JPS60171637A - Circuit for counting number of traversed track - Google Patents

Circuit for counting number of traversed track

Info

Publication number
JPS60171637A
JPS60171637A JP2777084A JP2777084A JPS60171637A JP S60171637 A JPS60171637 A JP S60171637A JP 2777084 A JP2777084 A JP 2777084A JP 2777084 A JP2777084 A JP 2777084A JP S60171637 A JPS60171637 A JP S60171637A
Authority
JP
Japan
Prior art keywords
track
circuit
output
light spot
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2777084A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ozawa
靖之 小沢
Shinji Okada
真次 岡田
Toshitaka Iwamoto
岩本 敏孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2777084A priority Critical patent/JPS60171637A/en
Publication of JPS60171637A publication Critical patent/JPS60171637A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08505Methods for track change, selection or preliminary positioning by moving the head
    • G11B7/08529Methods and circuits to control the velocity of the head as it traverses the tracks

Landscapes

  • Moving Of Head For Track Selection And Changing (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

PURPOSE:To count accurately the titled number even whe a light spot moves at a high speed, by counting the output of a pulse generating circuit which generates different pulses when the track traversing speed of the minute light spot is low and high in response to the output of a movement detecting circuit, and detecting the number of traversing tracks. CONSTITUTION:It is discriminated that whether the track traversing speed of a light spot is high or low by respectively inputting the two input signals of a reversible counter CNT in an F/V converter 10 through an OR gate 9 and inputting the output of the converter 10 in a comparator 11 where the output is compared with a threshold E. When the speed is low, the k1 and k2 of a multiplexer (MPX)12 are respectively connected with the contacts l1 and l2 of another MPX13 and track deviating quantity signals (d) and (c) from a counting section TC are counted at the counter CNT through an AND circuit. When the speed is high, the contacts k1 and k3 of the MPX12 are respectively connected with the contacts l1 and l3 of the MPX13 and a track traversed signal (h) from the counting section TC is directly counted at the counter CNT.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は光学的記録再生装置に係り、特にそのランダム
アクセス制御のための横断トラック数カウント回路に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an optical recording/reproducing device, and particularly to a circuit for counting the number of traversed tracks for random access control thereof.

(bJ 従来技術と問題点 追加書込みの可能な光デイスク装置あるいは光磁気ディ
スク装置等の光学的記録再生装置においては、レンズに
よって形成した微少光スポットを記録媒体の所定の位置
に位置決めする必要がある。
(bJ Prior Art and Problems In optical recording and reproducing devices such as optical disk devices or magneto-optical disk devices capable of additional writing, it is necessary to position a minute light spot formed by a lens at a predetermined position on the recording medium. .

そのために記録媒体にあらかじめ位置決め用の溝(以下
トラックと称する)を形成してお(プリグループ方式が
一般的である。第1図はプリグループ方式の原理図・第
2図は周方式によるトラッキング誤差検出方式を説明す
るための図を示す。
For this purpose, positioning grooves (hereinafter referred to as tracks) are formed in advance on the recording medium (the pre-group method is common. Figure 1 shows the principle of the pre-group method, and Figure 2 shows tracking using the circumferential method. A diagram for explaining an error detection method is shown.

第1図において1は媒体面、2は記録位置に設けられた
トラックでトラックの深さはλ/8(λは光波長)に形
成されている。対物レンズ3によって集光される微少光
スポット(以下光スポットと略称する)を図示のように
トラック2を横断する方向に移動せしめた場合における
、トラック2からの反射光量の強度分布を対応位置の上
側に示している。
In FIG. 1, numeral 1 indicates a medium surface, and numeral 2 indicates a track provided at a recording position, and the depth of the track is λ/8 (λ is the optical wavelength). When the minute light spot (hereinafter referred to as the light spot) focused by the objective lens 3 is moved in the direction across the track 2 as shown in the figure, the intensity distribution of the amount of reflected light from the track 2 is calculated at the corresponding position. Shown above.

第2図において4は反射鏡、5は二分割光検出器であっ
てその出力はP、とP2にて構成される。
In FIG. 2, 4 is a reflecting mirror, 5 is a two-split photodetector, and its output is composed of P and P2.

6aは差動増幅器(トラックずれ量検出回路)。6a is a differential amplifier (track deviation amount detection circuit);

61)は加算増幅器(反射光量検出回路)、波形(FL
)は差動増幅器6a・の出力波形、波形(flは加算増
幅器6bの出力波形を示す。出力波形(a)が示す差信
号はトラックの中央部にて零を示し、かつその前後は直
線的に変化する。またトラックとトランクの中間位置で
波形に段部が発生する。また出力波形(flが示す和信
号はトラックの中央部にて最小値となりトラックと隣接
トラックとの中間部にて最大値を示す特徴がある。
61) is a summing amplifier (reflected light amount detection circuit), a waveform (FL
) is the output waveform of the differential amplifier 6a, the waveform (fl shows the output waveform of the summing amplifier 6b. The difference signal shown by the output waveform (a) shows zero at the center of the track, and the area before and after that is linear) In addition, a step occurs in the waveform at the intermediate position between the track and the trunk.Also, the sum signal indicated by the output waveform (fl) has a minimum value at the center of the track and a maximum at the intermediate position between the track and the adjacent track. It has characteristics that indicate value.

この差信号を光スポツト移動装置にフィードバックすれ
ば、光スポ、シトを媒体円板の偏心に対し常に目標のト
ラ、りの上に一致させることができる。これがいわゆる
トラッキングサーボであってこの差信号を位置ずれ信号
と称する。−万光ディスク装置では前述の様な光スポッ
トをトラック上に追従させるトラ、キングサーボの他に
、トラック上を横切って目標とするトラック上まですみ
やかに光スポットを移動させる必要がある。この移動の
tこめには移動域を知る必要があり、横断トラック数を
正確にカウントできれば移動装置が専用のスケールをも
つ必要もなく便利である。
If this difference signal is fed back to the optical spot moving device, the optical spot can always be aligned above the target track with respect to the eccentricity of the medium disk. This is a so-called tracking servo, and this difference signal is called a positional deviation signal. - In a multi-optical disk device, in addition to the above-mentioned tiger and king servos that follow the light spot onto the track, it is also necessary to quickly move the light spot across the track to the target track. To complete this movement, it is necessary to know the area of movement, and if the number of traversed tracks can be accurately counted, the movement device does not need to have a dedicated scale, which is convenient.

第3図は従来例の横断トラックカウント装置の回路図、
!g4図は第3区名部の信号波形のタイムチャートを示
す。面図において第2図との対応部位には同一符号を伺
してそのM腹説明を省略する。
Figure 3 is a circuit diagram of a conventional cross track counting device.
! Figure g4 shows a time chart of the signal waveform of the third section. In the top view, parts corresponding to those in FIG. 2 are designated by the same reference numerals, and explanations thereof will be omitted.

第3図の回路を第4図を参照しながら説明する。The circuit of FIG. 3 will be explained with reference to FIG.

尚第4図の差(8号(a)に示すX点を境に左側は光ス
ポットがトラックの外側から内側に移動中を示し右側は
光スポットがトラックの内側から外側に移動中を示して
おりX点は反転値I6tである。
The difference in Figure 4 (with respect to the X point shown in No. 8 (a)), the left side shows that the light spot is moving from the outside of the track to the inside, and the right side shows that the light spot is moving from the inside of the track to the outside. The point X is the inverted value I6t.

第3図において鎖線枠に示すTCはトラック計数部を示
し、計数部T(3は第2図の差信号(a)を互に逆相に
接続したコンパレータ(3,と02にてしきい値電圧叫
と比較してそれぞれ波形(b)と(C)を得、この波形
(IJ)と<c+のそれぞれの立tりにてトリガされる
モノステーブルマルチバイブレータ(以下モノマルチと
閉部する)Δ保!と4111M2にて、所要幅のパルス
に形成しそれぞれ波形(d)(e)を得ている。但しこ
れだけでは差信号(a)におけるトラックとトラック間
の零クロス時にもパルスが発生してしまう。
In FIG. 3, TC shown in a chain line frame indicates a track counting section, and counting section T (3 is a comparator (3, and 02 are thresholds) connected to the difference signal (a) in FIG. 2 in opposite phases. A monostable multi-vibrator (hereinafter referred to as "mono-multi") that is triggered at each rising edge of this waveform (IJ) and <c+, which obtains waveforms (b) and (C) by comparing with the voltage scream, respectively. ΔH! and 4111M2 are used to form pulses of the required width to obtain waveforms (d) and (e). However, with this alone, pulses are generated even at zero crosses between tracks in the difference signal (a). It ends up.

このトラックとトラック間の零クロス時に発生するパル
スを疑似パルスと称し、波形(d)と(e)に示すパル
スにX印を付して示している。
The pulses generated at the time of zero crossing between tracks are called pseudo pulses, and the pulses shown in waveforms (d) and (e) are shown with an X mark attached to them.

そこで加算増幅器6bが出力する和信号(f)をコンパ
レータC8にてコンパレートし、破線枠内に示すピーク
ホルダ回路P)lにて和信号(f)の信号レベルが高レ
ベル時は、トラックとトラックの間に位置すると判断し
てアンドゲート・■D、とAND2を閉じる。ただし単
純にコンパレータC3のしきい値の設定で区別しようと
すると、媒体反射率や照射レーザ光がよほど一定でない
限り区別できない。
Therefore, the sum signal (f) outputted by the summing amplifier 6b is compared with the comparator C8, and when the signal level of the sum signal (f) is high, the peak holder circuit P Judging that it is located between the tracks, AND gate ■D and AND2 are closed. However, if one tries to differentiate simply by setting the threshold value of the comparator C3, it will not be possible to differentiate unless the medium reflectance and the irradiated laser beam are very constant.

そこでピークホルダ回路PHによりトラック中間での前
記高レベル(波形f’ )を記憶しておき、その値と実
際の反射強度(波形(f) )を差動増幅器JJ2にて
減算し、その出力波形(g)に示すようにその差が大き
いか小さいかでしきい値Cv を決める、いわゆる自動
しきい値制御(ATO)=@利用することによりトラッ
ク上かトラック間かを区別する。
Therefore, the high level (waveform f') at the middle of the track is memorized by the peak holder circuit PH, and the value and the actual reflection intensity (waveform (f)) are subtracted by the differential amplifier JJ2, and the output waveform is As shown in (g), the threshold value Cv is determined depending on whether the difference is large or small, so-called automatic threshold control (ATO) is used to distinguish whether it is on a track or between tracks.

ピークホルダ回路PHが理想的で媒体反射率が漸減して
いく場合、ピークホルダー回路Pfiをクリヤしない限
りピークホルダ回路PHの出力と実際のトラック中間で
の反射光強度がずれる恐れがあるが、実際にはピークホ
ルダ回路PHに時定数があり、ホールド値も波形(わに
示すように漸減してゆくので時定数を適当にきめれば、
ピークホルダ回路PHの出刃は常にほぼ媒体反射光の強
度を示していることになる。又しきい値qの設定はトラ
ック間での反射光の強度を基準にして設定できるので、
絶対的な値に設定するよりも確実となり多少の媒体反射
率の変動や照射レーザパワーの変動があっても確実に区
別できるようになる。
If the peak holder circuit PH is ideal and the medium reflectance gradually decreases, there is a risk that the output of the peak holder circuit PH will deviate from the actual reflected light intensity at the middle of the track unless the peak holder circuit Pfi is cleared. There is a time constant in the peak holder circuit PH, and the hold value gradually decreases as shown in the waveform (crocodile), so if you set the time constant appropriately,
The edge of the peak holder circuit PH always indicates approximately the intensity of the medium reflected light. In addition, the threshold value q can be set based on the intensity of reflected light between tracks.
This is more reliable than setting an absolute value, and even if there is some variation in medium reflectance or irradiation laser power, it can be reliably distinguished.

このようにして設定するしきい値軛と差動増幅器D2の
出力とをコンパレータC3にて比較してその出力波形(
h)を得、波形(h)のHレベルと波形(d)と([1
)のパルスのアンドをとってアンドゲートmD、の出力
波形(i丹よ可逆カウンタCNTの減算(DOWN )
側に接続し、アンドゲート・1lJ2の出力波形(j)
は加算(UP)側に接続することにより横断トラック数
を正確にカウントできる。波形(h)#こおいて反転位
置Xに対応する位置にxX印のパルスが発生しているが
、このパルスに対応する波形((1)と(e)のパルス
が存在しないため疑似パルスはカウントされない。
The threshold value set in this way and the output of the differential amplifier D2 are compared by the comparator C3, and the output waveform (
h), and the H level of the waveform (h) and the waveform (d) and ([1
) and the output waveform of the AND gate mD (i) and the subtraction (DOWN) of the reversible counter CNT.
Connected to the side, AND gate 1lJ2 output waveform (j)
By connecting to the addition (UP) side, the number of traversed tracks can be accurately counted. In the waveform (h) #, a pulse marked xX is generated at the position corresponding to the inversion position Not counted.

通常光ディスク装置のトラックピッチは媒体偏心より非
常に小さいため、光スポットが媒体の内側のトラックか
ら外側に移動中であっても、その速度が低速であると相
対的には反転位置X点に示すように外側のトラックから
内側に横断する場合が生ずるが、第3図の例では方向検
出が可能なるため正確な横断トラ、り数のカウントが可
能である。
Normally, the track pitch of an optical disk device is much smaller than the medium eccentricity, so even if the light spot is moving from the inner track to the outer side of the medium, if the speed is slow, it will be relatively indicated at the reversal position X point. Although there are cases where a truck crosses from an outside track to the inside as shown in FIG. 3, since the direction can be detected in the example shown in FIG.

ところが′I$3図の例では差動増幅器6a の周波数
特性の高域特性を十分にあげられないために光スポット
の高速移動の場合はトラック横断のカウントができない
欠点があった。すなオ〕ち周波数特性を高帯域化すると
位置ずれ誤差信号Cu)にトラ。
However, in the example shown in Figure I$3, the high-frequency characteristics of the differential amplifier 6a cannot be sufficiently improved, so there is a drawback that it is impossible to count track crossings when the optical spot moves at high speed. In other words, if the frequency characteristics are increased to a higher band, the positional deviation error signal Cu) will become larger.

りに記録されている情報が混入してくるためにミスカウ
ントが発生する。
Miscounts occur because information recorded previously is mixed in.

第5図は従来例の問題点を説明するための図を示す。FIG. 5 shows a diagram for explaining the problems of the conventional example.

図において7はトラ、り2に書込まれた情報を示し、8
は光スポットがトラ、7り2を横断する軌跡を示す。こ
の場合の位置ずれ信号波形(に)をトラック2の対応位
置に示している。すなわち情報の書込まれていないトラ
ックでは破線のように理想的な誤差信号が得られるが、
トラ、ツク上に7のごとき情報が記録されていると、こ
の部分では無反射状態となり、誤差信号も実線で示した
ように零となる。差動増幅器の周波数帯域が低ければ積
分されて出力には現われないが、帯域が高域迄増幅でき
る場合は実線のようになる。、そしてこの出力から零ク
ロスを検出しようとすると、トラック中心ゾ以外にも多
数の零クロスが現われるlコめ、ミスカウントの原因と
なる欠点がある。
In the figure, 7 indicates the information written in 2, and 8
shows the trajectory in which the light spot crosses Tora, 7ri2. The positional deviation signal waveform in this case is shown at the corresponding position on track 2. In other words, an ideal error signal is obtained as shown by the broken line on a track where no information is written, but
If information such as 7 is recorded on the track or track, there will be no reflection in this part, and the error signal will also become zero as shown by the solid line. If the frequency band of the differential amplifier is low, it will be integrated and will not appear in the output, but if the frequency band can be amplified to high frequencies, it will appear as a solid line. , and when attempting to detect zero crosses from this output, there is a drawback that many zero crosses appear other than at the center of the track, causing miscounts.

(Cン 発明の目的 本発明は上記従来の欠点に鑑み、光スポットが高速にて
移動する場合でも正確にカウントできる横断トラック数
カウント回路の提供を目的とする。
(C) Object of the Invention In view of the above-mentioned drawbacks of the conventional art, an object of the present invention is to provide a circuit for counting the number of traversal tracks that can accurately count even when a light spot moves at high speed.

町 発明の構成 そしてこの目的は本発明によれば、あらかじめ位置決め
用のトラックを有するディスク状の記録媒体上に光学的
手段により倣少光スポットを形成し、情報の記録再生を
行う光学的記録再生装置における前記微少光スポットを
目標トラック上に移動させるためのトラック横断パルス
カウント回路であって、少くともトラックずれ態検出回
路と、媒体からの反射光量検出回路と、前記微少光スポ
ットが前記トラックを横断したことを前記トラックずれ
量検出回路にて検出してパルスを発生する第1のパルス
発生回路と、同様にトラックの横断を前記反射光量検出
回路にて検出してパルスを発生する第2のパルス発生回
路ならびに前記微少光スポットの移動速度を検出する回
路を備え、該移動速度検出回路の出力に応答して前記微
少スポットのトラック横断速度が低速の場合は前記第1
のパルス発生回路の出力を、高速の場合は前記第2のパ
ルス発生回路の出力をそれぞれカウントして横断トラッ
ク数を検出することを特徴とする横断トラック数カウン
ト回路を提供することにより達成される。
According to the present invention, an optical recording/reproducing method for recording and reproducing information by forming a scanned light spot by optical means on a disc-shaped recording medium having a positioning track in advance. A track crossing pulse counting circuit for moving the minute light spot onto the target track in the device, the circuit comprising at least a track deviation detection circuit, a circuit for detecting the amount of reflected light from a medium, and a circuit for moving the minute light spot onto the target track. a first pulse generation circuit that generates a pulse by detecting the crossing of the track by the track deviation amount detection circuit; and a second pulse generation circuit that generates a pulse by detecting the crossing of the track by the reflected light amount detection circuit. a pulse generating circuit and a circuit for detecting the moving speed of the minute light spot;
This is achieved by providing a traversal track number counting circuit characterized in that the number of traversed tracks is detected by counting the output of the second pulse generating circuit in the case of high speed, and the output of the second pulse generating circuit in the case of high speed. .

<8) 発明の実施例 以下本発明の実施例を図面によって詳述する。<8) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.

尚この実施例は第3図の従来例におけるトラック計数部
T(3に付加的に構成できるので間部Toは省略し、か
つ第3図と同じ部分には同符号を使用している。又第8
図の加算増幅器6bからコンパレータC3までは高帯域
化する必要がある。
Note that this embodiment can be constructed in addition to the track counting section T (3) in the conventional example shown in FIG. 3, so the intermediate section To is omitted, and the same parts as in FIG. 3 are denoted by the same reference numerals. 8th
It is necessary to increase the bandwidth from the summing amplifier 6b to the comparator C3 in the figure.

第6図は本発明による横断トラック数カウント回路の回
路図を示す。
FIG. 6 shows a circuit diagram of a circuit for counting the number of tracks traversed according to the present invention.

図において可逆カラン)CNT の2つの入力信号を、
それぞれオアゲート9を介してパルスレートを電圧に変
換するF/Vコンバータ10に入力する。その出力をコ
ンパレータ11に入力すると共に、オアゲート9の出力
のパルスレートが高速か低速かを判断するしきい値Eを
コンパレータ11に設定する。そしてコンパレータ11
の出力が低速の時には、マルチプレクサ12の接点に、
とに2およびマルチプレクサ13の接点111と12が
つながり第3図の従来例と同一の動作をする。コンパレ
ータ11の出力が高速の時にはマルチプレクサ12の接
点に1とに3およびマルチプレクサ18の接点11と1
3がつながり第4図に示す波形(h)のパルスを直接カ
ウンタに入力する。カウンタUNTの加算側、減算側の
どちらに入力するかはアクセス命令がトラックの内側か
ら外側なのか外側から内側なのか、あらかじめ分ってい
るので外部信号8によりマルチプレクサ14と15.と
を切りかえておけばよい。
In the figure, the two input signals of CNT (reversible Curran) are
Each signal is input via an OR gate 9 to an F/V converter 10 that converts the pulse rate into a voltage. The output is input to the comparator 11, and a threshold value E for determining whether the pulse rate of the output of the OR gate 9 is high or low is set in the comparator 11. and comparator 11
When the output of is low speed, the contact of multiplexer 12 is
2 and the contacts 111 and 12 of the multiplexer 13 are connected to perform the same operation as the conventional example shown in FIG. When the output of the comparator 11 is high speed, the contacts 1 and 3 of the multiplexer 12 and the contacts 11 and 1 of the multiplexer 18 are connected.
3 are connected and the pulse of the waveform (h) shown in FIG. 4 is directly input to the counter. Since it is known in advance whether the access command is input to the addition side or the subtraction side of the counter UNT, whether the access command is from the inside to the outside of the track or from the outside to the inside, the external signal 8 is used to input the access command to the multiplexers 14 and 15. All you have to do is switch between the two.

又第4図に示す波形(h)からあきらかなように、波形
(h)の出力は方向にかかわりなく発生するばかりでな
く横断しかけてやめるような反転位置XにおいてもXX
印に示すようにパルスを発生するが光スポットが高速移
動する場合はXx印のパルスは発生することはあり得な
い。従って光ノボ1.トの低速移動時と高速移動時を区
別して正確に横断トラック数をカウントすることができ
る。
Furthermore, as is clear from the waveform (h) shown in Fig. 4, the output of waveform (h) not only occurs regardless of the direction, but also at the reversal position
Pulses are generated as shown by the marks, but if the light spot moves at high speed, the pulses marked by Xx cannot be generated. Therefore, Hikari Nobo 1. It is possible to accurately count the number of tracks crossed by distinguishing between when the track is moving at low speed and when it is moving at high speed.

(f) 発明の効果 以上詳細に説明したように本発明の横断トランクカウン
ト回路によれば光スポットの横断トラック数を高速移動
の場合でもカウントでき、かつ低速移動の場合でも正確
にカウントすることができる。
(f) Effects of the Invention As explained in detail above, according to the cross-trunk counting circuit of the present invention, the number of tracks crossed by a light spot can be counted even when moving at high speed, and can be accurately counted even when moving at low speed. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はプリグループ方式の原理図、第2図は同方式に
よりトラッキング誤差検出方式を説明するための図、第
3図は従来例の横断トラックカウント回路の回路図、第
4図は第3図の回路各部の信号波形のタイムチャート、
第5図は従来例の問題点を説明するための図、第6図は
本発明による横断トラックカウント回路の回路図を示す
。 図において2はトラック、5は二分割光検出器6aは差
動増幅器、 6bは加算増幅器、8は光スポットの軌跡
、9はオアゲート、10はF/Vコンバータ、11はコ
ンパレータ、12〜15はマルチプレクサを示す。 第1図 第3図 ら 第4図 第5図 重量Go−171G37 (5)
Fig. 1 is a diagram of the principle of the pregroup method, Fig. 2 is a diagram for explaining the tracking error detection method using the same method, Fig. 3 is a circuit diagram of a conventional transverse track counting circuit, and Fig. 4 is a diagram of the tracking error detection method using the pregroup method. Time chart of signal waveforms of each part of the circuit shown in the figure,
FIG. 5 is a diagram for explaining the problems of the conventional example, and FIG. 6 is a circuit diagram of a cross track counting circuit according to the present invention. In the figure, 2 is a track, 5 is a two-split photodetector 6a is a differential amplifier, 6b is a summing amplifier, 8 is a trajectory of a light spot, 9 is an OR gate, 10 is an F/V converter, 11 is a comparator, and 12 to 15 are A multiplexer is shown. Figure 1 Figure 3 Figure 4 Figure 5 Weight Go-171G37 (5)

Claims (1)

【特許請求の範囲】[Claims] あらかじめ位置決め用のトラックを有するディスク状の
記録媒体上)こ光学的手段により微少光スポットを形成
し、情報の記録再生を行う光学的記録再生装置における
前記微少光スポットを目標トラック上に移動させるため
のトラック横断パルスカウント回路であって、少くとも
トラックずれ量検出回路と、媒体からの反射光量検出回
路と、前記微少光スポットが前記トラックを横断したこ
とを前記トラックずれ量検出回路にて検出してパルスを
発生する第1のパルス発生回路と、同様にトラックの横
断を前記反射光量検出回路にて検出してパルスを発生す
る第2のパルス発生回路ならびに、前記微少光スポット
の移動速度を検出する回路を備え、該移動速度検出回路
の出力に応答して前記微少スボッ)/)ラック横断速度
が低速の場合は前記第1のパルス発生回路の出力を、高
速の場合は前記第2のパルス発生回路の出力をそれぞれ
カウントして横断トラック数を検出することを特徴とす
る横断トラック数カウント回路。
In order to form a minute light spot by optical means (on a disk-shaped recording medium having a positioning track in advance) and move the minute light spot onto a target track in an optical recording and reproducing apparatus that records and reproduces information. The track crossing pulse counting circuit includes at least a track deviation amount detection circuit, a reflected light amount detection circuit from a medium, and a track deviation amount detection circuit that detects that the minute light spot crosses the track. a first pulse generating circuit that generates a pulse by detecting the crossing of the track by the reflected light amount detecting circuit; a circuit that responds to the output of the moving speed detecting circuit to generate the minute skip)/) when the rack crossing speed is low, the output of the first pulse generating circuit, and when the rack crossing speed is high, the second pulse. A circuit for counting the number of crossing tracks, characterized in that the number of crossing tracks is detected by counting the outputs of respective generation circuits.
JP2777084A 1984-02-15 1984-02-15 Circuit for counting number of traversed track Pending JPS60171637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2777084A JPS60171637A (en) 1984-02-15 1984-02-15 Circuit for counting number of traversed track

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2777084A JPS60171637A (en) 1984-02-15 1984-02-15 Circuit for counting number of traversed track

Publications (1)

Publication Number Publication Date
JPS60171637A true JPS60171637A (en) 1985-09-05

Family

ID=12230211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2777084A Pending JPS60171637A (en) 1984-02-15 1984-02-15 Circuit for counting number of traversed track

Country Status (1)

Country Link
JP (1) JPS60171637A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157865U (en) * 1987-04-03 1988-10-17
JPH02267735A (en) * 1989-04-07 1990-11-01 Nikon Corp Retrieving device
US5444684A (en) * 1990-10-03 1995-08-22 Fujitsu Limited Seek control system of dual processor magneto-optic disk unit
US5457671A (en) * 1991-03-19 1995-10-10 Fujitsu Limited Method and circuit for correcting track zero crossing signal in optical track

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157865U (en) * 1987-04-03 1988-10-17
JPH02267735A (en) * 1989-04-07 1990-11-01 Nikon Corp Retrieving device
US5444684A (en) * 1990-10-03 1995-08-22 Fujitsu Limited Seek control system of dual processor magneto-optic disk unit
US5457671A (en) * 1991-03-19 1995-10-10 Fujitsu Limited Method and circuit for correcting track zero crossing signal in optical track

Similar Documents

Publication Publication Date Title
US4779253A (en) Sampled servo for an optical disk drive
JPH02101637A (en) Optical information recording and reproducing device
JP2633417B2 (en) Optical recording medium drive
KR100265451B1 (en) Optical information apparatus
JPH02273328A (en) De-track detecting method for optical recording and reproducing device
JPS60171637A (en) Circuit for counting number of traversed track
JPS6278729A (en) Optical information storing carrier
EP0974958A1 (en) Optical disc device
JP3290020B2 (en) Optical disk recording device
JP2845569B2 (en) Optical disk drive
KR100686001B1 (en) Method for non-record area detecting of optical record medium and apparatus for the same
JPH0684185A (en) Optical disk apparatus
KR100662265B1 (en) Method for non-record area detecting of optical record medium and method and apparatus for record/play using the same
JPS60258739A (en) Focusing error detector
JP3066533B2 (en) Optical information recording / reproducing device
KR100200856B1 (en) Driving algorithm of optical pickup
JP3120932B2 (en) Optical information device
JP2728620B2 (en) Optical recording / reproducing device
JPH0478034A (en) Optical information recording medium and optical information recording and reproducing device
JPH0198169A (en) Track retrieval device
JPH04205922A (en) Optical information recording and reproducing device
JPS6321257B2 (en)
JP2005174389A (en) Optical information recording/reproducing device and optical information recording/reproducing method
JPH0973635A (en) Optical information recording medium
JPH0762921B2 (en) Optical information carrier