JPS60171811A - Microwave frequency converter - Google Patents

Microwave frequency converter

Info

Publication number
JPS60171811A
JPS60171811A JP59026302A JP2630284A JPS60171811A JP S60171811 A JPS60171811 A JP S60171811A JP 59026302 A JP59026302 A JP 59026302A JP 2630284 A JP2630284 A JP 2630284A JP S60171811 A JPS60171811 A JP S60171811A
Authority
JP
Japan
Prior art keywords
waveguide
circuit
microstrip line
microwave
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59026302A
Other languages
Japanese (ja)
Other versions
JPH0215127B2 (en
Inventor
Toshihide Tanaka
田中 年秀
Hiroshi Saka
阪 博
Yoshikazu Yoshimura
吉村 芳和
Yasufumi Shiomi
塩見 康文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59026302A priority Critical patent/JPS60171811A/en
Priority to US06/701,912 priority patent/US4679249A/en
Publication of JPS60171811A publication Critical patent/JPS60171811A/en
Publication of JPH0215127B2 publication Critical patent/JPH0215127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D9/00Demodulation or transference of modulation of modulated electromagnetic waves
    • H03D9/06Transference of modulation using distributed inductance and capacitance
    • H03D9/0608Transference of modulation using distributed inductance and capacitance by means of diodes
    • H03D9/0633Transference of modulation using distributed inductance and capacitance by means of diodes mounted on a stripline circuit
    • H03D9/0641Transference of modulation using distributed inductance and capacitance by means of diodes mounted on a stripline circuit located in a hollow waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B2200/00Indexing scheme relating to details of oscillators covered by H03B
    • H03B2200/0014Structural aspects of oscillators
    • H03B2200/0028Structural aspects of oscillators based on a monolithic microwave integrated circuit [MMIC]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1841Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator
    • H03B5/1847Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator the active element in the amplifier being a semiconductor device
    • H03B5/1852Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator the active element in the amplifier being a semiconductor device the semiconductor device being a field-effect device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1864Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a dielectric resonator
    • H03B5/187Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a dielectric resonator the active element in the amplifier being a semiconductor device
    • H03B5/1876Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a dielectric resonator the active element in the amplifier being a semiconductor device the semiconductor device being a field-effect device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/02Transference of modulation from one carrier to another, e.g. frequency-changing by means of diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D9/00Demodulation or transference of modulation of modulated electromagnetic waves
    • H03D9/06Transference of modulation using distributed inductance and capacitance
    • H03D9/0608Transference of modulation using distributed inductance and capacitance by means of diodes
    • H03D9/0616Transference of modulation using distributed inductance and capacitance by means of diodes mounted in a hollow waveguide
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D9/00Demodulation or transference of modulation of modulated electromagnetic waves
    • H03D9/06Transference of modulation using distributed inductance and capacitance
    • H03D9/0608Transference of modulation using distributed inductance and capacitance by means of diodes
    • H03D9/0633Transference of modulation using distributed inductance and capacitance by means of diodes mounted on a stripline circuit

Abstract

PURPOSE:To obtain a microwave frequency converter excellent in the image disturbing characteristic with less local signal radiation by using a waveguide giving a cut-off region to a local frequency and a pressing region to an RF frequency. CONSTITUTION:The local signal is cut off and the RF signal is passed through a rectangular waveguide 22. A metallic post 23 connects the waveguide 22 and a microwave integrated circit 3. A cylindrical ''Teflon'' rod 24 is inserted to an inserting hole 25 of the metallic post so as to isolate the waveguide in terms of DC and form partially a coaxial line. A disk hole 26 is provided concentrically with the post 23, the diameter is smaller than the diameter of the insertion hole 25 and larger a little than the width of a center conductor 4 of a microstrip line. RF amplifier circuits 29, 30 are prevented to a microwave integrated circuit. A mixer circuit 31, a local oscillating circuit 32, a dielectric resonator for stable oscillation and a screw 28 for adjusting local oscillating frequency are provided.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は衛星放送受信機等に用いられるマイクロ波ダウ
ンコンバータに関するものである。近郊G a A s
 F E T等のマイクロ波半導体デバイスの発展によ
り、マイクロ波集積回路等でのマイクロ波周波数変換器
が構成され、これと入力導波管を組み合わせたSHFコ
ンバータが実用化されようとしている。この場合SHF
コンバータには周波数変換のだめローカル発振回路をも
っているが、SHFコンバータではこのローカル発振回
路からのローカル信号輻射は他のマイクロ波機器に妨害
を与える恐れがあり、出来るだけ少ないことが望まれて
いる。同時にイメージ妨害に対しても強いことが必要と
される。本発明は、ローカル周波数に対して遮断域、R
F周波数に対して通過域を示す導波管を用いることによ
りローカル信号輻射が少なく、イメージ妨害特性の良好
なマイクロ波周波数変換装置を提供しようとするもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a microwave down converter used in satellite broadcast receivers and the like. Suburbs Ga As
With the development of microwave semiconductor devices such as FETs, microwave frequency converters have been constructed using microwave integrated circuits, etc., and SHF converters combining this with input waveguides are about to be put into practical use. In this case SHF
The converter has a local oscillation circuit for frequency conversion, but in the SHF converter, local signal radiation from this local oscillation circuit may cause interference to other microwave equipment, so it is desirable to minimize it as much as possible. At the same time, it is also required to be strong against image interference. The present invention provides a cutoff region, R
The present invention aims to provide a microwave frequency conversion device with less local signal radiation and good image disturbance characteristics by using a waveguide that exhibits a passband for the F frequency.

従来例の構成とその問題点 波集積回路(MIC回路)で、4,5はその中心導体及
び接地溝iで、接地導体5は導波管1のH面の内壁に接
しており、導波管1とMIC回路3とはリッジ導波管2
により結合されている。導波管1からのRF倍信号、第
1図すに示すMIC回路3に構成されたマイクロ波周波
数変換回路で工F信号に変換される。第1図すのMIC
回路3では、導波管1からのRF倍信号MIC回路の中
心導体4に結合され、直流阻止コンデンサ6を通りGa
AsFET増幅器7に加えられ、直流阻止コンデンサ1
1を経て、ダブルバランスミキサ回路12に加えられる
。同時に、誘電体共振器17により安定化されたGaA
sFET発振器16の発振出力を前記のダブルバランス
ミキサ回路に加え、混合出力としてのIF倍信号16よ
りをり出している。
Conventional configuration and its problems In the wave integrated circuit (MIC circuit), 4 and 5 are its center conductor and ground groove i, and the ground conductor 5 is in contact with the inner wall of the H plane of the waveguide 1, and the waveguide Tube 1 and MIC circuit 3 are ridge waveguide 2
are connected by. The RF signal from the waveguide 1 is converted into an RF signal by the microwave frequency conversion circuit configured in the MIC circuit 3 shown in FIG. Figure 1: MIC
In the circuit 3, the RF multiplied signal from the waveguide 1 is coupled to the center conductor 4 of the MIC circuit, and the Ga
A DC blocking capacitor 1 is added to the AsFET amplifier 7.
1 and then added to the double balanced mixer circuit 12. At the same time, the GaA stabilized by the dielectric resonator 17
The oscillation output of the sFET oscillator 16 is added to the double-balanced mixer circuit, and output from the IF multiplied signal 16 as a mixed output.

ここで、9,18はドレイン抵抗、19はソース抵抗、
20は終端用抵抗で、8,21はドレイン印加用電圧端
子、10はゲート電圧端子で、13゜14はミキサダイ
オードである。いま、マイクロ波周波数変換器として、
入力RF信号12GHz帯、ローカル発振周波数10.
7GHz 、 I F周波数IGHz 帯のSHFダウ
ンコンバータを考えると、SHFコンバータの性能の一
つにローカル周波数の入力側への輻射及びイメージ妨害
特性はこれからの衛星放送時代に対して厳しく押える必
要がある。
Here, 9 and 18 are drain resistances, 19 is source resistance,
20 is a termination resistor, 8 and 21 are drain application voltage terminals, 10 is a gate voltage terminal, and 13° and 14 are mixer diodes. Currently, as a microwave frequency converter,
Input RF signal 12GHz band, local oscillation frequency 10.
Considering an SHF down converter in the 7 GHz, IF frequency band, one of the SHF converter's performances is radiation to the input side of the local frequency and image disturbance characteristics that must be strictly controlled for the coming satellite broadcasting era.

しかしながら、従来例の構成では、MIC回路の入力の
一部が導波管内にあるため、ローカル発振出力のMIC
回路の入力側へのもれが、’J ツジとそのまま5)(
Fアンテナを通して自由空間に輻射され妨害となる。こ
の対策として、導波管1内に帯域通過フィルターや、ロ
ーカルトラップフィルタを構成する場合があるが、とれ
はフィルタ挿入による挿入損失を生じ、コンバータのN
、F を劣化させるとともにフィルタ構成のため導波管
長がかなり大きくなり、SHFコンバータ全体として大
きなものになってしまう。才だ、導波管とMIC回路の
結合にリッジ回路を用いた場合、広帯域彦導波管−MI
C回路変換を得ようとすると、リッジ導波管の段数が多
く必要で、そのため全長が長くなる。また導波管1とM
IC回路3とは直流的に直結しているのでMIC回路の
初段は必ず直流阻止用コンデンサ6が必要であり、これ
の挿入による挿入損失もコンバータのN、Fを劣化する
ローカル信号輻射が少なく、イメージ妨害特性が良く、
構成が簡単々広帯域の導波管−MIC回路変換を備え、
非常にコンパクトで、量産性に富むマイクロ波周波数変
換装置を提供することを目的とする。
However, in the conventional configuration, a part of the input of the MIC circuit is inside the waveguide, so the MIC of the local oscillation output
The leakage to the input side of the circuit is as it is with 'J Tsuji 5) (
It is radiated into free space through the F antenna and becomes a disturbance. As a countermeasure to this, a bandpass filter or a local trap filter may be configured in the waveguide 1, but this causes insertion loss due to the insertion of the filter, and the N of the converter
, F2, and the waveguide length becomes considerably large due to the filter configuration, resulting in an overall large SHF converter. If you use a ridge circuit to couple the waveguide and MIC circuit, you can create a broadband Hiko waveguide-MI.
In order to obtain C circuit conversion, a large number of stages of ridge waveguides are required, which increases the overall length. Also, waveguides 1 and M
Since it is directly connected to the IC circuit 3 in terms of DC, the first stage of the MIC circuit always requires a DC blocking capacitor 6, and the insertion loss due to its insertion also reduces local signal radiation that degrades the N and F of the converter. Good image interference characteristics,
Equipped with easy-to-configure broadband waveguide-MIC circuit conversion,
The purpose of the present invention is to provide a microwave frequency conversion device that is extremely compact and highly suitable for mass production.

発明の構成 本発明はマイクロ波周波数変換回路のローカル発振周波
数を遮断域とし、RF帯域を通過域とする導波管をRF
入力部に用い、前記導波管の他端を短絡するとともに、
マイクロ波集積回路を導波外壁上に前記導波管の短絡面
から入力側に沿って固着し、マイクロ波集積回路の一端
より前記導波管の短絡面近傍に金棒ポストを挿入して導
波管とマイクロ波集積回路を結合さすことにより、ロー
カル信号輻射の少ない、イメージ阻止特性の良好でSH
Fコンバータ等で非常にコンパクトな構成のマイクロ波
周波数変換装置を提供するものである。
Structure of the Invention The present invention provides a waveguide that uses the local oscillation frequency of a microwave frequency conversion circuit as a cutoff range and has an RF band as a passband.
used for the input section and short-circuiting the other end of the waveguide,
A microwave integrated circuit is fixed on the waveguide outer wall from the short-circuit surface of the waveguide along the input side, and a metal bar post is inserted from one end of the microwave integrated circuit near the short-circuit surface of the waveguide to guide the wave. By combining the tube and the microwave integrated circuit, it is possible to achieve SH with less local signal radiation and good image blocking characteristics.
The present invention provides a microwave frequency converter having a very compact configuration using an F converter or the like.

実施例の説明 第2図a、bは本発明の第1の実施例におけるマイクロ
波周波数変換装置を示すものである。第2図a、bにお
いて、22はローカル信号を遮断域と(7、RF倍信号
通過域とする矩形導波管でその断面寸法はa″#14 
、 b埃7である。23はマイクロ波集積回路3から導
波管22の短絡面近傍に挿入した金属ポストで導波管2
2とマイクロ波集積回路3とを結合する。24は円筒形
のテフロン棒で、導波管22にあけられた金属ポストの
挿入孔26に挿入され、金属ポスト23と導波管22と
を直流的に絶縁するとともに、部分的に同軸線路を形成
し、そのインピーダンスを60Ω近くにしている。26
はマイクロ波集積回路の入力部の金属ポスト挿入部の接
地導体面にあけられた金属ポスト23と同心円状に設け
た円板孔で、その径を前記25のテフロン棒挿入用導波
管孔の径より小さく、マイクロ波集積回路3のマイクロ
ストリップ線路の中心導体4の幅より少し大きくしてい
る。29.30はマイクロ波集積回路に設けたRF増幅
回路、31はミキサ回路、32はローカル発振回路で、
33は安定化発振用誘電体共振器で、28はマイクロ波
集積回路用シールドケース27上に設けられたローカル
発振周波数調整用ビスである。
DESCRIPTION OF EMBODIMENTS FIGS. 2a and 2b show a microwave frequency converter according to a first embodiment of the present invention. In Figures 2a and 2b, 22 is a rectangular waveguide with a local signal cut-off region and (7, RF double signal pass region) whose cross-sectional dimension is a″#14.
, b dust 7. 23 is a metal post inserted near the short-circuit surface of the waveguide 22 from the microwave integrated circuit 3;
2 and a microwave integrated circuit 3. Reference numeral 24 denotes a cylindrical Teflon rod, which is inserted into the insertion hole 26 of the metal post drilled in the waveguide 22, insulating the metal post 23 and the waveguide 22 with direct current, and partially connecting the coaxial line. The impedance is approximately 60Ω. 26
is a circular hole formed concentrically with the metal post 23 drilled in the ground conductor surface of the metal post insertion part of the input section of the microwave integrated circuit, and its diameter is set to the diameter of the waveguide hole for inserting the Teflon rod in 25 above. The width is smaller than the diameter of the microstrip line, and slightly larger than the width of the center conductor 4 of the microstrip line of the microwave integrated circuit 3. 29. 30 is an RF amplifier circuit provided in the microwave integrated circuit, 31 is a mixer circuit, 32 is a local oscillation circuit,
33 is a dielectric resonator for stabilizing oscillation, and 28 is a local oscillation frequency adjustment screw provided on the microwave integrated circuit shield case 27.

以上のように構成された第2図a、bの第1の実施例に
よれば、導波管22からの入力RF信号は金属ポスト2
3と、前記の接地導体已に設けた円板孔26の径を導波
管孔25の径より小さくする構成により広帯域(例えば
、11.7GHz 〜12.7GHz)で線路変換によ
る損失を少なくしてマイクロ波集積回路3の入力端子4
に供給される。
According to the first embodiment of FIGS. 2a and 2b configured as described above, the input RF signal from the waveguide 22 is transmitted to the metal post 2.
3. The configuration in which the diameter of the disk hole 26 provided on the ground conductor is smaller than the diameter of the waveguide hole 25 reduces loss due to line conversion in a wide band (for example, 11.7 GHz to 12.7 GHz). Input terminal 4 of microwave integrated circuit 3
supplied to

この人力RF倍信号29.30の2段のRF増幅回路に
より増幅され、31のミキサ回路と32のローカル発振
回路(発振周波数的10.7GHz )により周波数変
換してIF倍信号取り出している。
This human-powered RF multiplied signal is amplified by a two-stage RF amplifier circuit of 29.30 kHz, frequency-converted by a mixer circuit of 31 and a local oscillation circuit of 32 (oscillation frequency: 10.7 GHz), and an IF multiplied signal is extracted.

このような構成では、ローカル発振信号のマイクロ波集
積回路の入力側にあっても導波管22をローカル信号に
対してカットオフにしているため導波管内で減衰するた
め導波管からの輻射が十分押えられる。また、マイクロ
波集積回路3を導波管3の短絡側より入力側に構成して
いるのでマイクロ波集積回路3の長さだけ長くする構成
が全体を大きくすることなく取れるので、ローカル信号
漏洩を導波管22内で十分減衰する事が簡単でコンパク
トな構成で可能となる。
In such a configuration, even if the local oscillation signal is on the input side of the microwave integrated circuit, the waveguide 22 is cut-off for the local signal, so the radiation from the waveguide is attenuated within the waveguide. is sufficiently suppressed. In addition, since the microwave integrated circuit 3 is arranged on the input side of the waveguide 3 rather than on the short-circuited side, it is possible to make the microwave integrated circuit 3 longer by the length of the microwave integrated circuit 3 without increasing the overall size, thereby reducing local signal leakage. Sufficient attenuation within the waveguide 22 can be achieved with a simple and compact configuration.

第2図Cにマイクロ波集積回路3の構成例を示す。同図
で金属ポスト23からの信号はG a A gFET等
のマイクロ波半導体からなる29および3oのRF増幅
段で増幅され、イメージ阻止フィルタ34を経てミキサ
回路31に供給され、誘電体共振器33で安定化された
ローカル発振器32からのローカル発振信号と混合され
てIF出力44として取り出される。ここで、35と3
7は初段および次段増幅器のゲートバイアス抵抗および
高周波チョーク回路、36.38.39は初段および次
段増幅器および発振回路32のドレイン抵抗および高周
波チョーク回路で、40.41はそれぞれGaAs F
 E T発振器32のソース抵抗と高周波チョーク回路
およびゲート終端抵抗で、42゜43は直流阻止回路で
ある。このように同図ではRF増幅回路、ミキサ回路、
ローカル回路をほぼ直列に並べ、長方形基盤にコンパク
トに構成することにより、導波管との固着一体化を容易
にし、またゲート、ドレイン等の電源供給端子を一方向
にする事により生産上の作業性もよくしている。
FIG. 2C shows an example of the configuration of the microwave integrated circuit 3. In the same figure, the signal from the metal post 23 is amplified by RF amplification stages 29 and 3o made of microwave semiconductors such as GaA gFETs, and is supplied to the mixer circuit 31 via the image rejection filter 34, and is then passed through the dielectric resonator 33. The mixed signal is mixed with a local oscillation signal from the local oscillator 32 stabilized by the IF output 44, and is output as an IF output 44. Here, 35 and 3
7 is the gate bias resistor and high frequency choke circuit of the first stage and next stage amplifier, 36, 38, 39 is the drain resistor and high frequency choke circuit of the first stage and next stage amplifier and oscillation circuit 32, and 40.41 is each GaAs F
The ET oscillator 32 has a source resistance, a high frequency choke circuit, and a gate termination resistance, and 42 and 43 are DC blocking circuits. In this way, the RF amplifier circuit, mixer circuit,
By arranging the local circuits almost in series and compactly configuring them on a rectangular board, it is easy to integrate them with the waveguide, and the power supply terminals such as gates and drains can be connected in one direction, making production easier. I'm also good at sex.

第3図は本発明の第2の実施例を示すマイクロ波周波数
変換装置の側面からの断面図と導波管入力側からの断面
図である。
FIG. 3 is a sectional view from the side and a sectional view from the waveguide input side of a microwave frequency conversion device showing a second embodiment of the present invention.

同図において、第2図と同一番号は同一物を示し、第2
図の構成と異なるのは矩形導波管22の代りに円形導波
管46を用い、その直径Cを約16諭φに選んでローカ
ル発振周波数10.7GH2に対して遮断域を示し、1
2GHz 帯のRF倍信号対して通過になるように選ん
でおり、これにより第2図の実施例1と同様にローカル
信号輻射の抑圧。
In the figure, the same numbers as in Figure 2 indicate the same items, and
The difference from the configuration shown in the figure is that a circular waveguide 46 is used instead of the rectangular waveguide 22, and its diameter C is selected to be approximately 16 mm to provide a cutoff region for the local oscillation frequency of 10.7 GH2.
It is selected so that it passes the RF multiplied signal in the 2 GHz band, thereby suppressing local signal radiation as in the first embodiment shown in FIG.

イメージ妨害特性の優れた性能が得られるとともに、導
波管45が円形なので矩形導波管に比べ量量的に作り易
く、また、円偏波の衛星放送等に対応するアンテナの1
次放射器として円形導波管出力タイプのものも多く、そ
のような円形出力アンテナに対して整合性が良い。第3
図で、46は円形導波管45の短絡板であり、短絡板面
から金棒ポスト23捷での距離は管内波長λノのZと%
の間の距離にして円形導波管46とマイクロ波集積回路
3との整合を良くし、47.48はシールドケース27
に設けた仕切り板で、RF増増幅路路間よびRFF幅回
路30とミキサ回路31間を分離シールドし、各回路間
の結合を出来るだけ小さくするとともに、ローカル発振
回路32からのローカル発振信号のRF段へのもどりを
押えるようにしている。また49は短絡板46を固定す
るネジであり、6oは短絡板46の中心付近に設けた入
力インピーダンスを調整する整合用ビスでマイクロ波集
積回路のGaAsFET等のバラツキによる導波管46
からみた入力インピーダンスのノくラツキを吸収してい
る。51は導波管45の外部の側面にマイクロ波集積回
路3とほぼ垂直に設けた中間周波増幅回路(IFF幅回
路)でマイクロ波集積回路のIFF力端子44と短い同
軸線路62を導波管シャーシの貫通孔63を通して最短
距離で結合しており、これにより損失の少ない接続が出
来るとともに、マイクロ波周波数変換装置として非常に
コンパクトで小型に構成することが出来る。
In addition to providing excellent performance in image disturbance characteristics, the waveguide 45 is circular, making it easier to manufacture in terms of quantity compared to a rectangular waveguide, and it is also suitable for antennas that support circularly polarized satellite broadcasting.
There are many secondary radiators of circular waveguide output type, and they have good matching with such circular output antennas. Third
In the figure, 46 is the shorting plate of the circular waveguide 45, and the distance from the shorting plate surface to the metal rod post 23 is Z and % of the tube wavelength λ.
The distance between the circular waveguide 46 and the microwave integrated circuit 3 is improved, and 47.48 is the distance between the shield case 27
A partition plate installed in the RF amplifier circuit is used to isolate and shield between the RF amplification circuits and between the RFF width circuit 30 and the mixer circuit 31, thereby minimizing the coupling between each circuit and reducing the local oscillation signal from the local oscillation circuit 32. It is designed to suppress the return to the RF stage. Further, 49 is a screw for fixing the shorting plate 46, and 6o is a matching screw provided near the center of the shorting plate 46 to adjust the input impedance.
This absorbs fluctuations in input impedance from the perspective of the input impedance. Reference numeral 51 denotes an intermediate frequency amplification circuit (IFF width circuit) installed on the external side of the waveguide 45 almost perpendicular to the microwave integrated circuit 3, and connects the IFF power terminal 44 of the microwave integrated circuit and the short coaxial line 62 to the waveguide. They are connected at the shortest distance through the through hole 63 of the chassis, which allows for a connection with less loss, and allows for a very compact and compact configuration as a microwave frequency converter.

第4図は本発明の第3の実施例を示すマイクロ波周波数
変換装置の側面からの断面図と導波管入力側からみた入
力断面図を示す。同図において第3図と同一番号は同一
物を示し、第3図と異なるのは、円形導波管46の入力
部に円形−短形導波管変換回路61を取り付は一体化、
導波管入力として矩形導波管でも可能にしたものである
。円形−矩形導波管変換回路64は、正方形型矩形導波
管55 (a1#15mm 、 b1埃18mm 、 
a1=12mm)と長楕円型導波管66(円弧半径RL
;10m+n。
FIG. 4 shows a sectional view from the side of a microwave frequency conversion device showing a third embodiment of the present invention and an input sectional view seen from the waveguide input side. In this figure, the same numbers as in FIG. 3 indicate the same parts, and the difference from FIG.
This makes it possible to use a rectangular waveguide as the waveguide input. The circular-rectangular waveguide conversion circuit 64 has a square rectangular waveguide 55 (a1 #15mm, b1 dust 18mm,
a1=12mm) and a long elliptical waveguide 66 (arc radius RL
;10m+n.

b 埃13■、d2□□□8咽)と矩形導波管57(W
B2 75 、 a #19.05mm 、 b3L;s、e
s ran )を縦続に接続して構成されており、これ
を第4図のように第3図の円形導数管46の入力に接続
することにより、円形導波管(CR62)と矩形導波管
(WB76)を12GHz 管のRFF号帯域(例えば
11.7〜12.7GHz )において広帯域に挿入損
失の少ない導波管変換が出来、円形導波管入力マイクロ
波周波数変換装置を矩形導波管入力に雑音指数等の性能
を劣化させることなく簡単に変換出来る。したがって、
このよう々小形の円形−矩形変換部54を第4図に示す
ように第3図の円形導波管入力のマイクロ波周波数変換
装置に取りつけ一体化すれば、ローカル信号輻射を押え
る円形導波管46の特長を生かし、かつ雑音指数等の本
来の性能を劣化させることなく矩形導波管入力のマイク
ロ波周波数変換装置を簡単に構成することが出来る。一
般にマイクロ波パラボラアンテナ等では矩形導波管出力
のものも多いので、このようなアンテナに対して十分対
応出来る。
b Dust 13■, d2□□□8 throat) and rectangular waveguide 57 (W
B2 75, a #19.05mm, b3L; s, e
s ran ) connected in cascade, and by connecting this to the input of the circular waveguide 46 in Figure 3 as shown in Figure 4, the circular waveguide (CR62) and the rectangular waveguide It is possible to perform wide-band waveguide conversion with low insertion loss in the RFF band (e.g. 11.7 to 12.7 GHz) of the tube (WB76), and convert the circular waveguide input microwave frequency converter into a rectangular waveguide. The input can be easily converted without degrading performance such as noise figure. therefore,
If such a small circular-rectangular converter 54 is attached and integrated with the circular waveguide input microwave frequency converter shown in FIG. 3 as shown in FIG. 4, a circular waveguide that suppresses local signal radiation can be formed. It is possible to easily configure a rectangular waveguide input microwave frequency converter by taking advantage of the features of 46 and without degrading the original performance such as noise figure. In general, many microwave parabolic antennas and the like have a rectangular waveguide output, so the antenna can be used satisfactorily for such antennas.

発明の効果 本発明のマイクロ波周波数変換装置はローカル信号を遮
断域とし、RF倍信号通過域とする導波管を用い、かつ
、導波管外壁上にマイクロストリップ線路を固着し、導
波管の一端を短絡してその近傍で金属ポストによる導波
管−マイクロストリップ線路変換を行うとともに、マイ
クロストリップ線路を導波管の短絡面から入力側に構成
することにより、ローカル信号輻射の少なく、イメージ
抑圧特性の良好な性能を得るとともに、非常に簡単な構
成でコンパクトなマイクロ波周波数変換装置を得ること
が出来、量産性を含めその実用的効果は非常に大きい。
Effects of the Invention The microwave frequency conversion device of the present invention uses a waveguide with a local signal cutoff region and an RF multiplied signal passband, and a microstrip line is fixed on the outer wall of the waveguide. By short-circuiting one end and performing waveguide-to-microstrip line conversion using a metal post near the short-circuit, and configuring the microstrip line from the short-circuited side of the waveguide to the input side, local signal radiation is reduced and the image is improved. It is possible to obtain a compact microwave frequency conversion device with a very simple structure and a good suppression characteristic, and its practical effects including mass production are very large.

視図及びマイクロ波集積回路の回路図、第2図a。View and circuit diagram of a microwave integrated circuit, FIG. 2a.

b、cは本発明の第1の実施例におけるマイクロ波周波
数変換装置の断側面図、正面図及び回路図、第3図a、
b、第4図a、bは第2.第3の実施例におけるマイク
ロ波周波数変換装置の断側面図及び正面図である。
b, c are a cross-sectional side view, front view, and circuit diagram of the microwave frequency converter according to the first embodiment of the present invention; Fig. 3a,
b, Figures 4a and b are 2nd. FIG. 7 is a cross-sectional side view and a front view of a microwave frequency converter in a third embodiment.

3・・・・・・マイクロ波集積回路、22・・・・・・
矩形導波管回路、23・・・・・・金属ポスト、45・
・・・・・円形導波管、46・・・・・・短絡板、51
・・・・・・IF増幅部、64・・・・・・円形−矩形
導波管変換部。
3...Microwave integrated circuit, 22...
Rectangular waveguide circuit, 23...Metal post, 45.
...Circular waveguide, 46 ... Short circuit plate, 51
. . . IF amplification section, 64 . . . Circular-rectangular waveguide conversion section.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図
Name of agent: Patent attorney Toshio Nakao and 1 other person
1 figure

Claims (1)

【特許請求の範囲】 (1)RF倍信号通過域とし、このRF倍信号り低い周
波数のローカル信号を遮断域とする導波管の一端を短絡
し、導波管外壁上にマイクロストリップ線路を固着し、
このマイクロストリップ線路の5糺 中心導体の一端から、前記導数管短絡面近傍に金属棒を
挿入して、マイクロストリップ線路と前記導波管とを結
合し、前記導波管からのRF倍信号前記マイクロストリ
ップ線路に構成したローカル発振回路、ミキサ回路によ
り周波数変換することを特徴とするマイクロ波周波数変
換装置。 ?)マイクロストリップ線路を導波管の短絡面から入力
開口面に沿って構成したことを特徴とする特許請求の範
囲第1項記載のマイクロ波周波数変換装置。 (3)導波管を円形導波管とすることを特徴とする特許
請求の範囲第1項又は第2項記載のマイクロ波周波数変
換装置。 (4)導波管とマイクロストリップ線路を通す両者の金
属棒挿入孔において、マイクロストリップ線路の接地導
体に設けた挿入孔の径を前記導波管のクロ波周波数変換
装置。 (5)円形導波管入力側に長楕円型導波管と正方形型導
波管による円形−矩形導波管装置を具備したことを特徴
とする特許請求の範囲第3項記載のマイクロ波周波数変
換装置。
[Claims] (1) One end of the waveguide, which has an RF multiplied signal pass band and a local signal with a lower frequency than the RF multiplied signal as a cutoff range, is short-circuited, and a microstrip line is installed on the outer wall of the waveguide. fixed,
A metal rod is inserted from one end of the five-wire center conductor of this microstrip line into the vicinity of the short-circuited surface of the conductive tube to couple the microstrip line and the waveguide, and the RF multiplied signal from the waveguide is A microwave frequency conversion device characterized in that frequency conversion is performed by a local oscillation circuit and a mixer circuit configured on the microstrip line. ? 2.) The microwave frequency conversion device according to claim 1, wherein the microstrip line is constructed from the short-circuit surface of the waveguide to the input aperture surface. (3) The microwave frequency conversion device according to claim 1 or 2, wherein the waveguide is a circular waveguide. (4) A chromatic wave frequency conversion device for the waveguide, in which the diameter of the insertion hole provided in the ground conductor of the microstrip line is adjusted in both the metal rod insertion holes through which the waveguide and the microstrip line are passed. (5) The microwave frequency according to claim 3, characterized in that a circular-rectangular waveguide device including an elongated waveguide and a square waveguide is provided on the input side of the circular waveguide. conversion device.
JP59026302A 1984-02-15 1984-02-15 Microwave frequency converter Granted JPS60171811A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59026302A JPS60171811A (en) 1984-02-15 1984-02-15 Microwave frequency converter
US06/701,912 US4679249A (en) 1984-02-15 1985-02-14 Waveguide-to-microstrip line coupling arrangement and a frequency converter having the coupling arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59026302A JPS60171811A (en) 1984-02-15 1984-02-15 Microwave frequency converter

Publications (2)

Publication Number Publication Date
JPS60171811A true JPS60171811A (en) 1985-09-05
JPH0215127B2 JPH0215127B2 (en) 1990-04-11

Family

ID=12189551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59026302A Granted JPS60171811A (en) 1984-02-15 1984-02-15 Microwave frequency converter

Country Status (1)

Country Link
JP (1) JPS60171811A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440628U (en) * 1990-08-06 1992-04-07

Also Published As

Publication number Publication date
JPH0215127B2 (en) 1990-04-11

Similar Documents

Publication Publication Date Title
US4679249A (en) Waveguide-to-microstrip line coupling arrangement and a frequency converter having the coupling arrangement
US5940750A (en) Low-cost low noise block down-converter with a self-oscillating mixer for satellite broadcast receivers
US7522022B2 (en) Planar filter, semiconductor device and radio unit
US7130577B2 (en) Low noise converter employed in satellite broadcast reception system and receiver apparatus
US20030102941A1 (en) Filter circuit and high frequency communication circuit using the same
US4461041A (en) Integrated RF receiver/waveguide
US20230144500A1 (en) High frequency heterodyne mixer
JPH0758847B2 (en) Waveguide-coaxial converter
JPS60171811A (en) Microwave frequency converter
JPH0548320A (en) Receiver
US6188296B1 (en) Local oscillator having improved oscillation characteristic
US5265268A (en) Image recovery mixer
JPS6361501A (en) Plane antenna jointed with frequency converter into one body
JPS5847081B2 (en) Waveguide transistor amplifier
JPS6229203A (en) Microwave receiver
JPH0731619Y2 (en) Microwave amplifier
JPS6187406A (en) High frequency amplifier device
KR100337082B1 (en) Wide band filter of digital tuner
KR900001336Y1 (en) Hellical coil type filter
Bayar et al. Miniaturised L-band MIC LNA design
JPS60170301A (en) Waveguide-strip line converting device
Ma et al. Local oscillator radiation from active integrated antennas
US3551818A (en) Electronically controlled slot antenna-amplifier
JPH09260976A (en) Field effect transistor amplifier
JPH0213961B2 (en)