の操作シリンダとを連絡する主回路を設け
、該主回路にはパイロット方向操作弁を作動さすパイロ
ット流路を接続し、該ノでイロット方向操作弁は、そこ
傾流れるパイロット流路の圧力変動で、前記タンクと主
回路を接続する副回路のオイルを、該タンクに直接戻す
リタン回NK切換可能とし、前記主回路に設けるポンプ
及び前記副回路に設けるポンプを同じエンジンの出力軸
に連繋せしめて構成したことを特徴とする。
For this purpose, the operating mechanism of the working machine of the present invention is provided with a main circuit that communicates between the tank and the operating cylinder of the working section, and a pilot flow path that operates the pilot directional control valve is connected to the main circuit. In this case, the pilot directional control valve is capable of switching between return times NK and NK to directly return the oil in the subcircuit connecting the tank and the main circuit to the tank by pressure fluctuations in the pilot flow path that is tilted therein, and The pump provided in the subcircuit and the pump provided in the subcircuit are connected to the output shaft of the same engine.

以下、本発明を図示する実施例を参照しながら詳細に説
明する。
Hereinafter, the present invention will be described in detail with reference to illustrative embodiments.

第4図において、(1)は一対の主回路で、タンクTと
図示しない作業部のシリンダとをコントロールバルブC
/V及び圧力制御弁(2)を介して連絡している。該コ
ントロールバルブC/Vは多連になっていて種々の作業
部と連絡できるようになっている該主回路+11には、
パイロット方向操作弁(3)を作動さすパイロット流路
(4)を接続する。そして、該パイロット方向操作弁(
3)は、そこに流れるパイロット流路(4)の圧力変動
で、前記タンクTと主回路(1)を接続する副回路(5
)のオイルを、該タンクTに直接戻すリタン回路(6)
に1換可能となっている。
In Fig. 4, (1) is a pair of main circuits, which connect a tank T and a cylinder of a working part (not shown) to a control valve C.
/V and a pressure control valve (2). The main circuit +11, in which the control valves C/V are arranged in multiple series and can communicate with various working parts, includes:
Connect a pilot flow path (4) that operates a pilot directional control valve (3). And the pilot directional control valve (
3) is the pressure fluctuation in the pilot flow path (4) flowing there, which causes the sub-circuit (5) connecting the tank T and the main circuit (1) to
) return circuit (6) that returns the oil directly to the tank T.
It is possible to exchange it for 1 time.

(7)は前記副回路(5)に設ける分際弁、(8)は該
分流弁(7)と主回路(11との間の部分に介装する逆
rI−,弁、(9)は前記パイロット流路(4)とリタ
ン回路(6)との間に介装する絞り弁、00)は該パイ
ロット流路(4)に介装する逆止弁である。
(7) is a division valve installed in the subcircuit (5), (8) is a reverse rI- valve installed between the division valve (7) and the main circuit (11), and (9) is a The throttle valve 00) interposed between the pilot flow path (4) and the return circuit (6) is a check valve interposed in the pilot flow path (4).

前記各主回路fi+・(1)及び副回路(5)には夫々
ボンプP、・P2・1が設けられ、各ポンプP、−P、
・P3は同じエンジンEの出力軸01)K連繋して稼動
するようになっている。(121はストレーナ−である
。ポンプP。
Each of the main circuit fi+ (1) and the sub circuit (5) is provided with pumps P, P2, 1, respectively, and each pump P, -P,
- P3 operates in conjunction with the output shaft 01)K of the same engine E. (121 is a strainer. Pump P.

七P2とは容量が同じであり、ポンプP3はそれらと容
量が異ることが多い。
Pump P2 has the same capacity as pump P2, and pump P3 often has a different capacity from them.

するに際し、今、1回転当りの容量が、25CCのポン
プP1・P2と、30ccのポンプP3を使用し、毎分
回転数20ORPMのエンジンの出力軸旧)を選定する
と、各ポンプの毎分容量は、 ポンプP1では、 25 X 2000−501/mi
Now, if we use pumps P1 and P2 with a capacity per revolution of 25cc and pump P3 with a capacity of 30cc, and select an engine output shaft with a revolutions per minute of 20ORPM, the capacity per minute of each pump will be For pump P1, 25 x 2000-501/mi
.

ポンプP2では、 25 X 2000 = 50欠i
nポンプP3では、 加X 2000 −60気iユ重
作業時にパイロット流路(4)に210’/、!の圧力
が生じ、パイロット方向操作弁(3)が作動して副回路
(5)がリタン回路(6)に切換ると仮定すると、これ
に対応する高圧作業時の馬力は、余裕率を11 とし 
(5(1+50)X210 × 1.1= 50.7 
ps56 他方、軽作業時にパイロット流路(・1)に130に〜
の圧力が生じ、パイロット方向操作弁(3)が作動せず
、従つそ・、副回路(5)がリタン回路(6)に切換わ
らないものと仮定すると、これに対応する低圧作業時の
馬力は、同様に余裕率を11 として(ヌ)+ 50 
+60 ) X 130−4.6×1゜I=50.2P
S ということになり、高圧作業、低圧作業いずれの場合に
も、略等し2い馬力となり、同一馬方のエンジンEを設
定できる。
For pump P2, 25 x 2000 = 50
For pump P3, add 210'/,! Assuming that a pressure of
(5 (1 + 50) x 210 x 1.1 = 50.7
ps56 On the other hand, during light work, set the pilot flow path (・1) to 130~
Assuming that a pressure of Horsepower is similarly calculated as (nu) + 50 with a margin of 11.
+60) X 130-4.6×1゜I=50.2P
Therefore, in both high-pressure work and low-pressure work, the horsepower is approximately equal to 2, and the engine E with the same horsepower can be set.

これを従来の固定容量システムのものと対比して説明す
る。第3図において、Cを従来の固定容量システムにょ
る圧力と流量の関係にょるエンジン馬力の直線で、点C
P、Q)を通るものとすれば、流量を増大させて平地走
行などのため速さを出す低圧作業の能力を有するエンジ
ン馬力は別個の直線Aで表わされ、点(210−160
)を通るものとなるので、このシステムでは、直MCが
最大のエンジン馬力を表わすとすれば、直線Aで表わさ
れる別の能力のエンジンに取換えなければならないこと
になる。しかし、本発明の可変容量システムによる二圧
制御方式は、同第3図の直線B K示される如くで、圧
力、流量の積を同じくすることにより、流電もしくは圧
力の一方側を大きくし、例えば、点(210・100)
又は点(130・160)とすることができ、前記直線
Cに対1.その分大きくとれ、結果的に前記直線Aの能
力となる。
This will be explained in comparison with that of a conventional fixed capacity system. In Figure 3, C is a straight line of engine horsepower based on the relationship between pressure and flow rate in a conventional fixed displacement system, and point C
P, Q), the engine horsepower capable of low-pressure work that increases the flow rate and increases speed for flat driving etc. is represented by a separate straight line A, and the point (210-160
), so in this system, if the direct MC represents the maximum engine horsepower, it would have to be replaced with an engine of a different capacity represented by straight line A. However, the two-pressure control method using the variable capacity system of the present invention is as shown by the straight line BK in Figure 3, and by making the product of pressure and flow rate the same, one side of the current or pressure is increased, For example, point (210・100)
Or, it can be a point (130/160), and the line C is 1. The capacity can be increased by that much, resulting in the ability of the straight line A.

以上述べたように、本発明の作業機におりる操作機構で
は、タンクど作業部の操作シリンダとを連絡する主回路
を設け、該主回路にはパイロット方向操作弁を作動さす
パイロット流路を接続し、該パイロット方向操作弁は、
そこに流れるパイロット流路の圧力変動で、前記タンク
と主回路を接続する副回路のオイルを、該タンクに面接
戻すリタン回路に切換可能とし、前記主回路に設けるポ
ンプ及び前記副回路に設けるポンプを同じエンジンの出
力軸に連繋せしめて構成したので、従来の固定容量シス
テムにおけるエンジン馬力よりも低いエンジン馬力で、
同能力の作業を成就できるから効率的で省エネルギーの
目的に合致し、また、種々の作業に自動的に対応できる
から機動性に富む利点がある。
As described above, the operating mechanism of the working machine of the present invention is provided with a main circuit that communicates between the tank and the operating cylinder of the working part, and the main circuit includes a pilot flow path that operates the pilot directional control valve. connected, the pilot directional valve is
Due to pressure fluctuations in the pilot flow path flowing therein, the oil in the sub-circuit connecting the tank and the main circuit can be switched to a return circuit where the oil is returned to the tank, and a pump provided in the main circuit and a pump provided in the sub-circuit are provided. Since the two are connected to the output shaft of the same engine, the engine horsepower is lower than that of conventional fixed capacity systems.
It is efficient and meets the goal of energy conservation because it can accomplish tasks of the same capacity, and it has the advantage of being highly mobile because it can automatically respond to various tasks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の作業機の操作機構における固定容量シ
ステムを採用したものの圧力と流量とエンジン馬力の関
係を表わす図表、第2図は従来の作業機の操作機構で可
変容量システムにおいて定馬力制御方式を採用したもの
の圧力と流量とエンジン馬力の関係を表わす図表、第3
図は本発明の作業機の操作機構における可変容量システ
ムの二圧制御方式を採用したものの圧力と流量とエンジ
ン馬力の関係を表わす図表、第4図は、本発明の作業機
の操作機構を表わす回路図である。 図面符号の説明 T・・・タンク E・・・エンジン C/V・・・コントロールバルブ PIIIP2φP3
・・ボンブト・・主回路 2・・・圧力制御弁 3・・・パイロット方向操作弁 4・・・パイロット流路 5山副回路 6・・・リタン回路 7・・・分流弁 3・・・逆止弁 9・・・絞り弁 】0・・・逆止弁1
1・・・出力軸 12・・ストレーナ−特許出願人 ハ
ンドーザー工業株式会社第1図 云九量 第3図 Δ 我量
Figure 1 is a diagram showing the relationship between pressure, flow rate, and engine horsepower in a conventional work equipment operating mechanism that uses a fixed capacity system, and Figure 2 is a chart that shows the constant horsepower in a conventional work equipment operating mechanism that uses a variable capacity system. Chart showing the relationship between pressure, flow rate, and engine horsepower using the control method, Part 3
The figure is a chart showing the relationship between pressure, flow rate, and engine horsepower in a working machine operating mechanism of the present invention that employs a two-pressure control method of a variable displacement system. Figure 4 shows the operating mechanism of a working machine of the present invention. It is a circuit diagram. Explanation of drawing symbols T...Tank E...Engine C/V...Control valve PIIIP2φP3
...Bonbuto...Main circuit 2...Pressure control valve 3...Pilot directional control valve 4...Pilot flow path 5-way subcircuit 6...Return circuit 7...Diversion valve 3...Reverse Stop valve 9... Throttle valve ]0... Check valve 1
1... Output shaft 12... Strainer - Patent applicant Handozer Kogyo Co., Ltd. Figure 1 Figure 3 Figure 3 Δ Weight

Claims (1)

【特許請求の範囲】[Claims] タンクと作業部の操作シリンダとを連絡する主回路を設
け、該主回路にはパイロット方向操作弁を作動さすパイ
ロット流路を接続し、該パイロット方向操作弁は、そこ
に流れるパイロット流路の圧力変動で、前記タンクと主
回路を接続する副回路のオイルを、該タンクに直接戻す
リタン回路に切換可能とし、前記主回路に設けるポンプ
及び前記副回路に設けるポンプを同じエンジンの出力軸
に連繋せしめて構成したことを特徴とする作業機におけ
る操作機構。
A main circuit is provided that communicates between the tank and the operation cylinder of the working part, and a pilot flow path that operates a pilot direction operation valve is connected to the main circuit, and the pilot direction operation valve is configured to control the pressure of the pilot flow path flowing therethrough. The oil in the subcircuit that connects the tank and the main circuit can be switched to a return circuit that returns directly to the tank by fluctuation, and the pump provided in the main circuit and the pump provided in the subcircuit are linked to the output shaft of the same engine. An operating mechanism for a working machine, characterized in that the operating mechanism is configured as follows.
JP59029221A 1984-02-18 1984-02-18 Operation mechanism for working machine Pending JPS60173228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59029221A JPS60173228A (en) 1984-02-18 1984-02-18 Operation mechanism for working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59029221A JPS60173228A (en) 1984-02-18 1984-02-18 Operation mechanism for working machine

Publications (1)

Publication Number Publication Date
JPS60173228A true JPS60173228A (en) 1985-09-06

Family

ID=12270148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59029221A Pending JPS60173228A (en) 1984-02-18 1984-02-18 Operation mechanism for working machine

Country Status (1)

Country Link
JP (1) JPS60173228A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621603B2 (en) * 1976-10-19 1981-05-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621603B2 (en) * 1976-10-19 1981-05-20

Similar Documents

Publication Publication Date Title
JPH10141310A (en) Pressure oil feeder
EP0614016A4 (en) Hydraulic drive unit of hydraulic working machine.
JPS60173228A (en) Operation mechanism for working machine
JPS5919122Y2 (en) hydraulic drive circuit
JPS60175805A (en) Hydraulic circuit for steering and operational machinery
JP2840957B2 (en) Variable circuit of pump discharge volume in closed center load sensing system
JPS595163B2 (en) Speed control circuit for cranes, etc.
JPS5831485B2 (en) Unloading mechanism in combined pump type hydraulic circuit
JPH02279829A (en) Hydraulic circuit for hydraulic shovel
JP2536497Y2 (en) Hydraulic circuit of all hydraulic steering system
JPS5923097Y2 (en) pressure fluid circuit
JPS5824671Y2 (en) Hydraulic circuit of hydraulic drive
JPS5935667Y2 (en) Hydraulic excavator hydraulic circuit
JPS6016539B2 (en) 4 pump circuit of hydraulic excavator
JPS5923099Y2 (en) pressure fluid circuit
JPH0118693Y2 (en)
JPS6311729A (en) Oil-pressure circuit for civil construction machine
JPS5847287Y2 (en) Merging circuit of three pumps
JPH1088621A (en) Hydraulic control mechanism of excavating machine
JPH0452475Y2 (en)
JPS6349081B2 (en)
JPS595090Y2 (en) Rotating independent circuit
JPS5938539Y2 (en) 2-engine 4-pump hydraulic system for construction machinery
JPS5586907A (en) Three-pump hydraulic circuit for construction machinery or the like
JPS591882B2 (en) Multiple hydraulic pump device