JPS6017205B2 - Fluoride production method - Google Patents

Fluoride production method

Info

Publication number
JPS6017205B2
JPS6017205B2 JP6098077A JP6098077A JPS6017205B2 JP S6017205 B2 JPS6017205 B2 JP S6017205B2 JP 6098077 A JP6098077 A JP 6098077A JP 6098077 A JP6098077 A JP 6098077A JP S6017205 B2 JPS6017205 B2 JP S6017205B2
Authority
JP
Japan
Prior art keywords
anode
electrolytic
polymer compound
fluorination
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6098077A
Other languages
Japanese (ja)
Other versions
JPS53146786A (en
Inventor
幸雄 水谷
祥三 加藤
正勝 西村
健志 九内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP6098077A priority Critical patent/JPS6017205B2/en
Publication of JPS53146786A publication Critical patent/JPS53146786A/en
Publication of JPS6017205B2 publication Critical patent/JPS6017205B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高分子化合物の電解フッ素化に関し、詳しくは
固体状高分子化合物を特定した条件下に電解フッ素化す
ることによって有用なフッ素化合物を効率よく合成する
方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electrolytic fluorination of polymeric compounds, and more specifically provides a method for efficiently synthesizing useful fluorine compounds by electrolytic fluorination of solid polymeric compounds under specified conditions. It is something to do.

一般に電解フッ素化は 1)安価な無水フッ化水素酸を
直接のフッ素化源としていること 2)穏和な条件下で
高フッ素化合物が得られること3)官能基が保存され易
いこと 4)装置が比較的に簡単であることなどの長所
を有している。
In general, electrolytic fluorination has the following characteristics: 1) cheap anhydrous hydrofluoric acid is used as a direct fluorination source; 2) high fluorine compounds can be obtained under mild conditions; 3) functional groups are easily preserved; and 4) equipment is required. It has the advantage of being relatively simple.

したがって、従来から数多〈の化合物についてフッ素化
が電解法によって試みられ、一部は工業化されてきた。
しかしながら、低分子化合物の電解フッ素化においては
分子量が大きくなるほど対応するフッ素化合物が得られ
難いことが知られ、特に炭素数が10以上の炭化水素系
化合物ではこの頃向が極めて著しく分子量500以上の
含フッ素化合物を得ることは甚だ困難である。即ち、固
体状高分子化合物の電解フッ素化については、その具体
的な方法および得られるフッ化物の検討を含めて、これ
まで報告された例は殆んど無い。本発明者らは固体状高
分子化合物の電解フッ素化について種々研究を重ねた結
果、該高分子化合物を陽極又は該陽極の極めて近傍に設
置することによって効率よくフッ素化でき、しかも有用
なフッ化物が得られることを見出し、本発明を完成した
Therefore, fluorination of a large number of compounds has been attempted by electrolytic methods, and some of them have been industrialized.
However, in the electrolytic fluorination of low-molecular compounds, it is known that the larger the molecular weight, the more difficult it is to obtain a corresponding fluorine compound, and this is especially true for hydrocarbon compounds with a molecular weight of 500 or more. Obtaining fluorine compounds is extremely difficult. That is, with regard to electrolytic fluorination of solid polymer compounds, there have been almost no examples reported so far, including a study of the specific method and the resulting fluoride. As a result of various studies on electrolytic fluorination of solid polymer compounds, the present inventors have discovered that fluorination can be carried out efficiently by installing the polymer compound at the anode or very close to the anode, and that it is a useful fluoride. The present invention was completed based on the discovery that the following can be obtained.

即ち、本発明は陰陽極を内蔵する電槽において、電導性
を有する無水フッ化水素酸又は無水フツ化水素酸とフツ
化アルカリ金属とよりなる熔融混合物を亀解浴とし、該
陽極又は該陽極から15側以内の近傍に固体状の高分子
化合物を設置して通電することを特徴とするフッ化物の
製造方法である。本発明によれば種々の高分子化合物を
電解フッ素化によって、電解格と接する該高分子化合物
の界面のみならず内部までフッ素化でき、またフッ素化
と同時に高分子鎖の切断を適度に行なうことができて分
子量が500以上さらには1000以上のような含フッ
素化合物を高い収率で得ることができる。
That is, the present invention provides a battery case containing a cathode and an anode, in which a molten mixture of conductive anhydrous hydrofluoric acid or anhydrous hydrofluoric acid and an alkali metal fluoride is used as a melt bath, and the anode or the anode is This is a method for producing fluoride, which is characterized in that a solid polymer compound is placed in the vicinity within 15 sides from 1 to 15, and electricity is supplied to the solid polymer compound. According to the present invention, by electrolytic fluorination of various polymer compounds, not only the interface of the polymer compound in contact with an electrolyte but also the inside can be fluorinated, and polymer chains can be appropriately cut at the same time as fluorination. A fluorine-containing compound having a molecular weight of 500 or more, or even 1000 or more, can be obtained in high yield.

例えば分子量が3000以上の高分子化合物を用いて、
500以上の低分子量のフッ素化合物を容易に得ること
ができる。さらに生成する低分子量のフッ素化物は同時
に2重結合やCOF等が導入された化合物として得るこ
ともでき、これらの反応性を利用して種々の用途に用い
ることができる。勿論上記の場合、高分子鎖の切断を伴
うフッ素化反応が著しいために固体状の高分子化合物を
フッ素化して、そのまま利用するようなことはできない
が、一部高分子鎖の切断を伴わずに得られるフッ素化合
物を同時に利用することは何ら差しつかえない。したが
って、本発明において用いられる固体状の高分子化合物
としては分子量が約2000以上好ましくは4000以
上で、電解格に膨潤はしても不溶性のものである。
For example, using a polymer compound with a molecular weight of 3000 or more,
A fluorine compound with a low molecular weight of 500 or more can be easily obtained. Furthermore, the produced low molecular weight fluorinated products can also be obtained as compounds into which double bonds, COF, etc. are introduced at the same time, and can be used for various purposes by taking advantage of their reactivity. Of course, in the above case, the fluorination reaction that involves scission of polymer chains is significant, so it is not possible to fluorinate a solid polymer compound and use it as is. There is no problem in using the fluorine compounds obtained at the same time. Therefore, the solid polymer compound used in the present invention has a molecular weight of about 2,000 or more, preferably 4,000 or more, and is insoluble even if it swells in the electrolyte.

例えばポリエチレン、ポリプロピレン、ポリ塩化ビニル
、ポリスチレン、ポリビニリデンフルオリド、フェノー
ル樹脂、尿素樹脂、ェポキシ樹脂等であり、これらの高
分子化合物には種々の官能基を有してもよい。本発明に
おいて高分子鎖の切断を利用して低分子量のフッ素化合
物を得る場合、用いる高分子化合物は架橋が行われてい
ない方が好ましい。また同じく高分子鎖を切断してフッ
素化合物を得る場合、用いる高分子化合物は粒状、糸状
、布状、薄膜状のものが有利である。一般に蓬又は厚み
が2肌以下特に0.5柳以下の上記形状の高分子化合物
を用いることにより、該高分子化合物の内部まで十分効
率よくフッ素化できる。なお、膜を形成し難い高分子化
合物は適当な結合剤又は支持布を用いて膜状にすればよ
い。本発明においては固体状の高分子化合物を陽極面か
ら0〜15脚好ましくは0〜5欄の近傍に設置して電解
フッ素化することが、該高分子化合物を効率よくフッ素
化し特により低分子量のフッ素化合物を得るために極め
て重要である。
Examples include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinylidene fluoride, phenol resin, urea resin, epoxy resin, etc., and these polymer compounds may have various functional groups. When obtaining a low molecular weight fluorine compound by utilizing polymer chain scission in the present invention, it is preferable that the polymer compound used is not crosslinked. Similarly, when a fluorine compound is obtained by cutting a polymer chain, the polymer compound used is advantageously in the form of particles, threads, cloth, or thin films. Generally, by using a polymer compound having the above-mentioned shape, the thickness of which is less than or equal to 2 skins, particularly less than 0.5 years, the interior of the polymer compound can be sufficiently efficiently fluorinated. Note that a polymer compound that is difficult to form a film may be formed into a film using an appropriate binder or support cloth. In the present invention, electrolytic fluorination is carried out by placing a solid polymer compound in the vicinity of columns 0 to 15, preferably columns 0 to 5, from the anode surface. This is extremely important for obtaining fluorine compounds.

即ち、電解フッ素化する高分子化合物を上記した陽極の
近傍に設置することにより 1)該高分子化合物のフッ
素化の電流効率 2)得られるフッ素化合物のフッ素化
率 3)高分子鎖の切断により生成する低分子量のフッ
化物の割合等が、該高分子化合物を上記した陽極の近傍
以外に設置した場合に比較して顕著な差異が認められる
。この理由は明確でないが、固体状の高分子化合物の電
解フッ素化は電解浴中における該高分子化合物の設置個
所により著しく差異があり、陽極面からのフッ素の供給
速度および該フッ素のフッ素化剤としての活性度が極め
て大きく影響するものと推定される。本発明において固
体状の高分子化合物を陽極又は陽極の近傍に設置する具
体的な方法としては核高分子化合物を溶融又は溶媒に溶
解し該陽極上に塗布して被覆する方法:該高分子化合物
の布、膜状物を蟹鱗浴に侵され難いテフロン等の糸、絹
、多孔膜等を用いて固定する方法;該高分子化合物の絹
、布等をそのまま陽極に巻き付ける方法:陽極面と平行
にテフロン等の多孔膜を設置しその間隙に該高分子化合
物の粒状物を固定する方法等の態様が採用される。なお
、鰭解浴中で特に電導性を有さない高分子化合物の被覆
を陽極面上に形成する場合は十分に多孔性にすることが
好ましい。本発明においては電解格として電導性を付与
した無水フッ化水素酸又は無水フッ化水素酸とフッ化ア
ルカリ金属よりなる溶融混合物を用いる。純粋な無水フ
ッ化水素酸のみでは電導性を有しないために、電導度増
加剤が必要で通常0.1〜1の重量%の濃度で用いられ
る。電導度増加剤としてはアルコール、アミン、アンモ
ニア、水等の様に該電導度増加剤自身がフッ素化される
ため電解中フッ素化反応の進行と共に順次添加を必要と
するものと、アルカリ金属、アルカリ士類金属のフツ化
物の様に無水フッ化水素酸に単に溶解しているものがあ
る。上記のアルカリ金属としてはフッ化カリウム、フッ
化セシウム等であり、無水フッ化水素酸との溶融混合物
としては通常KF−HF、KF−2HF等が用いられる
。勿論、無水フッ化水素酸中に混入している不純物、あ
るいは電解フッ素化する高分子化合物の部分的な分解物
により十分な電導性を有する場合には、そのためにフッ
素化反応に不都合が生じない限り電導度増加剤を特に添
加する必要はない。次に本発明に用いられる電解槽につ
いて、その形状は円筒型、矩形柱状等で特に制限されず
、その材質はニッケル、モネル、銅、鉄等の金属類又は
フッ素樹脂等の電解格に耐えるものが用いられる。
That is, by placing the polymer compound to be electrolytically fluorinated in the vicinity of the above-mentioned anode, 1) the current efficiency of fluorination of the polymer compound, 2) the fluorination rate of the resulting fluorine compound, and 3) the cutting of the polymer chain. A significant difference in the proportion of low molecular weight fluoride produced is observed compared to the case where the polymer compound is placed outside the vicinity of the anode described above. Although the reason for this is not clear, the electrolytic fluorination of solid polymer compounds differs significantly depending on the location of the polymer compound in the electrolytic bath, and the supply rate of fluorine from the anode surface and the fluorination agent for the fluorine. It is estimated that the degree of activity as a substance has a very large influence. In the present invention, a specific method for installing a solid polymer compound on the anode or in the vicinity of the anode is a method in which the core polymer compound is melted or dissolved in a solvent and coated on the anode. A method of fixing cloth or membrane-like material using Teflon thread, silk, porous membrane, etc. that is not easily attacked by crab scale bath; A method of wrapping the polymer compound silk, cloth, etc. around the anode as it is: A method is employed in which porous membranes such as Teflon are installed in parallel and the particles of the polymer compound are fixed in the gaps between them. In addition, when forming a coating of a polymer compound that does not have electrical conductivity on the anode surface in a fin melting bath, it is preferable to make the coating sufficiently porous. In the present invention, anhydrous hydrofluoric acid imparted with conductivity or a molten mixture of anhydrous hydrofluoric acid and an alkali metal fluoride is used as the electrolyte. Since pure anhydrous hydrofluoric acid alone does not have electrical conductivity, a conductivity increasing agent is necessary and is usually used at a concentration of 0.1 to 1% by weight. Examples of conductivity increasing agents include alcohols, amines, ammonia, water, etc., which are themselves fluorinated and therefore need to be added sequentially as the fluorination reaction progresses during electrolysis, and alkali metals and alkalis. Some metals, such as fluorides, are simply dissolved in anhydrous hydrofluoric acid. The alkali metals mentioned above are potassium fluoride, cesium fluoride, etc., and the molten mixture with anhydrous hydrofluoric acid is usually KF-HF, KF-2HF, etc. Of course, if it has sufficient electrical conductivity due to impurities mixed in anhydrous hydrofluoric acid or a partial decomposition product of the polymer compound to be electrolytically fluorinated, this will not cause any inconvenience to the fluorination reaction. It is not necessary to specifically add a conductivity enhancer. Next, regarding the electrolytic cell used in the present invention, its shape is not particularly limited, such as cylindrical, rectangular columnar, etc., and its material is metals such as nickel, monel, copper, iron, etc., or materials that can withstand electrolytic ratings such as fluororesin. is used.

電解槽における陰陽極は該電極で発生するガス気泡の抜
け易さ等の点から実質的に垂直に設置される。陽極の材
質としては導電性、耐食性等の点から制限されニッケル
、ニッケル合金(例えばモネル)、カーボン、グラフア
ィト等が用いられる。一般には電解俗として無水フツ化
水素酸を用いる場合にはニッケル又はニッケル合金であ
り、無水フッ化水素酸ーフッ化アルカリ金属の溶融混合
物を用いる場合はカーボン又はグラフアィトである。陽
極の形状としては板、網、丸棒のスダレ状、穿孔板、エ
キスバンドメタル等を平面あるいは波状に加工したもの
等である。一方、陰極の材質としてはニッケル、ニッケ
ル合金、銅、ステンレススチール、鉄等で、その形状は
陽極と同様である。なお、電解槽における陰陽極間には
通常隔膜を設置する必要はないが、必要により電解格に
耐える材質からなる下方にに開放した仕切板、多孔板、
多孔膜を設置してもよい。本発明の電解フッ素化におけ
る電流密度、通電量等の電解条件については、用いる高
分子化合物の種類、性状、量等又は目的とするフッ素化
合物により異なり一概に特定されない。
The cathode and anode in the electrolytic cell are installed substantially vertically in order to facilitate the escape of gas bubbles generated at the electrodes. The material of the anode is limited in terms of conductivity, corrosion resistance, etc., and nickel, nickel alloy (for example, Monel), carbon, graphite, etc. are used. In general, when anhydrous hydrofluoric acid is used as an electrolytic material, nickel or a nickel alloy is used, and when a molten mixture of anhydrous hydrofluoric acid and an alkali metal fluoride is used, carbon or graphite is used. The shape of the anode includes a plate, a net, a round bar shaped like a sag, a perforated plate, an expanded metal, etc. processed into a flat or wavy shape. On the other hand, the material of the cathode is nickel, nickel alloy, copper, stainless steel, iron, etc., and its shape is the same as that of the anode. Although it is not normally necessary to install a diaphragm between the cathode and anode in an electrolytic cell, if necessary, a partition plate, a perforated plate, or a perforated plate made of a material that can withstand the electrolytic rating may be installed.
A porous membrane may also be installed. Electrolytic conditions such as current density and amount of current in the electrolytic fluorination of the present invention vary depending on the type, property, amount, etc. of the polymer compound used, or the target fluorine compound, and cannot be unconditionally specified.

一般に電流密度は0.05〜弘/dめで実施され、定電
流で電解するのが通常であるが、周期的に電流値を変え
たり、電解の進行と共に電流値を次第に変えることも出
来る。また定電位電解をすることも出来る。電解におけ
る温度、圧力、電解格の蝿拝の有無についても特に限定
されないが、一般に電解俗が無水フッ化水素酸の場合は
−10〜15qC、無水フッ化水素酸−フッ化アルカリ
金属の溶融混合物の場合はその融点以上で行われる。な
お、実際の通電に先だって電解裕中の不純物を除去する
ために予備通電を行うことも適宜採用される。この場合
は予備通電用の電極を別途に設けて行うのが好都合であ
る。本発明における固体状高分子化合物の電解フッ素化
によりフッ素化物は、通常気体、液体、固体の混合物と
して得られる。
Generally, electrolysis is carried out at a current density of 0.05 to 1/d, and electrolysis is usually carried out at a constant current, but it is also possible to change the current value periodically or to change the current value gradually as the electrolysis progresses. It is also possible to perform constant potential electrolysis. There are no particular limitations on the temperature, pressure, and electrolyte difference in electrolysis, but in general, when the electrolysis is anhydrous hydrofluoric acid, the temperature is -10 to 15 qC, and the molten mixture of anhydrous hydrofluoric acid and alkali metal fluoride is used. In the case of , it is carried out at a temperature above its melting point. Note that preliminary energization may be performed as appropriate to remove impurities in the electrolytic solution prior to actual energization. In this case, it is convenient to separately provide an electrode for preliminary energization. By electrolytic fluorination of a solid polymer compound in the present invention, a fluorinated compound is usually obtained as a mixture of gas, liquid, and solid.

したがって、所望の種類、分子量のフッ素化合物を分離
、採取するにあたっては、共存する他の化合物の種類等
に応じて再結晶、蒸留、抽出等の分離法を採用すればよ
い。以下、実施例により本発明を具体的に説明するが、
本発明はこれらの実施例によって何ら制限されるもので
はない。
Therefore, in order to separate and collect a fluorine compound of a desired type and molecular weight, a separation method such as recrystallization, distillation, extraction, etc. may be employed depending on the types of other coexisting compounds. Hereinafter, the present invention will be specifically explained with reference to Examples.
The present invention is not limited in any way by these Examples.

実施例 1 容量が約1000ccのポリクロロトリフロロエチレン
製の電解槽を用いた。
Example 1 An electrolytic cell made of polychlorotrifluoroethylene and having a capacity of about 1000 cc was used.

陽極はニッケル板で片面あたり通電面積が35の(高さ
7仇×中5肌)、陰極は陽極の両面より4仇奴離して平
行に設置された2枚の陽極と同形状のニッケル板である
。厚み7&のポリ塩化ビニル布(テビロン、帝人社製)
を予め100ooの熱水で2時間洗浄し、次いでメタノ
ールで3時間リフラツクスすることにより可溶物を除き
電解フッ素化の試料とした。
The anode is a nickel plate with a current-carrying area of 35 mm per side (height 7 mm x medium 5 mm), and the cathode is a nickel plate with the same shape as the two anodes installed in parallel and 4 mm apart from both sides of the anode. be. 7mm thick polyvinyl chloride cloth (Teviron, manufactured by Teijin)
The sample was preliminarily washed with 100 oo of hot water for 2 hours, and then refluxed with methanol for 3 hours to remove soluble materials and used as a sample for electrolytic fluorination.

この布を中7肌で2タ秤取してニッケル陽極に巻き付け
ポリ4フッ化エチレンの糸を用いて固定した。予め別の
電解槽で十分に予備電解を行い不純物を除いた無水フッ
化水素酸(ダイキン社製)を前記電解槽に供給し、更に
約1重量%のフッ化ナトリウムを添加して電解を行った
。電解温度は0℃、電解電流は20仇hAで1虫時間通
電した。電解後、無水フッ化水素酸を電解槽より排出し
、布を取り出し温水で十分洗浄し乾燥後、その重量を測
定すると共にフッ素の元素分析を行った。更にメタノー
ル抽出を行い、抽出分と抽出残澄の乾燥重量より、それ
ぞれの重量割合を求めると共に両者についてフッ素の元
素分析を行った。(No.1)次に上記と同一寸法のポ
リ塩化ビニル布を2枚(各1夕)に分け、それぞれを径
1.5肋のニッケル榛で作製した7cのx5肌の直方形
の枠に巻き付け、ポリ4フツ化エチレンの糸で固定した
。これらを陽極の両面よりそれぞれ7.5肌の位置に平
行に設置して上記と同機の条件下で電解を行った。(N
o.2)更に上記と同様にポリ塩化ビニル布を巻き付け
たニッケル枠を陽極面より2仇舵の位置に設置して電解
を行った。
Two pieces of this cloth were weighed out with a middle-sized cloth, wrapped around a nickel anode, and fixed using a polytetrafluoroethylene thread. Anhydrous hydrofluoric acid (manufactured by Daikin Corporation), which had been sufficiently pre-electrolyzed in a separate electrolytic tank to remove impurities, was supplied to the electrolytic tank, and approximately 1% by weight of sodium fluoride was added to carry out electrolysis. Ta. The electrolysis temperature was 0° C., and the electrolysis current was 20 hA for 1 hour. After electrolysis, the anhydrous hydrofluoric acid was discharged from the electrolytic cell, and the cloth was taken out, washed thoroughly with warm water, dried, and then weighed and subjected to elemental analysis of fluorine. Furthermore, methanol extraction was performed, and the weight ratio of each was determined from the dry weight of the extract and the extraction residue, and elemental analysis of fluorine was performed on both. (No. 1) Next, divide the polyvinyl chloride cloth with the same dimensions as above into two pieces (each for one day), and fit each piece into a rectangular frame of 7c x 5 skin made of nickel wood with a diameter of 1.5 ribs. It was wrapped and fixed with polytetrafluoroethylene thread. These were placed parallel to each other at 7.5 skin distance from both sides of the anode, and electrolysis was performed under the same conditions as above. (N
o. 2) Furthermore, in the same manner as above, a nickel frame wrapped with polyvinyl chloride cloth was placed at a position 2 feet away from the anode surface, and electrolysis was performed.

(No.3)No.2,3についてもNo.1と同様に
測定、分析を行ない、それらの結果を第1表に示す。
(No. 3) No. 2 and 3 are also No. Measurements and analyzes were carried out in the same manner as in 1, and the results are shown in Table 1.

No.1とM.2においてメタノール抽出されたものは
大部分がクロロホルムにも溶解し、クロロホルムを溶媒
として蒸気圧平衡法による分子量測定装置(日立パーキ
ンェルマー115日立社製)を用いて測定した分子量は
それぞれ2250と2640であった。
No. 1 and M. Most of the methanol extracted in 2 was also dissolved in chloroform, and the molecular weights measured using a vapor pressure equilibrium molecular weight measuring device (Hitachi Perkin Elmer 115, manufactured by Hitachi, Ltd.) using chloroform as a solvent were 2250 and 2640, respectively. Ta.

・ (一は測定せず) 実施例 2 ポリスチレンのべレット(三井東庄社製)を径0.5柳
以下に細かく砕き電解フッ素化の試料とした。
- (One was not measured) Example 2 A polystyrene pellet (manufactured by Mitsui Tosho Co., Ltd.) was finely crushed to a diameter of 0.5 willow or less and used as a sample for electrolytic fluorination.

用いた電解槽は実施例1の場合と同一であり、陰極の位
置、形状等も実施例1と同一である。但し、ポリ4フッ
化エチレン繊維よりなる布を袋状(中5.5の×高さ7
.5伽×厚み4肌)とし、これに陽極のニッケル(厚さ
3柵)を挿入し、更に袋内の空間部分に上記ポリスチレ
ン粒子1.5夕を詰め、袋の上部は開放したまま陽極を
装着した。実施例1の場合と同様の電解格を用いて、電
解温度5℃、電解電流1皿mAで30時間通電した後、
実施例1と同様の測定を行った。その結果を2 に示第
2表 試料としてポリスチレンの微粒子を入れたポリ4フッ化
エチレン製布の袋を陽極面から1仇岬又は2比吻の位置
に設置した以外は、上記と同様に電解を行った。
The electrolytic cell used was the same as in Example 1, and the position, shape, etc. of the cathode were also the same as in Example 1. However, a cloth made of polytetrafluoroethylene fiber is used in a bag shape (medium 5.5 x height 7
.. Insert the nickel anode (thickness 3) into this, fill the space inside the bag with 1.5 mm of the above polystyrene particles, and leave the top of the bag open and insert the anode. I installed it. Using the same electrolyte as in Example 1, after applying electricity for 30 hours at an electrolysis temperature of 5°C and an electrolysis current of 1 mA,
Measurements similar to those in Example 1 were performed. The results are shown in Table 2. Electrolysis was carried out in the same manner as above, except that a polytetrafluoroethylene cloth bag containing fine polystyrene particles was placed at a position 1 or 2 degrees from the anode surface. I did it.

ただし、この場合には陽極に対して試料の設置位檀と反
対側の陽極は使用しなかった。この結果を第3表に示す
。第3表 実施例 3 陽極の材質がカーボンである以外は実施例1と同様な電
解槽を用いた。
However, in this case, the anode on the opposite side of the anode from where the sample was placed was not used. The results are shown in Table 3. Table 3 Example 3 The same electrolytic cell as in Example 1 was used except that the material of the anode was carbon.

ポリエチレンの微粒子“フローセン”(商品名、製鉄化
学社製)を電解フッ素化の試料とした。実施例2の場合
と同様なポリ4フッ化エチレン製の多孔膜よりなる袋を
用いて同様な方法で上記ポリエチレン微粒子1.3夕を
陽極の近傍に固定した。予め調製したKF‐公『格を溶
融して電解槽に導入し、電解温度9℃、電解電流15仇
hAで15時間通電した。実施例1の場合と同様に測定
した結果を第4表に示す。第4表ポリエチレンの微粒子
を入れたポリ4フツ化エチレン製の多孔膜よりなる袋を
陽極面より1仇吻の位置に設置した場合と、同じ量のポ
リエチレンの微粒子をそのまま電解槽の底面に沈ませた
場合とについて、上記と同様に電解を行った。
Polyethylene microparticles "Flocene" (trade name, manufactured by Tetsutsu Kagaku Co., Ltd.) were used as a sample for electrolytic fluorination. Using a bag made of a porous membrane made of polytetrafluoroethylene similar to that used in Example 2, 1.3 pieces of the above polyethylene fine particles were fixed near the anode in the same manner. The pre-prepared KF-Gold was melted and introduced into an electrolytic cell, and energized at an electrolytic temperature of 9°C and an electrolytic current of 15 hA for 15 hours. Table 4 shows the results measured in the same manner as in Example 1. Table 4: When a bag made of a porous film made of polytetrafluoroethylene containing fine polyethylene particles is installed at a position one point away from the anode surface, the same amount of fine polyethylene particles are deposited as they are on the bottom of the electrolytic cell. Electrolysis was performed in the same manner as above for both cases.

ただし前者の場合には陽極に対して試料の設置位置と反
対側の陽極は使用しなかった。それらの結果を第5表に
示す。第5表 (一は測定せず) 実施例 4 実施例1の場合と同様の電解槽と電解格を使用した。
However, in the former case, the anode on the opposite side of the sample installation position was not used. The results are shown in Table 5. Table 5 (No measurements were taken) Example 4 The same electrolytic cell and electrolyte rating as in Example 1 were used.

ポリ塩化ビニル微粉末(スミリット、住友化学社製)を
テトラヒドロフランとエチルアルコールとからなる混合
液に溶解し、陽極のニッケル板の両面に塗布した後、乾
燥して厚さ約0.05側の多孔性のポリ塩化ピニルの被
膜を形成して電解フッ素化を行った。電解は実施例1の
場合と同様に0℃、20山hAの条件下でlq時間通電
した。電解後に回収された膜のフッ素舎童は51.鋤t
%であった。メタノール抽出を行った結果、約65%が
抽出され、そのフッ素含量は聡.2Wt%であった。実
施例 5試料として市販の強酸性型陽イオン交換樹脂(
アンバラィトIR‐120)を粉砕後、乾燥したもの1
.52を用いて、電解電流を20価Aとした以外は実施
例2と同様な条件、方法で実施した。
Fine polyvinyl chloride powder (Sumirit, manufactured by Sumitomo Chemical Co., Ltd.) is dissolved in a mixed solution of tetrahydrofuran and ethyl alcohol, applied to both sides of the nickel plate of the anode, dried, and porous on the side with a thickness of approximately 0.05 mm. Electrolytic fluorination was performed by forming a film of polypinyl chloride. As in Example 1, the electrolysis was carried out under the conditions of 0° C. and 20 mA for 1q hours. The fluorine content of the membrane recovered after electrolysis is 51. plow t
%Met. As a result of methanol extraction, about 65% was extracted, and its fluorine content was 1.5%. It was 2wt%. Example 5 A commercially available strongly acidic cation exchange resin (
Ambalite IR-120) crushed and dried 1
.. Example 2 was carried out under the same conditions and method as in Example 2, except that the electrolytic current was changed to 20 valent A using 52.

Claims (1)

【特許請求の範囲】 1 陰陽極を内蔵する電槽において、電導性を有する無
水フツ化水素酸又は無水フツ化水素酸とフツ化アルカリ
金属とよりなる溶融混合物を電解浴とし、該陽極又は該
陽極から15mm以内の近傍に固体状高分子化合物を設
置して通電することを特徴とするフツ化物の製造方法。 2 高分子化合物より低分子量のフツ化物を製造する特
許請求の範囲第1項記載の方法。
[Scope of Claims] 1. In a battery container containing a cathode and anode, an electrolytic bath is made of conductive anhydrous hydrofluoric acid or a molten mixture of anhydrous hydrofluoric acid and an alkali metal fluoride; A method for producing a fluoride, which comprises placing a solid polymer compound within 15 mm from an anode and energizing it. 2. The method according to claim 1 for producing a fluoride having a lower molecular weight than a polymer compound.
JP6098077A 1977-05-27 1977-05-27 Fluoride production method Expired JPS6017205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6098077A JPS6017205B2 (en) 1977-05-27 1977-05-27 Fluoride production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6098077A JPS6017205B2 (en) 1977-05-27 1977-05-27 Fluoride production method

Publications (2)

Publication Number Publication Date
JPS53146786A JPS53146786A (en) 1978-12-20
JPS6017205B2 true JPS6017205B2 (en) 1985-05-01

Family

ID=13158075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6098077A Expired JPS6017205B2 (en) 1977-05-27 1977-05-27 Fluoride production method

Country Status (1)

Country Link
JP (1) JPS6017205B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842779A (en) * 1981-09-09 1983-03-12 Toyo Soda Mfg Co Ltd Manufacture of chlorinated polyvinyl aromatic compound
CN111952675B (en) * 2020-08-20 2021-07-27 陕西科技大学 High-performance all-solid-state sodium ion battery and preparation method thereof

Also Published As

Publication number Publication date
JPS53146786A (en) 1978-12-20

Similar Documents

Publication Publication Date Title
JP5166668B2 (en) Ionic liquids and their use as solvents
US3361653A (en) Organic electrolytic reactions
Bahadori et al. Investigation of ammonium-and phosphonium-based deep eutectic solvents as electrolytes for a non-aqueous all-vanadium redox cell
FR2499594A1 (en) PROCESS FOR THE ELECTROLYSIS OF WATER
KR100736252B1 (en) Fabrication of mesoporous metal electrodes in non-liquid-crystalline phase and its application
Petrovich et al. Electrolytic Reductive Coupling: XVI. A Study of 1, 2‐Diactivated Olefins. Part I, Voltammetry
Allanore et al. Electrodeposition of metal iron from dissolved species in alkaline media
Takeda et al. Electrowinning of lithium from LiOH in molten chloride
JPS60500178A (en) Method for producing aldehydes
Jones et al. An electrochemical and structural investigation of the processes occurring at silver anodes in sulphuric acid
JPS6017205B2 (en) Fluoride production method
Lain et al. In situ electrodeposition of catalysts for the electrocatalytic hydrogenation of organic molecules—I. The deposition of nickel
US3779876A (en) Process for the preparation of glyoxylic acid
US1538390A (en) Treatment of alkali-metal amalgams, especially for the production of alkali metals
JPS605889A (en) Manufacture of squaric acid
US3492207A (en) Electrochemical reduction of benzene
Híveš et al. Comparison of Ferrate (VI) Synthesis in Eutectic NaOH–KOH Melts and in Aqueous Solutions
Farr et al. The exchange reaction Zn (II)/Zn (Hg) in alkali
EP3831984A1 (en) Anode for electrolytic synthesis and method for manufacturing fluorine gas or fluorine-containing compound
JPS61231189A (en) Production of amino alcohol
Takeda et al. Electrowinning of lithium from molten salt containing LiOH for hydrogen storage and transportation
JPS6145644B2 (en)
Dudek et al. Electrolytic Separation and Recovery in Caustic of Steel and Zinc from Galvanized Steel Scrap
Yoshizawa et al. Cathodic reduction of nitrobenzene on the packed-bed copper electrode.
JPS625164B2 (en)