JPS60173178A - Production of moisture permeable water-proof cloth - Google Patents

Production of moisture permeable water-proof cloth

Info

Publication number
JPS60173178A
JPS60173178A JP2923384A JP2923384A JPS60173178A JP S60173178 A JPS60173178 A JP S60173178A JP 2923384 A JP2923384 A JP 2923384A JP 2923384 A JP2923384 A JP 2923384A JP S60173178 A JPS60173178 A JP S60173178A
Authority
JP
Japan
Prior art keywords
resin
water
fabric
moisture
moisture permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2923384A
Other languages
Japanese (ja)
Other versions
JPS6354831B2 (en
Inventor
雨宮 邦夫
幹彦 田中
亀丸 賢一
清 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2923384A priority Critical patent/JPS60173178A/en
Publication of JPS60173178A publication Critical patent/JPS60173178A/en
Publication of JPS6354831B2 publication Critical patent/JPS6354831B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、防水性と透湿性の三機能を同時に有する布帛
の製造方法に関するものである。一般に透湿性と防水性
は互いに相反する機能であるが。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a fabric that simultaneously has three functions: waterproofness and moisture permeability. Generally, breathability and waterproofness are contradictory functions.

透湿性の優れた防水加工布帛は乾式あるいは湿式コーテ
ィング加工の際にコーティング樹脂皮膜に水蒸気の発散
が可能な程度の連続した微細孔を形成させることにより
得られている。これら乾式あるいは湿式コーティング加
工の際にコーティング樹脂として一般にポリウレタンエ
ラストマーが皮nり強度、ゴム弾性及び柔軟性の点で好
ましく用いられていた。ところがポリウレタンエラスト
マーによる透湿性防水布帛の場合防水性能と透湿性能の
両者のバランスをもとにして作られているため。
Waterproof fabrics with excellent moisture permeability are obtained by forming continuous fine pores that allow water vapor to escape in the coating resin film during dry or wet coating. Polyurethane elastomers are generally preferably used as coating resins in these dry or wet coating processes in view of their peel strength, rubber elasticity, and flexibility. However, moisture-permeable waterproof fabrics made from polyurethane elastomer are made based on a balance between waterproof performance and moisture-permeable performance.

防水性能がJIS L−1096の耐水圧測定で1,5
00 IIlm(水柱下)以上の布帛については、透湿
度が4,000〜5,000 g / rd ・24h
rs (JIS Z−0208測定)程度のものしか得
られていないのが現状である。このフィラメントを使用
した高密度織物に18水、カレンダー加工を施しただけ
のノンコーティング布帛とほぼ同程度の透湿性能のもの
となるので、雨中での作業時や運動時の発汗による衣服
内気候の湿度コントロールがスムーズになり、このため
より一層激しい運動や作業を快適に行うことができるよ
うになるが耐水圧が1.50km以上のもので7 、0
00g/rd・24hrs以上の透湿性能を有する布帛
は。
Waterproof performance is 1.5 according to JIS L-1096 water pressure measurement.
For fabrics with a rating of 00 IIlm (under the water column) or higher, the moisture permeability is 4,000 to 5,000 g/rd/24h.
At present, only those on the order of rs (JIS Z-0208 measurement) have been obtained. The high-density fabric using this filament has almost the same moisture permeability as a non-coated fabric that is simply calendered with 18% water, so it is possible to prevent the inside of clothes from sweating when working in the rain or exercising. Humidity control becomes smoother, making it possible to perform even more strenuous exercise and work in comfort, but with water pressure resistance of 1.50 km or more,
The fabric has a moisture permeability of 00g/rd・24hrs or more.

今日に至っても未だ得られていないのが実状である。本
発明はこのような現状に鑑みて行われたもので、耐水圧
が1 、500mm以上ありながらしかも透湿度が7.
000 g / n(・24hrs以上の高透湿性の防
水布帛を得ることを目的とするものである。かかる目的
を達成するために本発明は次の構成を有するものである
The reality is that even to this day, this has not yet been achieved. The present invention was developed in view of the current situation, and has a water pressure resistance of 1.500 mm or more and a moisture permeability of 7.5 mm.
The purpose of the present invention is to obtain a waterproof fabric with high moisture permeability of 000 g/n (24 hrs or more).In order to achieve this purpose, the present invention has the following configuration.

すなわち本発明は、ポリアミノ酸ウレタン樹脂。That is, the present invention is a polyamino acid urethane resin.

ポリウレタン樹脂、非イオン界面活性剤及び極性を4!
!溶剤よりなる樹脂溶液を繊維基材に塗布した後、該繊
維凸材を0℃〜30℃の水中に浸漬し2次いで湯洗し、
乾燥後Ja水剤を付与することを特徴とする透湿性防水
布帛の製造方法を要旨とするものである。
Polyurethane resin, nonionic surfactant and polarity 4!
! After applying a resin solution made of a solvent to the fiber base material, the fiber convex material is immersed in water at 0°C to 30°C, and then washed with hot water,
The gist of this invention is a method for producing a moisture-permeable waterproof fabric, which is characterized by applying a Ja solution after drying.

以下9本発明の詳細な説明する。Hereinafter, nine aspects of the present invention will be described in detail.

本発明で使用される繊維基材としては、ナイロン6やナ
イロン66で代表されるポリアミド系合成繊維、ポリエ
チレンテレフタレートで代表されるポリエステル系合成
繊維、ポリアクリロニトリル系合成繊維、ポリビニルア
ルコール系合成繊維さらにはトリアセテート等の半合成
繊維及びナイロン6 / 木綿、ポリエチレンテレフタ
レート/木綿等の混紡繊維から構成された織物1編物等
をあげることができる。
The fiber base materials used in the present invention include polyamide synthetic fibers such as nylon 6 and nylon 66, polyester synthetic fibers such as polyethylene terephthalate, polyacrylonitrile synthetic fibers, polyvinyl alcohol synthetic fibers, and polyvinyl alcohol synthetic fibers. Examples include woven and knitted fabrics made of semi-synthetic fibers such as triacetate and blended fibers such as nylon 6/cotton and polyethylene terephthalate/cotton.

本発明方法ではまず始めにこのような織編物等の繊Il
l 括+4にその片面又は両面に、ポリアミノ酸ウレタ
ン樹脂、ポリウレタン樹脂、非イオン界面活性剤、極性
有機溶剤よりなる樹脂溶液を塗布する。
In the method of the present invention, first of all, such fibers such as woven or knitted fabrics are
l A resin solution consisting of a polyamino acid urethane resin, a polyurethane resin, a nonionic surfactant, and a polar organic solvent is applied to one or both sides of the bracket +4.

ここで用いるポリアミノ酸ウレタン樹脂は、光学活性γ
−アルキルーグルタメート−N−カルボン酸無水物(以
下、N−カルボン酸無水物をNCAと略称する。)と末
端にイソシアネート基を有するウレタンプレポリマーと
を混合した後、アミン類を添加して反応させたポリアミ
ノ酸ウレタン共重合樹脂(以下PAII樹脂と略称する
。)からなるもので2重合の際の溶媒としては、ジメチ
ルホルムアミドとジオキサンの混合溶媒(重量比95:
5〜30 : 70)が用いられたものである。この溶
媒は水溶性であるため、IIAU樹脂を繊維基材に付与
する際湿式加工を容易に行うことができる。光学活性γ
−アルキルーグルタメート−11G八としては。
The polyamino acid urethane resin used here has optical activity γ
-Alkyl-glutamate-N-carboxylic anhydride (hereinafter N-carboxylic anhydride is abbreviated as NCA) and a urethane prepolymer having an isocyanate group at the end are mixed, and then amines are added and reacted. It is made of polyamino acid urethane copolymer resin (hereinafter abbreviated as PAII resin), and the solvent used in the double polymerization is a mixed solvent of dimethylformamide and dioxane (weight ratio 95:
5-30:70) was used. Since this solvent is water-soluble, wet processing can be easily performed when applying the IIAU resin to the fiber base material. Optical activity γ
-Alkyl-glutamate-11G8.

L−グルタメートでもD−グルタメートでもよく5具体
的にはγ−メチルーL−グルタメートーNCA 。
It may be L-glutamate or D-glutamate.5 Specifically, γ-methyl-L-glutamate-NCA.

T−エチル−し−グルタメー1−−NC八等のγ−アル
キルー 1) − クルタメートーNCへ,γ−エチル−D−グ
ルタメート−NCA等のγーアルキルーDーグルタメー
1−−NCAを単独で又はこれらの混合物として使用す
ることができる。また、γーアルキルーグルタメートー
〇CAを主体としたα−アミノ酸−NCAをPAU樹脂
のアミノ酸成分に使用することも可能であり,さらに光
学活性Tーアルキルーグルタメ−INcAと他のアミノ
酸NCへ,例えばグリシンNCA, L−アスパラギン
酸−βーメチルエステルNC^,LーアラニンNCA,
 D−アラニンNCA等との混合物も使用できる。しか
しながら、物性と価格を考慮すれば,γーメチルーLー
グルクメートーNC^又はγーメチルーDーグルタメー
トーNC^を単独で用いる方が工業的には有利な場合が
多い。
γ-alkyl groups such as T-ethyl-glutamic acid 1--NC8) - glutamate-NC, γ-alkyl-D-glutamic acid 1--NCAs such as γ-ethyl-D-glutamate-NCA alone or in mixtures thereof It can be used as It is also possible to use α-amino acid-NCA mainly consisting of γ-alkyl-glutamate-CA as the amino acid component of PAU resin, and optically active T-alkyl-glutamic acid-INcA and other amino acids NC For example, glycine NCA, L-aspartic acid-β-methyl ester NC^, L-alanine NCA,
A mixture with D-alanine NCA etc. can also be used. However, in consideration of physical properties and cost, it is often industrially more advantageous to use γ-methyl-L-glucumate-NC^ or γ-methyl-D-glutamate-NC^ alone.

末端にイソシアネート基を有するウレタンプレポリマー
は,イソシアネートとポリオールを当量比NCO10i
l> 1の条件で反応させて得られるものである。イソ
シアネート成分としては,芳香族ジイソシアネート、脂
肪族ジイソシアネート、脂環式ジイソシアネート等の単
独又はこれらの混合物として用いられる。また、ポリオ
ール成分としては,通常のウレタン製品に使用されるポ
リエーテルグリコールやポリエステルグリコール等が単
独で又は混合物のかたちで使用可能であり.これらのポ
リエーテルやポリエステルの平均分子量は200〜30
0以上のものが好ましく用いられる。共重合で使用され
るアミン類としては,エチレンジアミン等の1級アルキ
ルアミン、エタノールアミン等のアルコールアミン、ト
リエチルアミン等の3級アルキルアミン、ジエチルアミ
ン等の2級アミンが用いられる。
The urethane prepolymer having isocyanate groups at the terminals has an equivalent ratio of isocyanate and polyol of NCO10i.
It is obtained by reacting under the conditions of l>1. As the isocyanate component, aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, etc. may be used alone or as a mixture thereof. In addition, as the polyol component, polyether glycol, polyester glycol, etc. used in ordinary urethane products can be used alone or in the form of a mixture. The average molecular weight of these polyethers and polyesters is 200 to 30
A value of 0 or more is preferably used. The amines used in the copolymerization include primary alkylamines such as ethylenediamine, alcoholamines such as ethanolamine, tertiary alkylamines such as triethylamine, and secondary amines such as diethylamine.

繊維基布に付着せしめるPAD樹脂の量は純分で5g/
/以上あることが望ましく,付着量が5g/d未満でば
1 、 500mm以上の耐水圧を得ることが困難であ
る。
The amount of PAD resin attached to the fiber base fabric is 5g/
It is desirable that the amount is less than 5 g/d, and it is difficult to obtain a water pressure resistance of 1,500 mm or more.

本発明でPAU樹脂を使用する理由は以下のごとくであ
る。すなわちPAD樹脂は通常のポリウレタン樹脂と異
なり、無孔性の皮膜であっても水藩気を通過せしめる能
力を有している。従来の有孔性ウレタン樹脂皮膜を有す
る透湿性防水布帛においては、耐水圧が1 、500m
m以上であると透湿度はたかだか5,000g/m・2
4hrs程度のものしが得られないのに対し1本発明に
おいてはPAU樹脂を使用することにより耐水圧が1 
、500mm以上でかつ透湿度7,000g/n(・2
4hrs以上の透湿性防水布帛が得られるのである。
The reason for using PAU resin in the present invention is as follows. That is, unlike ordinary polyurethane resins, PAD resin has the ability to allow water and air to pass through even if it is a non-porous film. Conventional moisture-permeable waterproof fabrics with a porous urethane resin film have a water pressure resistance of 1.500 m.
m or more, the moisture permeability is at most 5,000 g/m・2
In contrast, in the present invention, by using PAU resin, the water pressure resistance is 1 hrs.
, 500mm or more and moisture permeability 7,000g/n (・2
A moisture permeable waterproof fabric with a durability of 4 hours or more can be obtained.

本発明におけるポリウレタン樹脂とはポリイソシアネー
トとポリオールを反応せしめて得られる重合物であり、
ポリイソシアネートとしては公知の脂肪族並びに芳香族
ポリイソシアネートが使用でき2例えばヘキザメチレン
ジイソシアネート。
The polyurethane resin in the present invention is a polymer obtained by reacting polyisocyanate and polyol,
As the polyisocyanate, known aliphatic and aromatic polyisocyanates can be used, such as hexamethylene diisocyanate.

トルエンジイソシアネートキシレンジイソシアネート、
及びこれらの過剰と多価アルコールとの反応生成物があ
げられる。ポリオールとしては。
toluene diisocyanate xylene diisocyanate,
and reaction products of excess thereof and polyhydric alcohols. As a polyol.

ポリエーテルあるいはポリエステルなど通常のポリウレ
タン樹脂製造に使用される公知のものが使用可能である
。ポリエステルとしては2例えばエチレングリコール、
ジエチレングリコール又は1.4−ブタンジオールなど
の多価アルコールとアジピン酸、シュウ酸又はセバシン
酸などの多塩基性カルボン酸の反応物があげられる。ポ
リエーテルとしては1例えばエチレングリコール、プロ
ピレングリコールなどの多価アルコールにエチレンオキ
シド、プロピレンオキシド、ブチレンオキシドなどのア
ルキレンオキシドの1種又は2種以上を付加させたもの
があげられる。
Known materials such as polyether or polyester used in the production of ordinary polyurethane resins can be used. Examples of polyester include ethylene glycol,
Examples include reaction products of polyhydric alcohols such as diethylene glycol or 1,4-butanediol and polybasic carboxylic acids such as adipic acid, oxalic acid, or sebacic acid. Examples of polyether include polyhydric alcohols such as ethylene glycol and propylene glycol to which one or more alkylene oxides such as ethylene oxide, propylene oxide and butylene oxide are added.

ポリウレタン樹脂の使用量としては、PAD樹脂に対し
1%〜200%の割合で使用することが望ましい。使用
量が1%以下では透湿性が不良となり。
The amount of polyurethane resin to be used is preferably 1% to 200% based on the PAD resin. If the amount used is less than 1%, moisture permeability will be poor.

200%以上では防水性が不良になる。If it exceeds 200%, the waterproofness becomes poor.

本発明方法は耐水圧と透湿性が優れた布帛を得るもので
あるが、その原理は比較的透湿性が良好なPAD樹脂皮
膜中に水が通過できない大きさの細孔を無数に存在せし
めることによるものである。
The method of the present invention is to obtain a fabric with excellent water pressure resistance and moisture permeability, and its principle is to create numerous pores large enough to prevent water from passing through in the PAD resin film, which has relatively good moisture permeability. This is due to

ポリウレタン樹脂及びPAII樹脂を水中に同時に浸漬
するとPAU樹脂のほうがポリウレタン樹脂より速く凝
固するため、PAtl樹脂とポリウレタン樹脂の境界に
空間が発生し、この空間が樹脂皮膜中の細孔の大きさを
決定する。ポリウレタン樹脂量が少ないと孔は小さくな
り、透湿性が不良となる。
When polyurethane resin and PAII resin are immersed in water at the same time, PAU resin solidifies faster than polyurethane resin, so a space is created at the boundary between PAtl resin and polyurethane resin, and this space determines the size of the pores in the resin film. do. If the amount of polyurethane resin is small, the pores will be small and the moisture permeability will be poor.

またポリウレタン樹脂量が多いと孔は木きくなり耐水圧
が不良となる。
Moreover, if the amount of polyurethane resin is large, the pores will become hard and the water pressure resistance will be poor.

次に本発明における非イオン活性剤とはポリオキシエチ
レンアルキルエーテル、ポリエチレンアルキル−フェニ
ルエーテル、ポリオキシエチレン脂肪酸エステル、ポリ
オキシエチレン脂肪酸アミドエーテル、多価アルコール
脂肪酸エステル、ポリオキシエチレン多価アルコール−
脂肪酸エステル、脂肪酸ショ糖エステル、アルキロ−ド
アミド等や、あるいはこれらの任意の混合物のことであ
り、PAD樹脂を水中で凝固せしめる際に、樹脂皮膜に
内存する空孔を適正に調節する効果があり。
Next, the nonionic surfactant in the present invention is polyoxyethylene alkyl ether, polyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, polyoxyethylene fatty acid amide ether, polyhydric alcohol fatty acid ester, polyoxyethylene polyhydric alcohol-
It refers to fatty acid esters, fatty acid sucrose esters, alkylo-doamides, etc., or any mixture thereof, and has the effect of appropriately controlling the pores in the resin film when coagulating PAD resin in water. .

この作用により優れた防水性及び透湿性を得ることがで
きる。
Due to this effect, excellent waterproofness and moisture permeability can be obtained.

非イオン活性剤の使用量はPAU樹脂の使用量に対し、
0.1〜IO重量部の範囲にあることが望ましい。
The amount of nonionic activator used is based on the amount of PAU resin used.
It is desirable that the amount is in the range of 0.1 to IO parts by weight.

使用量が0.1重量部以下ではPAU樹脂の凝固皮膜中
の細孔が小さくなり過ぎて透湿性が不良になる。
If the amount used is less than 0.1 parts by weight, the pores in the coagulated film of the PAU resin will become too small, resulting in poor moisture permeability.

また10重量部以上使用すると細孔が大きくなり過ぎて
l 、 500mm以上の耐水圧が得られない。
If 10 parts by weight or more is used, the pores become too large and a water pressure resistance of 500 mm or more cannot be obtained.

本発明では上述のPAD樹脂、ポリウレタン樹脂及び非
イオン界面活性剤と極性有機剤とを混合して使用する。
In the present invention, the above-mentioned PAD resin, polyurethane resin, nonionic surfactant, and polar organic agent are mixed and used.

極性有機溶剤にはジメチルホルムアミド、ジメチルアセ
トアミド、N−メチルピロリドン、ヘキサメチレンホス
ホンアミドなどがある。
Polar organic solvents include dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and hexamethylenephosphonamide.

これらの物質は水に非常に溶けやすいものであり。These substances are highly soluble in water.

水不溶性の樹脂の極性有機剤溶液を水中に浸漬すると極
性有41!溶剤のみが水に溶解し、樹脂が水中に凝固し
てくる。かかる方法による樹脂の凝固法は湿式凝固法と
一般によばれている。湿式凝固法で樹脂の凝固を行うと
樹脂中に存在する微量の極性有機溶剤も水に溶出するた
め、無数の細孔を有する樹脂を得ることができる。
When a polar organic agent solution of a water-insoluble resin is immersed in water, it becomes polar! Only the solvent dissolves in water, and the resin solidifies in the water. A resin coagulation method using such a method is generally called a wet coagulation method. When a resin is coagulated by a wet coagulation method, a trace amount of the polar organic solvent present in the resin is also eluted into water, making it possible to obtain a resin having countless pores.

PAU樹脂、ポリウレタン樹脂、非イオン界面活\剤及
び極性有機溶剤よりなる樹脂溶液を繊維基布に塗布する
には通常のコーティング方法などにより行えばよい。一
般的に樹脂の塗布IIは機械の性能上lO〜300μm
である。
The resin solution consisting of PAU resin, polyurethane resin, nonionic surfactant, and polar organic solvent may be applied to the fiber base fabric by a conventional coating method. Generally, resin coating II is 10~300 μm due to machine performance.
It is.

樹脂溶液を繊維基材に付与した後、該布帛を水中に浸漬
する。前述したように、この工程により細孔を無数に有
するPAII樹脂皮膜を形成することができ、またポリ
ウレタン樹脂や非イオン界面活性剤の働きにより連結さ
れたミクロセル構造になる細孔を得ることができる。
After applying the resin solution to the fiber substrate, the fabric is immersed in water. As mentioned above, this process makes it possible to form a PAII resin film with an infinite number of pores, and through the action of the polyurethane resin and nonionic surfactant, it is possible to obtain pores that form a connected microcell structure. .

布帛を水中に浸漬する際、水温は0〜30℃の範囲にあ
るべきで、水温が30℃以上になると樹脂皮膜の孔が5
μmより大きくなり、耐水圧が不良となる。また浸漬時
間は30秒以上必要で30秒未満では樹脂の凝固が不十
分で満足なPAU樹脂皮膜が得られない。
When immersing the fabric in water, the water temperature should be in the range of 0 to 30℃, and if the water temperature exceeds 30℃, the pores of the resin film will be reduced.
If it becomes larger than μm, the water pressure resistance becomes poor. Further, the dipping time is required to be at least 30 seconds; if it is less than 30 seconds, the resin will not solidify sufficiently and a satisfactory PAU resin film will not be obtained.

水中でPAtl樹脂を凝固せしめた後、布帛を湯洗し、
残留している溶剤及び界面活性剤を除去する。
After coagulating the PAtl resin in water, the fabric was washed with hot water,
Remove remaining solvent and surfactant.

湯洗の条件はPAυ樹脂、ポリウレタン樹脂及び界面活
性剤の使用量により異なるが、30〜80℃の温度で3
分間以上、好ましくは10分間以上行えばよい。
Conditions for hot water washing vary depending on the amounts of PAυ resin, polyurethane resin and surfactant used, but at a temperature of 30 to 80°C.
It may be carried out for at least 10 minutes, preferably for at least 10 minutes.

湯洗後、乾燥し、さらに撥水剤を布帛に付与する。力水
剤を付与することにより、布帛表面に撥水性を持たせ、
耐水圧1 、500m5以上の透湿性防水布帛を得るこ
とができる。撥水剤にはパラフィン系、シリコン系及び
フッ素系なと各種あるが9本発明においては用途に応じ
適宜選択すればよい。
After washing with hot water, drying and applying a water repellent to the fabric. By adding a hydrophobic agent, the fabric surface becomes water repellent,
It is possible to obtain a moisture permeable waterproof fabric with a water pressure resistance of 1 and 500 m5 or more. There are various types of water repellents, including paraffin-based, silicon-based, and fluorine-based water repellents, and in the present invention, they may be selected as appropriate depending on the application.

特に良好な撥水性が必要な場合にはフッ素系撥水剤を使
用し、撥水剤を付与・乾燥後熱処理を行う。
When particularly good water repellency is required, a fluorine-based water repellent is used, and heat treatment is performed after applying the water repellent and drying.

また撥水性の耐久性を高めるため、メラミン樹脂等の樹
脂を併用してもよい。撥水剤の付与方法は通常行われて
いるバンディング法、コーティング法又はスプレー法な
どで行えばよい。
Further, in order to increase the durability of water repellency, a resin such as melamine resin may be used in combination. The water repellent may be applied by a commonly used banding method, coating method, spraying method, or the like.

撥水性をより良好にするため、PAD樹脂、非イオン界
面活性剤及び極性有機溶剤よりなる樹脂溶液を繊維基材
に塗布する前に、ta水剤を繊維基材に塗布してもよい
In order to improve water repellency, a TA solution may be applied to the fiber base material before applying the resin solution comprising the PAD resin, nonionic surfactant, and polar organic solvent to the fiber base material.

本発明は以上の構成よりなるものであり本発明によれば
耐水圧が1 、500mm以上ありながらしかも透湿度
が7,000g/イ・24hrs以上の高透湿性の防水
布帛を得ることができる。本発明の透湿性防水布帛はス
ポーツ用衣料等に適した素材である。
The present invention has the above structure, and according to the present invention, it is possible to obtain a highly moisture permeable waterproof fabric having a water pressure resistance of 1,500 mm or more and a moisture permeability of 7,000 g/I.24 hrs or more. The moisture-permeable waterproof fabric of the present invention is a material suitable for sports clothing and the like.

以下実施例により本発明をさらに説明するが。The present invention will be further explained below with reference to Examples.

本発明はこれらに限定されるものではない。The present invention is not limited to these.

実施例1 まず始めに2本実施例で用いるポリアミノ酸ウレタン樹
脂の製造を次の方法で行った。
Example 1 First, the polyamino acid urethane resin used in the two examples was manufactured by the following method.

ポリテトラメチレングリコール(01111i56.9
)1970 gと1−6−へキサメチレンジイソシアネ
ート540gを90℃で5時間反応させ、末端にイソシ
アネート基を有するウレタンプレポリマー(NGO当1
12340)を得た。このウレタンプレポリマー858
とT−メチル−L−グルタメー)−NC八へ5gをジメ
チルボルムアミド/ジオキサン(重量比)=7/3の混
合溶媒666gに溶解し、かきまぜながら2%トリエチ
ルアミン溶液50gを添加し、30℃で5時間反応を行
うと粘度32.000cps (25℃)の黄褐色乳濁
状の流動性の良好なポリアミノ酸ウレタン樹脂溶液を得
た。このポリアミノ酸ウレタン樹脂は後述の処方1にて
用いるものである。ここで経糸にナイロン70デニール
/24フイラメント。
Polytetramethylene glycol (01111i56.9
) and 540 g of 1-6-hexamethylene diisocyanate were reacted at 90°C for 5 hours to obtain a urethane prepolymer having an isocyanate group at the end (NGO
12340) was obtained. This urethane prepolymer 858
and T-methyl-L-glutamic acid)-NC8 were dissolved in 666 g of a mixed solvent of dimethylborumamide/dioxane (weight ratio) = 7/3, and while stirring, 50 g of 2% triethylamine solution was added, and the mixture was heated at 30°C. When the reaction was carried out for 5 hours, a polyamino acid urethane resin solution having a viscosity of 32,000 cps (25° C.) and a yellowish brown emulsion with good fluidity was obtained. This polyamino acid urethane resin is used in Formulation 1 described below. Here, the warp is nylon 70 denier/24 filament.

緯糸にナイロン70デニール/34フイラメントを用い
た経糸密度120本/インチ、緯糸密度90本/インチ
の平織物(タフタ)を用意し、これに通常の方法で精練
及び酸性染料による染色を行った後。
A plain woven fabric (taffeta) with a warp density of 120 threads/inch and a weft thread density of 90 threads/inch using nylon 70 denier/34 filament as the weft was prepared, and after scouring and dyeing with acid dye using the usual method. .

フッソ系ID水剤エマルジョンのアサヒガード730(
旭硝子株式会社製品) 1%水溶液でパフディング(絞
り率35%)を行い、160℃にて1分間の熱処理を行
った。次に鏡面ロールを持つカレンダー加工機を用いて
温度170℃、圧力30kg/ca+、速度20m/分
の条件にてカレンダー加工を行い、引き続き下記処方l
に示す樹脂固形分濃度18%の塗布液をナイフオーバー
ロールコータ−を使用して塗布量80 g / tdに
て塗布した後20℃の水浴中に5分間浸漬し、樹脂分を
凝固させた。
Fluorine-based ID water emulsion Asahi Guard 730 (
Asahi Glass Co., Ltd. product) Puffing was performed with a 1% aqueous solution (squeezing ratio: 35%), and heat treatment was performed at 160° C. for 1 minute. Next, calendering was performed using a calendering machine with a mirror-finished roll at a temperature of 170°C, a pressure of 30kg/ca+, and a speed of 20m/min.
A coating solution having a resin solid content concentration of 18% as shown in the figure was applied at a coating amount of 80 g/td using a knife-over-roll coater, and then immersed in a 20°C water bath for 5 minutes to solidify the resin.

処方1 ポリアミノ酸ウレタン樹脂 100部 ジメチルホルムアミド23部 ここで60℃の温水中に30分間浸漬しrvEいて乾燥
を行ったあとファン系1a水剤エマルジジンのアサヒガ
ード710 (旭硝子株式会社製品)5%水溶液でバン
ディング(絞り率30%)を行い、16[Cにて1分間
の熱処理を行って本発明の透湿性防水布帛を得た。
Formulation 1: Polyamino acid urethane resin 100 parts Dimethylformamide 23 parts Here, immerse in warm water at 60°C for 30 minutes, rvE and dry, then add Asahi Guard 710 (Asahi Glass Co., Ltd. product) 5% aqueous solution of fan type 1a water-based emulsion. Banding (squeezing ratio: 30%) was performed, and heat treatment was performed at 16[C] for 1 minute to obtain a moisture permeable waterproof fabric of the present invention.

本発明方法との比較のため後述の比較例1〜2により比
較試料を作成し1本発明品との性能の比較を行った。そ
の結果を本発明品の性能と合わせて第1表に示した。
For comparison with the method of the present invention, comparative samples were prepared according to Comparative Examples 1 and 2 described below, and the performance was compared with one product of the present invention. The results are shown in Table 1 together with the performance of the product of the present invention.

なお、性能の測定、評価は次の方法にて行った。The performance was measured and evaluated using the following method.

加工布である布帛構造体を走査型電子顕微鏡にて写真に
とり、その写真により微細気孔の直径及び断面方向のミ
クロセルの構造を副べろ。耐水圧はJIS−L−104
1の低水圧法、摩擦漏水テストは掌握型摩擦堅牢度試験
機を使用し、荷重200g/cdで織物表面を湿潤状態
に保ちつつ摩擦回数100回にて漏水の有無により判定
した。透湿度はJIS−Z−0208によりめた。
The fabric structure, which is the processed fabric, was photographed using a scanning electron microscope, and the diameter of the micropores and the structure of the microcells in the cross-sectional direction were determined using the photograph. Water pressure resistance is JIS-L-104
The friction water leakage test using the low water pressure method in No. 1 was conducted using a hand-held friction fastness tester, and the presence or absence of water leakage was determined by rubbing 100 times under a load of 200 g/cd while keeping the fabric surface in a wet state. Moisture permeability was determined according to JIS-Z-0208.

第1表から明らかなごとく9本発明による透湿性防水布
帛は、耐水圧が2.000w*以上であるにもかかわら
ずその透湿度は9.000 g / rd−hrsを記
録し、抜群の透湿性と防水性の双方の性能を兼ね備えて
いることがわかる。
As is clear from Table 1, the moisture permeable waterproof fabric according to the present invention has an outstanding water permeability of 9.000 g/rd-hrs despite having a water pressure resistance of 2.000 W* or more. It can be seen that it has both moisture and waterproof performance.

第1表 比較例1 実施例1と同一規格のナイロンタック織物を用意し、こ
れに実施例1と同一の方法で精練以降カレンダー加工ま
でを行った後、下記処方2に示す塗布液をナイフオーバ
ーロールコータ−を使J7?して塗布180 g / 
m+にて塗布し、Vtいて30℃の水浴中に5分間浸漬
して樹脂分を凝固させた。なお。
Table 1 Comparative Example 1 A nylon tack fabric of the same standard as in Example 1 was prepared, and after scouring and calendering in the same manner as in Example 1, a coating solution shown in the following formulation 2 was applied over a knife. J7 using a roll coater? and applied 180 g/
The resin was coated at m+ and immersed in a 30°C water bath for 5 minutes at Vt to solidify the resin. In addition.

処方2におけるポリアミノ酸ウレタン樹脂は実施例1で
用いたものと同一のものを用いた。
The polyamino acid urethane resin in Formulation 2 was the same as that used in Example 1.

処方2 ポリアミノ酸ウレタン樹脂 100部 ジメチルホルムアミド 23部 ここで60℃の温水中に30分間浸漬し、続いて乾燥を
行ったあと実施例1の場合と同一の方法で撥水処理を行
った。
Formulation 2 Polyamino acid urethane resin 100 parts Dimethylformamide 23 parts Here, the sample was immersed in warm water at 60°C for 30 minutes, then dried, and then subjected to water repellent treatment in the same manner as in Example 1.

得られた布帛構造体は、第1表に示したように透湿性能
は良好であったが、防水性能が劣っていた。
The obtained fabric structure had good moisture permeability as shown in Table 1, but poor waterproof performance.

比較例2 実施例1と同一規格のナイロンタフタ織物を用意し、こ
れに実施例1と同一の方法で精練以降カレンダー加工ま
でを行った後、下記処方3に示す塗布液をナイフオーバ
ーロールコーク−を使用して塗布1180g/rrrに
て塗布した。なお、処方3におけるポリアミノ酸ウレタ
ン樹脂は実施例1で用いたものと同一のものを用いた。
Comparative Example 2 A nylon taffeta fabric of the same standard as in Example 1 was prepared, and after scouring and calendering was performed in the same manner as in Example 1, a coating solution shown in the following formulation 3 was coated with knife-over-roll coke. Coating was carried out at a coating rate of 1180 g/rrr. The polyamino acid urethane resin in Formulation 3 was the same as that used in Example 1.

処方3 ポリアミノ酸ウレタン樹脂 100部 ジメチルホルムアミド 28部 ジオキサン 12部 塗布後80℃にて5分間の乾燥を行い、その後20℃の
水中に投入し皮膜中に残留している溶媒を除去するため
そのまま水中に30分間放置した。続いて乾燥した。得
られた布帛の表面皮膜は、実施例1や比較例1の皮膜と
異なり、半透明の皮膜であった。このあと実施例1の場
合と同一の方法で撥水処理を行った。このようにして得
られた布帛構造体は、第1表に示したように、防水性能
は良好であったが透湿性能が劣っていた。
Formulation 3 Polyamino acid urethane resin 100 parts Dimethylformamide 28 parts Dioxane 12 parts After coating, dry at 80°C for 5 minutes, then put into water at 20°C to remove the solvent remaining in the film. It was left for 30 minutes. It was then dried. The surface film of the fabric obtained was a translucent film, unlike the films of Example 1 and Comparative Example 1. Thereafter, water repellent treatment was performed in the same manner as in Example 1. As shown in Table 1, the fabric structure thus obtained had good waterproof performance but poor moisture permeability.

特許出願人 ユニチカ株式会社 手続ネ■を正置(自発) 1、事件の表示 特願昭59−29233号 2、発明の名称 透湿性防水布帛の製造方法 3、補正をする者 事イL1との関係 特許出願人 イ] 所 兵庫県尼崎市東本町1丁目50番地〒541 住 所 大阪市東区北久太部町4丁目68番地4、補正
の対象 明細書の1発明の01.細な説明」の欄5、?+If正
の内容 (1)明細店第4頁第9行目の「ここで用いるー」から
第6頁第16行目の「−が用いられる。」までを削除し
2次の文章を挿入する。
Patent Applicant Unitika Co., Ltd. Procedural Notes (Voluntary) 1. Indication of the Case Japanese Patent Application No. 59-29233 2. Name of the Invention Method for Manufacturing a Moisture-Permeable Waterproof Fabric 3. Name of the Person Making the Amendment I. L1 Related Patent Applicant A] Address 1-50 Higashihonmachi, Amagasaki-shi, Hyogo 541 Address 4-68-4 Kitakyutabe-cho, Higashi-ku, Osaka 01. Column 5 of “Detailed explanation”? +If Correct Contents (1) Delete the lines from "- is used here" on the 9th line of page 4 to "- is used" on the 16th line of page 6 and insert the following sentence: .

[本発明で用いるポリアミノ酸ウレタン樹脂(以下P 
A U 4Jl脂という。)は、アミノ酸とポリウレタ
ンとからなる共重合体であり、アミノ酸としてはDL−
アラニン、L−アスパラギンM、L−シスチン、L−グ
ルタミン酸、グリシン、L−リジン、L−メチオニン、
L−ロイシン及びその誘導体が挙げられ、ポリアミノ酸
を合成する場合アミノ酸とホスゲンから+4iられるア
ミノ酸N−カルボン酸無水物(以下、N−カルボン酸無
水物をNCAという。
[Polyamino acid urethane resin used in the present invention (hereinafter referred to as P
It is called AU 4Jl fat. ) is a copolymer consisting of amino acids and polyurethane, and the amino acids include DL-
Alanine, L-asparagine M, L-cystine, L-glutamic acid, glycine, L-lysine, L-methionine,
Examples include L-leucine and its derivatives, and the amino acid N-carboxylic anhydride (hereinafter N-carboxylic anhydride is referred to as NCA) is obtained by +4i from an amino acid and phosgene when polyamino acids are synthesized.

)が一般に用いられる。ポリウレタンはイソシアネート
成分として芳香族ジイソシアネート、脂肪族ジイソシア
ネ−1・及び脂環族ジイソシアネートの単独又はこれら
の混合物が用いられ9例えばトルエン2・4−ジイソシ
アネ−1・、4・4” −ジフェニルメタンジイソシア
ネート、1・6−ヘキサンジイソシアネート、■・4−
シクロヘキサンジイソシアネート等が挙げられる。また
、ポリオール成分としてはポリエーテルポリオール、ポ
リエステルポリオールが使用される。ポリエーテルポリ
オールにはポリエチレングリコール、ポリプロピレング
リコール、ポリテトラメチレングリコール等が挙げられ
、またポリエステルポリオールとしてはエチレングリコ
ール。
) is commonly used. The isocyanate component of the polyurethane is aromatic diisocyanate, aliphatic diisocyanate-1, and alicyclic diisocyanate, singly or in combination.・6-hexane diisocyanate, ■・4-
Examples include cyclohexane diisocyanate. Moreover, polyether polyol and polyester polyol are used as the polyol component. Polyether polyols include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc., and polyester polyols include ethylene glycol.

プl」ピレングリコール等のジオールとアジピン酸、セ
パチン酸等の二塩基酸との反応生成物やカプロラクトン
等の開環重合物が挙げられる。八お、アミノ酸とポリウ
レタンとの共重合で使用されるアミン類としてはエチレ
ンジアミン、ジエヂルアミン、トリエチルアミン、エタ
ノールアミン等が用いられる。このようにPAU樹脂は
各種アミノ酸NCAと末端にイソシアネート基を有する
ウレタンプレポリマーとの反応系にアミン類を添加して
得られるものである。該PAD樹脂を構成するアミノ酸
成分として皮膜性能面から光学活性γ−アルキルーグル
タメ−1・−NCAが好ましく用いられ、さらに該光学
活性γ−アルキルーグルタメートの中でも価格と皮膜物
性の面がらγ−メチル−I、−グルタメートNCへ又は
γ−メチルーD−グルタメートがPAD樹脂の′アミノ
酸成分として有利に選択される場合が多い。
Examples include reaction products of diols such as pyrene glycol and dibasic acids such as adipic acid and sepatic acid, and ring-opening polymers such as caprolactone. As the amines used in the copolymerization of amino acids and polyurethane, ethylenediamine, diethylamine, triethylamine, ethanolamine, etc. are used. As described above, PAU resins are obtained by adding amines to the reaction system of various amino acids NCA and urethane prepolymers having isocyanate groups at the terminals. As the amino acid component constituting the PAD resin, optically active γ-alkyl glutamate-1-NCA is preferably used from the viewpoint of film performance, and among the optically active γ-alkyl glutamates, γ -Methyl-I, -glutamate NC or γ-methyl-D-glutamate are often advantageously selected as the amino acid component of the PAD resin.

本発明の多孔質膜を得るためには、水溶性の溶媒系から
なる均一な樹脂組成物を用いることが塗工性と湿式成膜
性の両面から有利である。かかる樹脂組成物としては、
P A 04i(脂の中でも特に光学活性γ−アルキル
ーグルタメート−NC八とウレタンプレポリマーとの反
応物が好ましく用いられるが、これは上記反応物が極性
有機溶剤を主体とする溶媒系例えばジメチルホルムアミ
ドとジオキサンとの混合溶媒系でそのアミノ酸とウレタ
ンとの重量比率において90 : 10〜10 二90
の広範囲な領域で均一な樹脂溶液となるため要求される
皮膜物性を考慮しながら上記重f3比率を自由に選択す
ることができるからである。」 (2)明細書第7頁第1〜11行目の「本発明で・−の
である。」を削除し2次の文章を挿入する。
In order to obtain the porous membrane of the present invention, it is advantageous to use a uniform resin composition made of a water-soluble solvent system from the viewpoint of both coating properties and wet film forming properties. Such resin compositions include:
P A 04i (among fats, a reaction product of optically active γ-alkyl-glutamate-NC8 and a urethane prepolymer is preferably used, but this is because the above reaction product is a solvent system mainly composed of a polar organic solvent, such as dimethylformamide). and dioxane in a mixed solvent system with a weight ratio of amino acid and urethane of 90:10 to 10290
This is because the above-mentioned weight f3 ratio can be freely selected while taking into consideration the physical properties of the film required to obtain a uniform resin solution over a wide range of areas. (2) Delete "The present invention..." from lines 1 to 11 on page 7 of the specification and insert the following sentence.

「一方、従来の有孔性ウレタン樹脂皮膜を有する透湿性
防水布帛においては、耐水圧が1500m+n以上であ
ると、透湿度がたかだか5000g/m2 ・24hr
s程度のものしか得られないのに対し、PA[I樹脂を
湿式コーティング加工する場合には耐水圧が1500m
m以上でかつ透湿度が7000 g / m 2・24
hrs以上の透湿防水性能を示すという驚くべき結果を
得ることができる。このようにPAU樹脂の湿式コーテ
ィング加工により、高耐水圧と高透湿性を得ることがで
きる理由はさだがでないが、得られた透湿性防水布帛の
皮膜の断面を観察するとポリウレタン皮膜に較べ、PA
D樹脂皮膜の場合にはミクロセルが小さく、かつその個
数が多く均一に分布しており、このことが高透湿性と高
耐水圧を与える要因になっていると思われる。さらにP
AU樹脂自身の水蒸気に対する親和性の高いことも高透
湿性を与えるーっの原動力になっているのかも知れない
。」(3)明細書第11頁第12〜14行目に「樹脂皮
膜の−が不良となる。」とあるのを「ジメチルホルムア
ミドの水中への拡散が早くなり、非イオン系界面活性剤
がジメチルホルムアミドの水中への拡散を促進させるた
め2両者の相互作用により樹脂皮膜の孔が5μmより大
きくなりその結果耐水圧が不良となる。」と補正する。
"On the other hand, with conventional moisture-permeable waterproof fabrics having a porous urethane resin film, when the water pressure resistance is 1500 m+n or more, the moisture permeability is at most 5000 g/m2 for 24 hours.
On the other hand, when wet-coating PA[I resin, the water pressure resistance is 1500 m.
m or more and moisture permeability of 7000 g/m2.24
It is possible to obtain the surprising result of exhibiting moisture permeable and waterproof performance exceeding hrs. The reason why high water pressure resistance and high moisture permeability can be obtained through wet coating processing of PAU resin is not obvious, but when observing the cross section of the membrane of the obtained moisture-permeable waterproof fabric, it is found that compared to polyurethane membrane, PA
In the case of the D resin film, the microcells are small, there are many of them, and they are uniformly distributed, which is thought to be a factor in providing high moisture permeability and high water pressure resistance. Further P
The high affinity of AU resin itself for water vapor may also be the driving force behind its high moisture permeability. (3) On page 11, lines 12 to 14 of the specification, the phrase ``- of the resin film becomes defective.'' was replaced with ``dimethylformamide diffuses into water quickly and the nonionic surfactant In order to promote the diffusion of dimethylformamide into water, the pores in the resin film become larger than 5 μm due to the interaction between the two, resulting in poor water pressure resistance."

(4)明細書第14頁第7〜10行目の「フッソ系−を
行った。」を削除する。
(4) Delete ``Fluorine-based treatment'' from lines 7 to 10 on page 14 of the specification.

Claims (1)

【特許請求の範囲】 (11ポリアミノ酸ウレタン樹脂、ポリウレタン樹脂、
非イオン界面活性剤、及び極性有機溶剤よりなる樹脂溶
液を繊維基材に塗布した後。 該繊維基材をO℃〜30℃の水中に浸漬し1次いで湯洗
し、乾燥後撥水剤を付与することを特徴とする透湿性防
水布帛の製造方法。
[Claims] (11 polyamino acid urethane resin, polyurethane resin,
After applying a resin solution consisting of a nonionic surfactant and a polar organic solvent to the fiber base material. A method for producing a moisture-permeable waterproof fabric, which comprises immersing the fiber base material in water at 0° C. to 30° C., then washing with hot water, and applying a water repellent after drying.
JP2923384A 1984-02-17 1984-02-17 Production of moisture permeable water-proof cloth Granted JPS60173178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2923384A JPS60173178A (en) 1984-02-17 1984-02-17 Production of moisture permeable water-proof cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2923384A JPS60173178A (en) 1984-02-17 1984-02-17 Production of moisture permeable water-proof cloth

Publications (2)

Publication Number Publication Date
JPS60173178A true JPS60173178A (en) 1985-09-06
JPS6354831B2 JPS6354831B2 (en) 1988-10-31

Family

ID=12270507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2923384A Granted JPS60173178A (en) 1984-02-17 1984-02-17 Production of moisture permeable water-proof cloth

Country Status (1)

Country Link
JP (1) JPS60173178A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145486A (en) * 1986-12-03 1988-06-17 鐘紡株式会社 Production of coated fabric
US5626950A (en) * 1993-04-28 1997-05-06 Komatsu Seiren Co., Ltd. Moisture permeable, waterproof fabric and its production process
US5753568A (en) * 1993-04-28 1998-05-19 Komatsu Seiren Co., Ltd. Moisture-permeable, waterproof fabric and its production process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493187A (en) * 1977-12-29 1979-07-24 Lonseal Kogyo Kk Production of waterproof suck fabric

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493187A (en) * 1977-12-29 1979-07-24 Lonseal Kogyo Kk Production of waterproof suck fabric

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145486A (en) * 1986-12-03 1988-06-17 鐘紡株式会社 Production of coated fabric
JPH0159391B2 (en) * 1986-12-03 1989-12-18 Kanebo Ltd
US5626950A (en) * 1993-04-28 1997-05-06 Komatsu Seiren Co., Ltd. Moisture permeable, waterproof fabric and its production process
US5753568A (en) * 1993-04-28 1998-05-19 Komatsu Seiren Co., Ltd. Moisture-permeable, waterproof fabric and its production process

Also Published As

Publication number Publication date
JPS6354831B2 (en) 1988-10-31

Similar Documents

Publication Publication Date Title
US4636424A (en) Moisture-permeable waterproof laminated fabric and process for producing the same
JPS60173178A (en) Production of moisture permeable water-proof cloth
JPS60162872A (en) Production of moisture permeable water-proof fabric
JPH06316871A (en) Moisture-permeable water-proofing cloth and its production
JPH0327184A (en) Moisture-permeable waterproof fabric
JPS60181366A (en) Production of moisture pervious waterproof fabric
JPS60154054A (en) Moisture-permeable waterproof cloth and manufacture thereof
JPS60173177A (en) Production of moisture permeable water-proof cloth
JPH01113230A (en) Moisture-permeable, waterproof cloth
JP4328552B2 (en) Anti-static moisture permeable waterproof fabric
JPS61679A (en) Production of moisture permeable water-proof cloth
JPH0543792A (en) Polyamino acid urethane resin and product using the same
JPS60173176A (en) Production of moisture permeable water-proof cloth
JPS60173175A (en) Production of moisture permeable water-proof cloth
JPS61284431A (en) Moisture permeable waterproof cloth and manufacture thereof
JP2595288B2 (en) Method for producing moisture-permeable waterproof fabric
JPS6170082A (en) Production of hygroscopic water-proof cloth
JPS6163778A (en) Production of hygroscopic water-proof cloth
JPS62141183A (en) Production of moisture-permeating, water-proofing cloth
JPS6342975A (en) Production of moisture permeable waterproof fabric
JPS6253481A (en) Production of wind-proof cloth with water vapor permeability
JPH06123077A (en) Moisture-permeable water-proofing coated cloth
JPH0450379A (en) Production of moisture-permeable water-proofing cloth having soft feeling
JPH0585671B2 (en)
JPS6163777A (en) Production of hygroscopic water-proof cloth

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees