JPS60171647A - Optical head - Google Patents

Optical head

Info

Publication number
JPS60171647A
JPS60171647A JP59028356A JP2835684A JPS60171647A JP S60171647 A JPS60171647 A JP S60171647A JP 59028356 A JP59028356 A JP 59028356A JP 2835684 A JP2835684 A JP 2835684A JP S60171647 A JPS60171647 A JP S60171647A
Authority
JP
Japan
Prior art keywords
recording
erasing
light
light beam
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59028356A
Other languages
Japanese (ja)
Inventor
Shigeru Arai
茂 荒井
Koichi Ogawa
小川 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59028356A priority Critical patent/JPS60171647A/en
Publication of JPS60171647A publication Critical patent/JPS60171647A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To enable easy detection and exclusion of recording errors by making erasing, recording and reproducing of a light disk device in the order simultaneously by single head and making simultaneous reading immediately after erasing and recording respectively. CONSTITUTION:The surface 30a of recording medium of a light disk 30 is made to crystalline state by irradiating large output luminous flux 23 for erasing, and information recording points are formed successively on the surface 30a by irradiating luminous flux 22 for recording modulated corresponding to record information. Finally, the surface 30a is irradiated by small output luminous flux 21 for regeneration to read the information. Presence or absence of errors in inputted record is detected, and rewriting is made if there is any error, or, recording is made again changing tracks and sectors of the disk 30. Thus, checking of errors and rewriting immediately after erasing and recording can be made by independent and simultaneous operation of reproducing and erasing.

Description

【発明の詳細な説明】 (al 発明の技術分野 本発明は光デイスク記憶装置に係り,さらに詳しくは記
録、再生および消去が同一のへ・ノドで可能であり、ま
た記録直後あるいは消去直後に再生動作を行って、記録
あるいは消去のエラーをチェ・7りすることが出来るい
わゆるD RAW (DirectRead Afte
r Write )の機能を備えた光デイスク記憶装置
の光学ヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION (al) Technical Field of the Invention The present invention relates to an optical disk storage device, and more specifically, recording, reproduction, and erasing are possible in the same disk, and reproduction is possible immediately after recording or immediately after erasing. The so-called D RAW (Direct Read After) operation can check for recording or erasing errors.
The present invention relates to an optical head of an optical disk storage device having a function of ``rWrite''.

fb) 技術の背景 電子計算機の高速化と大容量化に伴い、その主要部であ
る記憶装置も益々高密度で大容量化することを要求され
ている。現在は記録再生が容易な磁気ディスク等の磁気
的な記録再生方式が主流を占めているが、光学的に情報
の記録再生を行う光ディスクは原理的に現在の磁気ディ
スクよりも幾多の長所があり、盛んに研究されている。
fb) Background of the Technology As electronic computers become faster and have larger capacities, storage devices, which are the main part of computers, are also required to have higher density and larger capacity. Currently, magnetic recording and reproducing methods such as magnetic disks, which are easy to record and reproduce, are the mainstream, but optical disks that record and reproduce information optically have many advantages in principle over current magnetic disks. , is being actively researched.

光ディスクの特徴はその高い記録密度にあり。Optical discs are characterized by their high recording density.

直径1μm前後に絞ったレーザ光ビームを用いて高密度
に(例えば、一枚の直径30cmのディスクで1010
ピントの記憶容量を持ったものも報告されている)情報
を記録媒体に記録すると共に、記録媒体の光あるいは熱
による可逆的な性質の変化を利用して、書換え可能な記
憶装置の領域にまで発展しつつある。
A laser beam focused to a diameter of around 1 μm is used to achieve high density (for example, a single 30 cm diameter disk has 1010
In addition to recording information on a recording medium (some devices with a storage capacity of 1000 yen have been reported), it also uses reversible changes in the recording medium's properties due to light or heat to create a rewritable storage device. It is developing.

磁気ディスクより格段に高い記録密度を有し。It has a much higher recording density than magnetic disks.

磁気ディスクなみのアクセス時間と磁気テープなみの低
ビツトコストを雪し得る可能性のあるこの書換え可能な
光デイスク装置は、情報処理装置の特に頻繁に書換えを
必要とする大容量記憶部に適合するものとして注目され
ている。
This rewritable optical disk device, which has the potential to achieve access times comparable to magnetic disks and low bit costs comparable to magnetic tape, is particularly suitable for large-capacity storage sections of information processing equipment that require frequent rewriting. It is attracting attention as

(C1従来技術と問題点 現在周知の書換え可能な光ディスクの記録媒体としては
光磁気材料3サーモプラスチツク、アモルファス薄膜、
液晶等があるが、従来例として結晶・アモルファス相転
位を用いた光ディスクについて述べよう。
(C1 Prior Art and Problems Currently known recording media for rewritable optical disks include magneto-optical materials 3 thermoplastics, amorphous thin films,
There are liquid crystals, etc., but as a conventional example, let's talk about an optical disk that uses crystal/amorphous phase transition.

例えばテルル酸化物等を主体とする記録媒体は。For example, recording media mainly made of tellurium oxide, etc.

熱処理により、容易にアモルファス状態と結晶状態の2
相の間を可逆的に相転位し1両相の記録媒体の反射率が
異なり入射光束の反射量が変化するのを利用して、情報
を伝えることが出来る。
By heat treatment, it is easy to change the state between amorphous state and crystalline state.
Information can be transmitted by utilizing the fact that there is a reversible phase transition between the phases, and the reflectance of the recording medium of one and both phases is different, so that the amount of reflection of the incident light beam changes.

情報の書込みは結晶質(消去状態)の記録媒体を、レー
ザ光ビームで急熱、急冷してアモルファス状態(記録状
態)に相転位させ、情報の消去はレーザ光ビームで除熱
、除冷して相転位させて結晶質に戻して行う。
To write information, a crystalline (erased state) recording medium is rapidly heated and rapidly cooled with a laser beam to cause a phase transition to an amorphous state (recorded state), and to erase information, heat is removed and slowly cooled with a laser beam. This is done by causing a phase transition and returning it to crystalline state.

第1図fa)は記録(書込み)用および再生(読み出し
)用のレーザ光ビームのスポットの形状、第1図(b)
は消去用のスポットの形状の一例を示す。
Figure 1fa) shows the shape of the spot of the laser beam for recording (writing) and reproduction (reading), and Figure 1(b)
shows an example of the shape of the spot for erasing.

第1図(elは、該レーザ光ビームを照射した時のスポ
ット内にある記録媒体面の温度変化を示す線図であって
、レーザ光ビームで照射加熱した後。
FIG. 1 (el is a line diagram showing the temperature change of the recording medium surface within the spot when the laser beam is irradiated, and after being irradiated and heated with the laser beam.

p点でレーザ光ビームを消して冷却した過程における。In the process of extinguishing the laser beam at point p and cooling it.

スポット内の温度変化の経過を示したものである。第1
図(C)の曲線aは記録用のスポットの温度特性でレー
ザ光ビームの照射により急熱、急冷されていることが判
る。曲線すは消去用のスポットの温度特性で除熱除冷さ
れていることを示す。
It shows the progress of temperature change within the spot. 1st
It can be seen that curve a in Figure (C) shows the temperature characteristics of the recording spot, which is rapidly heated and cooled by laser beam irradiation. The curved line shows that heat is removed and cooled gradually due to the temperature characteristics of the spot for erasing.

消去用スポットの形は長楕円形であり、数個の記録点を
同時に加熱消去するが記録用スポットは円形で、1個の
記録用スポットを加熱する。
The shape of the erasing spot is an oblong ellipse, and several recording points are heated and erased at the same time, but the recording spot is circular, and one recording spot is heated.

現在の光デイスク装置においては、その幾多の長所に拘
わらず、ビットiり率は磁気ディスクやフロッピィ・デ
ィスクに比してかなり高く、その原因も光デイスク自身
、レーザ光源、光学系および回路系、あるいは塵埃等々
多様である。従って記録あるいは消去直後に再生を行っ
て、それらのエラーを検出して訂正除去することが望ま
しい。
Despite the many advantages of current optical disk devices, the bit loss rate is considerably higher than that of magnetic disks and floppy disks, and this is due to the optical disk itself, laser light source, optical system, circuit system, Or there are various types such as dust. Therefore, it is desirable to perform reproduction immediately after recording or erasing to detect and correct these errors.

従来の光デイスク装置においては、第1図に示したよう
に、記録・再生用と消去用の2本のレーザ光ビームを使
用しているが、これでは消去後の再生は可能であるが、
記録直後の再生は不可能であるから、上記の記録エラー
を記録するあとから検出しながら効率よく排除するとい
う操作が出来ない。従って磁気ディスク装置に比べ、光
デイスク装置は電子計算機の外部記憶装置としては、現
状ではなお信頼性において劣るという欠点がある。
Conventional optical disk devices use two laser beams, one for recording/reproducing and one for erasing, as shown in Figure 1, but with this, reproduction after erasing is possible;
Since reproduction immediately after recording is impossible, it is not possible to detect and efficiently eliminate the above-mentioned recording errors after recording. Therefore, compared to magnetic disk devices, optical disk devices currently have the drawback of being inferior in reliability as external storage devices for electronic computers.

この点を改良したビット誤りの検出可能で、かつ書換え
可能な光デイスク装置の出現が久しく待望されていた。
It has been long awaited for a long time to develop an optical disk device that can detect bit errors and is rewritable to improve this point.

(dl 発明の目的 本発明は前述の点に鑑みなされたもので、記録。(dl Purpose of the invention The present invention has been made in view of the above-mentioned points.

再生および消去がそれぞれ独立に同時に動作することが
出来、消去、記録直後のエラーのチェックが可能で、且
つ書換え可能な光デイスク装置の光学ヘッドを提供しよ
うとするものである。
It is an object of the present invention to provide an optical head for an optical disk device which is capable of independently and simultaneously performing reproduction and erasing operations, is capable of checking errors immediately after erasing and recording, and is rewritable.

(Ql 発明の構成 上記の発明の目的は、光デイスク記憶装置の光学ヘッド
に対し、記録用光源と再生用光源の波長とが同一であり
、かつ消去用光源の波長が前記記録用光源と前記再生用
光源の波長と異なる互いに独立に動作可能な記録用光源
、再生用光源および消去用光源と、再生用光束、記録用
光束および消去用光束を前記記録媒体表面上に共通の対
物レンズを介して収束照射する光学系と、再生用光学系
に前記再生用光束のみを導入する波長選択的光学素子と
を備えることにより容易に達成される。
(Ql.Structure of the Invention The object of the above invention is to provide an optical head of an optical disk storage device in which a recording light source and a reproducing light source have the same wavelength, and an erasing light source has a wavelength that is different from that of the recording light source. A recording light source, a reproduction light source, and an erasing light source, which can operate independently with wavelengths different from those of the reproduction light source, and a reproduction light beam, a recording light beam, and an erasure light beam are directed onto the surface of the recording medium through a common objective lens. This can be easily achieved by providing an optical system that performs convergent irradiation and a wavelength-selective optical element that introduces only the reproducing light beam into the reproducing optical system.

ffl 発明の実施例 以下本発明の一実施例につき図面を参照して説明する。ffl Embodiments of the invention An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明に基づく光デイスク装置の光学ヘッドの
光記録再生消去方式の構成の一実施例を示す構成図であ
る。
FIG. 2 is a block diagram showing an embodiment of the structure of an optical recording/reproducing/erasing system of an optical head of an optical disk device according to the present invention.

レーザ光源は再生用光源1.記録用光源2および消去用
光源3と3組があり、再生用光源1の波長λ1は他の2
組の記録用光源2および消去用光源3の波長λ2と異な
っている。例えば再生用光源10波長は780nrn、
記録用光源2および消去用光源3の波長は共に830n
mとする。いずれも光源としては半導体レーザを使用す
る。
The laser light source is a reproduction light source 1. There are three sets of recording light source 2 and erasing light source 3, and the wavelength λ1 of reproduction light source 1 is different from that of the other two.
The wavelength λ2 of the recording light source 2 and erasing light source 3 of the set is different. For example, the wavelength of the reproduction light source 10 is 780nrn,
The recording light source 2 and the erasing light source 3 both have a wavelength of 830n.
Let it be m. In both cases, a semiconductor laser is used as a light source.

各々の光源から発射された楕円形断面のレーザ光束はそ
れぞれの開口数が0.2〜0.5のカップリング・レン
ズ5,6.7により平行光線にされ。
A laser beam having an elliptical cross section emitted from each light source is made into parallel light beams by coupling lenses 5, 6.7 each having a numerical aperture of 0.2 to 0.5.

それぞれは再生用光束21.記録用光束22および消去
用光束23となる。再生用光束21と記録用光束22ば
それぞれのカンプリング・レンズ5と6でその断面の真
円補正を施されており、消去用束23はカンブリング・
レンズ7を通過してから円筒レンズ7aで長楕円形断面
に変換される。
Each of them is a reproducing light beam 21. They become a recording light beam 22 and an erasing light beam 23. The reproducing light beam 21 and the recording light beam 22 have their cross sections corrected for roundness by the respective cambling lenses 5 and 6, and the erasing beam 23 is corrected by cambling.
After passing through the lens 7, it is converted into an oblong cross section by the cylindrical lens 7a.

勿論この3組の光束は空間的には別々に分離されている
Of course, these three sets of light beams are spatially separated.

これらの光束はプリズム8にブリュースター角で入射し
、プリズム8の面8aで全反射されてプリズム8外に出
る。
These light beams enter the prism 8 at Brewster's angle, are totally reflected by the surface 8a of the prism 8, and exit the prism 8.

上記の各光束に光路を逐う前に1図に示した光学系につ
いて述べよう。9はダイクロイック・ミラーで波長λ1
 (再生用光束21)の光を透過し。
Before explaining the optical paths of each of the above-mentioned light beams, let us describe the optical system shown in Figure 1. 9 is a dichroic mirror with wavelength λ1
(reproduction light flux 21) is transmitted.

波長λ2の光を反射する波長選択ミラーである。This is a wavelength selective mirror that reflects light of wavelength λ2.

ダイクロイック・ミラーは特定の波長に対しては反射率
が100%に近い特性があるので、入射する光束(記録
用光束22)を少ない損失で反射することが出来1通常
に使用されるハーフミラ−より有利である。然し波長の
異なる光の透過率は約50%である。
Dichroic mirrors have a reflectance close to 100% for specific wavelengths, so they can reflect the incident light beam (recording light beam 22) with less loss1 than the normally used half mirror. It's advantageous. However, the transmittance of light of different wavelengths is about 50%.

10は複合光学素子で偏光ビームスプリッタ■1と。10 is a composite optical element with a polarizing beam splitter ■1.

2波長板12および13.ならびに波長λ1の光(再生
用光束)を透過させ波長λ2の光を反射するフィルタ1
4から構成されている。
Two-wavelength plates 12 and 13. and a filter 1 that transmits light of wavelength λ1 (reproduction light flux) and reflects light of wavelength λ2.
It consists of 4.

プリズム8を出た各レーザ光束のうち、消去用光束23
(波長λ2)は、複合光学素子10に対してP偏光で入
射し、偏光ビームスプリンタ11を透過するが、A波長
板13を透過後、フィルタ14で反射され再びA波長板
13を透過してS偏光になる。その後偏光ビームスプリ
ッタ11により90度方向を変えて対物レンズ16に入
射する。この間、複合光学素子10による光量の減衰は
殆どない。
Among the laser beams exiting the prism 8, the erasing beam 23
(wavelength λ2) enters the composite optical element 10 as P-polarized light and passes through the polarization beam splinter 11, but after passing through the A-wave plate 13, it is reflected by the filter 14 and passes through the A-wave plate 13 again. It becomes S-polarized light. Thereafter, the polarizing beam splitter 11 changes the direction of the beam by 90 degrees and the beam enters the objective lens 16 . During this time, there is almost no attenuation of the amount of light due to the composite optical element 10.

対物レンズ16により絞られた消去用光束23は。The erasing light beam 23 is focused by the objective lens 16.

光ディスク30の媒体面30aに長楕円のスポット23
Sとなって入射し、該記録媒体を除熱除冷して結晶状態
に相転位させて信号の消去をする。この時記録媒体表面
で反射された消去レーザ光束23の一部は光路を逆行す
るが、その波長はλ2であるので、フィルタ14とダイ
クロインク、・ミラー9により反射され、後述の再生光
学系の光路には進入しない。 記録用光束22(波長λ
2)はプリズム8からダイクロイック・ミラー9に入射
し1反射されて%波長板12を透過後、対物レンズ16
に入射して光ディスク30の記録媒体30a上に直径1
μm程度の小さい円形スポット22sを結ぶ。前述のよ
うに、ダイクロイック・ミラー9および複合光学素子1
0は波長λ2の光線に対しては殆ど損失がないので、記
録用光束22は減衰することなく、光ディスク30に照
射される。
A long elliptical spot 23 is formed on the medium surface 30a of the optical disc 30.
S enters the recording medium, and the recording medium is gradually cooled down to undergo a phase transition to a crystalline state, thereby erasing the signal. At this time, a part of the erasing laser beam 23 reflected on the recording medium surface travels backward along the optical path, but since its wavelength is λ2, it is reflected by the filter 14, the dichroic ink, and the mirror 9, and is used in the reproduction optical system described later. Do not enter the optical path. Recording light beam 22 (wavelength λ
2) enters the dichroic mirror 9 from the prism 8, is reflected by 1, passes through the % wavelength plate 12, and then enters the objective lens 16.
is incident on the recording medium 30a of the optical disc 30 with a diameter of 1
Connect small circular spots 22s on the order of μm. As mentioned above, the dichroic mirror 9 and the composite optical element 1
Since there is almost no loss for the light beam of wavelength λ2, the recording light beam 22 is irradiated onto the optical disk 30 without attenuation.

上記の記録用スボソ) 22sで記録媒体30aを急熱
急冷してスポット内の結晶状態の記録媒体30aをアモ
ルファス状態に変化させて信号を記録する。
The recording medium 30a is rapidly heated and cooled for 22 seconds to change the crystalline state of the recording medium 30a in the spot to an amorphous state, and a signal is recorded.

このへ記録用光束22の波長はλ2であるので、前述の
消去用光束23と同様に、光ディスクでの反射光が再生
光学系に入ることはない。
Since the wavelength of the recording light beam 22 is λ2, similarly to the above-mentioned erasing light beam 23, the reflected light from the optical disk does not enter the reproduction optical system.

最後に波長が他のレーザ光束と異なるλ1の再生用光束
2Iについて述べる。第2図においては。
Finally, the reproducing light beam 2I having a wavelength of λ1 different from other laser beams will be described. In Fig. 2.

判り易いように再生用光束21の光路のみは点線で示し
である。
For ease of understanding, only the optical path of the reproducing light beam 21 is shown by a dotted line.

再生用光束21はプリズム8を出た後1反射鏡15でそ
の光路を直角に変えダイクロイック・ミラー9を透過す
る。この際には、再生用光束21の波長がλ1であるた
めに、前記ダイクロインク・ミラー9の透過率は約50
%であるので再生用光束21は半減する。然し再生用光
束21の出力レヘルは低くてよいので、実用上の問題は
ない。
After the reproducing light beam 21 exits the prism 8, its optical path is changed to a right angle by a reflecting mirror 15 and is transmitted through a dichroic mirror 9. At this time, since the wavelength of the reproducing light beam 21 is λ1, the transmittance of the dichroic ink mirror 9 is approximately 50.
%, the reproduction light flux 21 is halved. However, since the output level of the reproducing light beam 21 may be low, there is no practical problem.

その後再生用光束21は複合光学素子10をそのまま透
過し、対物レンズ16で絞られて光デイスク記録媒体3
0a上に円形のスポット21Sを結ぶ。光デイスク記録
媒体30aに入射したレーザ光束21は反射される。そ
の反射記録用光束21aの光量は記録媒体30aの表面
の反射率に比例する。従って予め。
Thereafter, the reproduction light beam 21 passes through the composite optical element 10 as it is, is focused by the objective lens 16, and is focused on the optical disk recording medium 3.
A circular spot 21S is connected on 0a. The laser beam 21 incident on the optical disc recording medium 30a is reflected. The amount of the reflected recording light beam 21a is proportional to the reflectance of the surface of the recording medium 30a. Therefore, in advance.

反射率の高い結晶状態にある記録媒体30aを記録用の
レーザ光束22で照射し、その照射点をスポット状の反
射率の低いアモルファス状態に変化させて記録状態にし
、その後5反射記録用レーザ光束21aで記録媒体30
aを照射すれば、前述のアモルファス状態にあるスポッ
ト状の領域からの反射光量は急減するので、情報信号と
して読み出すことが出来る。
The recording medium 30a, which is in a crystalline state with high reflectance, is irradiated with a recording laser beam 22, and the irradiated point is changed to a spot-like amorphous state with low reflectance to be in a recording state, and then 5 reflections of the recording laser beam 22 are applied. 21a and recording medium 30
When irradiated with a, the amount of reflected light from the spot-shaped area in the amorphous state decreases rapidly, so that it can be read out as an information signal.

記録媒体30aで反射された各光束は共に反射されて入
力光路を逆行して、対物レンズ16.V4波長板12を
通過後、ビームスプリッタ11で反射されて直角に光路
を変え++A波長板13とフィルタ14に入射する。フ
ィルタ14は波長λ1の光を透過させ。
The respective light beams reflected by the recording medium 30a are reflected together and travel backward along the input optical path to the objective lens 16. After passing through the V4 wavelength plate 12, it is reflected by the beam splitter 11, changes its optical path at right angles, and enters the ++A wavelength plate 13 and filter 14. Filter 14 transmits light of wavelength λ1.

波長λ2の光を反射するので、前述のように消去用光束
23と記録用光束22の反射光はフィルタ14で反射さ
れるが1反射再生用光束21aはフィルタ14を透過し
てプリズム24で反射されて光路を変え。
Since the light having the wavelength λ2 is reflected, as described above, the reflected light of the erasing light beam 23 and the recording light beam 22 is reflected by the filter 14, but the one-reflected reproduction light beam 21a passes through the filter 14 and is reflected by the prism 24. changed the optical path.

再生信号を検出し、かつフォーカスずれ信号、トラック
ずれ信号を検出する再生用光学系17,19.20に入
射する。17は凸レンズ、19は波長λ1の光のみ透過
するバンド・バスフィルタ、20は4分割光検出器であ
る。上記の再生用光学系25による再生信号と号−ポ信
号の検出方法、原理については本発明に直接関係のない
公知の事実であるので、その説明を省略する。
The light enters a reproduction optical system 17, 19, 20 which detects a reproduction signal and also detects a focus deviation signal and a track deviation signal. 17 is a convex lens, 19 is a band/pass filter that transmits only light of wavelength λ1, and 20 is a 4-split photodetector. The method and principle for detecting the reproduced signal and signal-po signal by the reproduction optical system 25 described above are well-known facts that are not directly related to the present invention, and therefore a description thereof will be omitted.

4分割光検出器20により得られたサーボ信号により、
ボイスコイルモータ(νCM)26によりフォーカス方
向、トラック方向に対物レンズ16が駆動されて9周知
のフォーカシングとトラッキングが行われる。
By the servo signal obtained by the 4-split photodetector 20,
The objective lens 16 is driven in the focus direction and the track direction by a voice coil motor (νCM) 26 to perform focusing and tracking as is well known in the art.

さて、上述の記録媒体表面30a上のレーザ光束の各ス
ポットは、同一の点に集中するのではなくて、光ディス
ク30の回転方向く−で示す)に沿って、再生用、記録
用、消去用の順に間隔をおいて配列する。その方法は各
光束の光路の光軸を僅かに傾けることで容易に達成され
る。従って光ディスク30の表面についてみれば、まず
消去用スポットで消去され、以下順次に記録され、再生
されることになる。この配列を利用して1本実施例によ
る光デイスク装置の使用方法″を述べよう。
Now, each spot of the laser beam on the recording medium surface 30a is not concentrated at the same point, but is focused for reproduction, recording, and erasing along the rotational direction of the optical disk 30 (as shown by the arrow mark). Arrange at intervals in this order. This method can be easily achieved by slightly tilting the optical axis of the optical path of each light beam. Therefore, when looking at the surface of the optical disc 30, data is first erased using the erasing spot, and then recorded and reproduced sequentially. Using this arrangement, we will describe how to use the optical disk device according to this embodiment.

情報の記録方法を纏めると1次のような手順となる。The information recording method can be summarized as follows.

まず強い出力(例えば10mw程度)の消去用光束23
の照射で光ディスク30の記録媒体表面30aをその被
照射点が除熱除冷されて結晶状態にしておく。
First, the erasing light beam 23 with strong output (for example, about 10 mw)
By irradiating the recording medium surface 30a of the optical disc 30, heat is removed and the irradiated point is slowly cooled to a crystalline state.

次に記録情報に対応して変調された記録用光束22を照
射して、結晶状態の記録媒体表面30a上にスポット状
にアモルファス状態に相転位した情報記録点を順次形成
してい(。
Next, a recording light beam 22 modulated in accordance with the recording information is irradiated to sequentially form information recording points in a spot shape that has undergone a phase transition to an amorphous state on the surface 30a of the recording medium in a crystalline state.

最後に、情報を記録した光ディスク30の媒体表面30
aを常時に弱い出力(例えば1 mw)の再生用光束2
1で照射して情報を読みだし、入力した記録のエラーの
有無を検出する。つまり、記録信号と再生信号とを比較
し、エラーがあれば書き直し。
Finally, the medium surface 30 of the optical disc 30 on which information is recorded
A is always used as a reproducing light beam 2 with a weak output (for example, 1 mw)
1 to read out the information and detect the presence or absence of errors in the input recording. In other words, the recorded signal and playback signal are compared, and if there is an error, the data is rewritten.

あるいは光ディスク30のトラック・セクタを変えて再
記録する等の処置を施す。
Alternatively, take measures such as changing the track/sector of the optical disc 30 and re-recording.

このようにして、磁気ディスクでいうところの。In this way, what is called a magnetic disk.

所謂オーバライドの機能とDRAM機能とを兼備した信
頼性の高い、高速な光ディスクによる情報の記録が実現
出来る。
Information can be recorded on a highly reliable, high-speed optical disc that has both a so-called override function and a DRAM function.

さらにまた、光ディスクの情報を消去する場合には、記
録用光源2を消して、消去用光束23と再生用光束21
のみで上述の操作を行えば、光ディスクに存在する情報
記録を消去した直後に再生信号によって、消去不十分の
情報記録が残存しているかを確認し、消去し残しがあれ
ば再度消去作業を繰り返して、確実に光ディスクの情報
消去を行うことが出来る。
Furthermore, when erasing information on the optical disk, the recording light source 2 is turned off, and the erasing light beam 23 and the reproduction light beam 21
If you perform the above operations on the optical disc, immediately after erasing the information records existing on the optical disc, the playback signal will check to see if there are any remaining information records that have not been erased properly, and if there are any remaining information records that have been erased, repeat the erasing process again. Therefore, information on the optical disc can be erased reliably.

第3図は本発明の一実施例の変形例を示す構成図である
。第2図と比較して、同じ部品に対しては同一の数字を
使用する。
FIG. 3 is a configuration diagram showing a modification of one embodiment of the present invention. Compared to FIG. 2, the same numbers are used for the same parts.

本質的には第2図に図示したものとは、変わりはないが
、光学系の配置が少し異なっており、光源の光束を反射
して直角に光路を変えるプリズムは記録用光束と消去用
光束とに対してそれぞれに配列されているが(プリズム
8および8a)、再生用光束に対しては、再生用光源1
から出た光束が直進することによりプリズムが省略され
ている。
Although it is essentially the same as the one shown in Figure 2, the arrangement of the optical system is slightly different, and the prism that reflects the light beam from the light source and changes the optical path at right angles is used to separate the recording light beam and the erasing light beam. (prisms 8 and 8a), but for the reproducing light beam, the reproducing light source 1
The prism is omitted because the light beam emitted from the lens travels straight.

光源から発射された光束の断面の真円度の補正も消去用
光束23と再生用光束21に対しては省略され、記録用
光束22に対してのみ設けられている。
Correction of the roundness of the cross section of the light beam emitted from the light source is also omitted for the erasing light beam 23 and the reproduction light beam 21, and is provided only for the recording light beam 22.

以上のように本発明による光ヘッドにおいては消去、記
録、再生の各レーザ光束が同時にそれぞれの独立した半
導体レーザ光源より発射されてそれぞれの機能が作用す
ると共に、その光学系は大部分共用されるので、光学系
が簡素であるとともに、フィルタやダイクロイック・ミ
ラーにより。
As described above, in the optical head according to the present invention, each of the laser beams for erasing, recording, and reproduction is emitted simultaneously from each independent semiconductor laser light source to perform each function, and most of the optical system is shared. Therefore, the optical system is simple and uses filters and dichroic mirrors.

波長の相違を利用して再生用レーザ光束のみが再生光学
系に導入されることが特徴である。
The feature is that only the reproduction laser beam is introduced into the reproduction optical system by utilizing the difference in wavelength.

(gl 発明の効果 以上の説明から明らかなように2本発明に基づく光学ヘ
ッドを採用すると、単一のヘッドで、光デイスク装置の
消去、記録、再生が、その順序で同時におこなわれ、か
つ消去あるいは記録の直後において同時読み出しが可能
であるので、光デ゛イスク装置の記録誤りを容易に検出
して排除することが出来る。このことは磁気ディスク装
置に比し。
(gl Effects of the Invention As is clear from the above explanation, when two optical heads based on the present invention are adopted, erasing, recording, and reproduction of an optical disk device can be performed simultaneously in that order with a single head, and Alternatively, since simultaneous reading is possible immediately after recording, recording errors in optical disk devices can be easily detected and eliminated, compared to magnetic disk devices.

光デイスク装置の弱点である高いビット誤り率を補う有
力な手段を提供することを意味し、高密度。
High density means that it provides an effective means of compensating for the high bit error rate, which is the weak point of optical disk devices.

大容量の光デイスク装置の信頼性を向上するのに極めて
有効である。また該光学ヘッドの光学系を3系統の光路
を共通の光素子で構成することにより、その構造の簡素
化が可能になり、原価の低減に寄与する所が大である。
This is extremely effective in improving the reliability of large-capacity optical disk devices. Furthermore, by configuring the optical system of the optical head using a common optical element for the three optical paths, the structure can be simplified, which greatly contributes to cost reduction.

さらに前項において詳述したように、ダイクロイック・
ミラー9とビームスプリンタ11を含む複合光学素子1
0を使用することにより、出力の大きい記録用光束と消
去用光束が、全光路を通じて損失が殆ど発生しないと言
う長所がある。
Furthermore, as detailed in the previous section, dichroic
Composite optical element 1 including mirror 9 and beam splinter 11
By using 0, there is an advantage that almost no loss occurs in the recording light beam and the erasing light beam, which have large outputs, throughout the entire optical path.

ダイクロイック・ミラー9の代わりにハーフミラ−を、
あるいはビームスプリッタ11の代わりにダイクロイッ
ク・ミラーまたはハーフミラ−を使用することも可能で
はあるが、ハーフミラ−の光の反射率および透過率は共
に50%前後であり、ダイクロイック・ミラーの特定波
長以外の光の透過率も50%程度であることを考えると
、各レーザ光束の損失が遥かに大きいことは自明である
Half mirror instead of dichroic mirror 9,
Alternatively, it is possible to use a dichroic mirror or a half mirror instead of the beam splitter 11, but the half mirror's light reflectance and transmittance are both around 50%, and light of wavelengths other than the dichroic mirror's specific wavelength cannot be used. Considering that the transmittance is also about 50%, it is obvious that the loss of each laser beam is much larger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の書換え可能な光ディスクの再生・記録用
光束および消去用光束の形状と、レーザ光束照射時の当
該スボ・/ト内の光ディスクの記録媒体の温度変化の状
況を示す線図である。第2図および第3図は本発明に基
づく光デイスク装置の光学ヘッドの光学的構成を示す構
成図である。 図において、1,2.3はそれぞれ再生用、記録用およ
び消去用の半導体レーザ光源、 5,6.7はそれぞれ
再生用、記録用、消去用のレーザ光栄のカンプリング・
レンズ+ 7aは円筒レンズ、8はプリズム、9はダイ
クロイック・ミラー、10は複合光学素子、11はビー
ムスプリンタ、12.’13は区波長板。 14はフィルタ、 15.24は反射鏡、16は対物レ
ンズ。 25は再生光学系、26はボイスコイルモータ(VCM
)をそれぞれ示す。 第1図 (C1) @ (b3@ご漏り 第3図 0
Figure 1 is a diagram showing the shapes of the reproducing/recording light beam and the erasing light beam of a conventional rewritable optical disk, and the temperature change of the recording medium of the optical disk in the slot when the laser beam is irradiated. be. FIGS. 2 and 3 are configuration diagrams showing the optical configuration of an optical head of an optical disk device based on the present invention. In the figure, 1, 2.3 are semiconductor laser light sources for reproduction, recording, and erasing, respectively, and 5, 6.7 are laser light sources for reproduction, recording, and erasing, respectively.
Lens + 7a is a cylindrical lens, 8 is a prism, 9 is a dichroic mirror, 10 is a compound optical element, 11 is a beam splinter, 12. '13 is a ward wavelength plate. 14 is a filter, 15.24 is a reflecting mirror, and 16 is an objective lens. 25 is a reproduction optical system, 26 is a voice coil motor (VCM)
) are shown respectively. Figure 1 (C1) @ (b3 @ Please see Figure 3 0

Claims (1)

【特許請求の範囲】 (11光デイスク記憶装置の記録媒体に情報を光学的に
記録、再生および消去をする光学ヘッドであって、記録
用光源と消去用光源の波長とが同一であり、かつ再生用
光源の波長が前記記録用光源と前記消去用光源の波長と
異なりかつ各々独立に動作可能な記録用光源、消去用光
源および再生用光源と、記録用光束、消去用光束および
再生用光束を前記記録媒体表面上に共通の対物レンズを
介して収束照射する光学系と、再生用光学系に前記再生
用光束のみを導入する波長選択的光学素子とを備えてな
ることを特徴とする光学ヘッド。 (2)前記光学ヘッドにおいて、前記光ディスクの回転
方向に沿い、前記記録媒体上に形成される前記各光束に
より収束形成される光スポットが、それぞれ再生用スポ
ット、記録用スポットおよび消去用スポットの順序に配
列されたことを特徴とする特許 ッド。 (3)前記光学ヘッドの前記光学系において,前記記録
用光源,消去用光源および再生用光源から射出された3
本の光束の各々を平行光線にするためのカンプリング・
レンズと,前記平行光線の断面の真円度補正を行う補正
プリズムと.空間的に分離している3本の前記光束の内
,再生用光束と記録用光束とを混合して混合光束とする
グイクロイック・ミラーと,該混合光束と前記消去用光
束を混合して全混合光束とする偏光ビームスプリソタと
A波長板とを組合わせた光学素子と,前記全混合光束を
前記光デイスク上に収束照射して前記3本の光束の各々
にそれぞれ光スポットを形成させるA波長板および対物
レンズとがら構成された前記光学系を有することを特徴
とする前記特許請求の範囲第1項に記載された光学ヘッ
ド。
[Claims] (11) An optical head for optically recording, reproducing, and erasing information on a recording medium of an optical disk storage device, wherein a recording light source and an erasing light source have the same wavelength, and A recording light source, an erasing light source, and a reproducing light source, each of which has a wavelength different from that of the recording light source and the erasing light source and can each operate independently, and a recording light beam, an erasing light beam, and a reproduction light beam. an optical system that converges and irradiates the light onto the surface of the recording medium through a common objective lens, and a wavelength-selective optical element that introduces only the reproducing light beam into the reproducing optical system. Head. (2) In the optical head, light spots converged and formed by the respective light beams formed on the recording medium along the rotational direction of the optical disc are a reproduction spot, a recording spot, and an erasing spot, respectively. (3) In the optical system of the optical head, three light sources emitted from the recording light source, the erasing light source, and the reproducing light source are arranged in the following order.
Kampling to make each of the book's light beams into parallel rays
a lens, and a correction prism that corrects the circularity of the cross section of the parallel light beam. Among the three spatially separated light beams, there is a gicroic mirror that mixes the reproduction light beam and the recording light beam to form a mixed light beam, and a gicroic mirror that mixes the mixed light beam and the erasing light beam for total mixing. an optical element that combines a polarized beam splitter and an A wavelength plate to form a light beam, and an A wavelength that converges and irradiates the total mixed light beam onto the optical disk to form a light spot on each of the three light beams. The optical head according to claim 1, characterized in that the optical system includes a plate and an objective lens.
JP59028356A 1984-02-16 1984-02-16 Optical head Pending JPS60171647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59028356A JPS60171647A (en) 1984-02-16 1984-02-16 Optical head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59028356A JPS60171647A (en) 1984-02-16 1984-02-16 Optical head

Publications (1)

Publication Number Publication Date
JPS60171647A true JPS60171647A (en) 1985-09-05

Family

ID=12246326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59028356A Pending JPS60171647A (en) 1984-02-16 1984-02-16 Optical head

Country Status (1)

Country Link
JP (1) JPS60171647A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60256924A (en) * 1984-06-01 1985-12-18 Matsushita Electric Ind Co Ltd Optical reversible recording and reproducing device
JPS6344224U (en) * 1986-09-09 1988-03-24
US4993011A (en) * 1986-03-19 1991-02-12 Sanyo Electric Co., Ltd. Optical recording apparatus with simultaneous erasing and recording
JP2004171629A (en) * 2002-11-18 2004-06-17 Olympus Corp Optical pickup device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60256924A (en) * 1984-06-01 1985-12-18 Matsushita Electric Ind Co Ltd Optical reversible recording and reproducing device
US4993011A (en) * 1986-03-19 1991-02-12 Sanyo Electric Co., Ltd. Optical recording apparatus with simultaneous erasing and recording
JPS6344224U (en) * 1986-09-09 1988-03-24
JP2004171629A (en) * 2002-11-18 2004-06-17 Olympus Corp Optical pickup device

Similar Documents

Publication Publication Date Title
JPS6049977B2 (en) optical disk device
JPS6289233A (en) Optical recording and reproducing device
JPS60171647A (en) Optical head
JPS59177735A (en) Recording and reproducing device of optical information
JPS59127242A (en) Optical recording and writing device
JPH0512772B2 (en)
JPH0381211B2 (en)
JPH05120690A (en) Optical information recording and reproduction device
JP2001167453A (en) Multi-layer recording/reproducing disk device
JP2993391B2 (en) Optical pickup
JPS60171639A (en) Tracking device of optical head
JPS6275940A (en) Tracking device
JPH08338904A (en) Optical element and optical information recording and reproducing device
JPS6234333A (en) Optical information recording and reproducing device
JP3006827B2 (en) Optical head device
JPH01134735A (en) Optical recording and reproducing device
JPS6370930A (en) Optical information recording and reproducing device
JP3662564B2 (en) Magneto-optical recording / reproducing apparatus
JPS63181178A (en) Optical storage device
JPH1021550A (en) Optical recording and reproducing method, optical head, and optical recording device
JPH08339551A (en) Optical information recording and reproducing device
JPH06349095A (en) Optical information device, information medium and information recording/erasing system
JPS6369032A (en) Optical head device for information recording medium
JPS61273750A (en) Automatic focus controller
JPH02183430A (en) Optical head