JPS60170805A - Optical selector - Google Patents

Optical selector

Info

Publication number
JPS60170805A
JPS60170805A JP2669384A JP2669384A JPS60170805A JP S60170805 A JPS60170805 A JP S60170805A JP 2669384 A JP2669384 A JP 2669384A JP 2669384 A JP2669384 A JP 2669384A JP S60170805 A JPS60170805 A JP S60170805A
Authority
JP
Japan
Prior art keywords
light
wavelength
light guide
wavelengths
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2669384A
Other languages
Japanese (ja)
Other versions
JPS6310406B2 (en
Inventor
Yoshihiko Kimura
木村 芳彦
Hideo Tsubata
津端 秀男
Nobuaki Ooji
大治 信昭
Kiyoshi Sashita
指田 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Toyo Denso Co Ltd
Original Assignee
Honda Motor Co Ltd
Toyo Denso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Toyo Denso Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2669384A priority Critical patent/JPS60170805A/en
Priority to US06/631,851 priority patent/US4707057A/en
Priority to GB08418559A priority patent/GB2144236B/en
Priority to DE19843426835 priority patent/DE3426835A1/en
Priority to FR8411529A priority patent/FR2549611B1/en
Publication of JPS60170805A publication Critical patent/JPS60170805A/en
Publication of JPS6310406B2 publication Critical patent/JPS6310406B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3596With planar waveguide arrangement, i.e. in a substrate, regardless if actuating mechanism is outside the substrate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29313Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide characterised by means for controlling the position or direction of light incident to or leaving the diffractive element, e.g. for varying the wavelength response
    • G02B6/29314Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide characterised by means for controlling the position or direction of light incident to or leaving the diffractive element, e.g. for varying the wavelength response by moving or modifying the diffractive element, e.g. deforming
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29317Light guides of the optical fibre type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29368Light guide comprising the filter, e.g. filter deposited on a fibre end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/353Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being a shutter, baffle, beam dump or opaque element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • G02B6/35521x1 switch, e.g. on/off switch

Abstract

PURPOSE:To narrow down intervals of respective wavelengths of multiplex light and to increase the number of multiplexed wavelengths by arranging light guides equipped with an optical switch in parallel and also arranging branching parts of the respective light guides in series, and arranging a specific spectral diffracting part at each branching part. CONSTITUTION:Light beams with wavelengths lambda1'-lambda3' are incident as parallel light on a light entrance 9 and only the light beam with the wavelength lambda3' is reflected and guided to a light guide 11. Only the light beam with the wavelength lambda2' among the light beams passed through the element 11 is reflected by the spectral diffracting element 15 and guided to a light guide 12. The light beam with the wavelength lambda3' passed through elements 14 and 15 is guide to a light guide 13. Light shield plates 18-20 provided to the respective light guides 11-13 are opened and closed selectively; the light with wavelength lambda1' passed through every optical switch is passed through elements 16 and 17, the light with the wavelength lambda2' is reflected by the element 16 and then passed through the element 17, and the light with the wavelength lambda3' is reflected by the element 17, multiplexed again, and projected from a light exit 10. Thus, the number of multiplexed wavelengths is increased.

Description

【発明の詳細な説明】 複数の波長の光を多重化して通信を行う光通信システム
に好適な光セレクタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical selector suitable for an optical communication system that performs communication by multiplexing light of a plurality of wavelengths.

近年新しい信号伝送として光伝送方式が提案される。光
伝送方式は光ファイバを伝送路として使用し、光を媒体
として通信を行う。光伝送方式においては、光信号を発
生すべく光の透過又は遮断を制御する手段として例えば
光セレクタが使用される。この光セレクタは、導光部材
で形成され。
In recent years, optical transmission methods have been proposed as a new signal transmission method. Optical transmission systems use optical fibers as transmission lines and communicate using light as a medium. In the optical transmission system, for example, an optical selector is used as a means for controlling transmission or blocking of light to generate an optical signal. This light selector is formed of a light guiding member.

複数の分岐導光路を有し各導光路ごとに光スィッチを備
える。光セレクタによれば、分光素子によって波長多重
光における各波長の光を各導光路へ分離して導き、各導
光路の光スィッチで各波長の光の通過又は遮断を選択し
、所要の信号状態を発生することが可能となる。
It has a plurality of branch light guide paths and is equipped with an optical switch for each light guide path. According to the optical selector, a spectroscopic element separates and guides the light of each wavelength in the wavelength multiplexed light to each light guide path, and an optical switch of each light guide selects whether to pass or block the light of each wavelength, and the desired signal state is set. It becomes possible to generate.

ところで、従来の光セレクタでは、その構造的な特性に
起因して分光素子に関し次のような問題が生じる。すな
わち、例えば第1図に示されるような従来の光セレクタ
によれば、各導光路(1)。
By the way, in the conventional optical selector, the following problem occurs regarding the spectroscopic element due to its structural characteristics. That is, according to a conventional optical selector, for example as shown in FIG. 1, each light guide (1).

(2) 、(3)の光スィッチ(la) 、 (2a)
 、 (3a)に対して、対応する各波長の光を分離し
導く場合に、各光スィッチ(la)、(2a)、(3a
)が光伝送路(0上において直列的に配設されるので、
各波長光に独立性を持たせるためには、各分光素子(5
)、(θ)、(7)は対応する各波長の光のみを取り出
すフィルタ特性(反射特性)を有する必要がある。従っ
て第2図に示されるように、各波長λ1.入2.入3の
光についての、分光素子(5)、(8)、(?)におけ
る反射波長帯域(5’ )、(B ′)、(7’ )は
対応する各波長のみを含み且つ互いに重複する部分を有
しないように形成されなければならない。換言すれば、
光波長多重伝送において、各波長入1.λ2.入3の光
は、分光素子(5)、(6)、(?)における各反射帯
域が重なってはならないという制限を受けることになる
ため、波長間隔を一定以上開けなければならなくなる。
(2), (3) optical switch (la), (2a)
, (3a), when separating and guiding light of each corresponding wavelength, each optical switch (la), (2a), (3a
) are arranged in series on the optical transmission line (0), so
In order to make each wavelength light independent, each spectroscopic element (5
), (θ), and (7) must have filter characteristics (reflection characteristics) that extract only the light of each corresponding wavelength. Therefore, as shown in FIG. 2, each wavelength λ1. Enter 2. The reflection wavelength bands (5'), (B'), and (7') in the spectroscopic elements (5), (8), and (?) for the light input 3 include only the corresponding wavelengths and overlap with each other. It must be formed so that it has no parts. In other words,
In optical wavelength division multiplexing transmission, each wavelength input 1. λ2. Input 3 light is subject to the restriction that the reflection bands of the spectroscopic elements (5), (6), and (?) must not overlap, so the wavelengths must be separated by a certain distance or more.

このことは光伝送路(4)の波長通過帯域を一定とした
場合、波長多重数が少なくなることを意味する。このよ
うに従来の光セレクタの構成によれば波長多重数を多く
することができないという問題を有していた。
This means that when the wavelength pass band of the optical transmission line (4) is kept constant, the number of wavelengths multiplexed becomes smaller. As described above, the conventional optical selector configuration has a problem in that the number of wavelengths multiplexed cannot be increased.

本発明者は、上記問題に鑑み、これを有効に解決すべく
本発明を成したものである。
In view of the above-mentioned problem, the present inventor has created the present invention in order to effectively solve the problem.

本発明は、光セレクタにおいて、波長多重光を各波長の
光に分離し別々に通過させる、光スィッチを備えた導光
路を並列に設は且つその分岐部を直列に設けるようにし
たため、多重化された光を別々に分離する各分光素子の
反射波長帯域を重複させることができ、以って多重光の
各波長の離間間隔を狭くし、波長多重数を増加すること
を目的とする。
In the optical selector of the present invention, light guide paths equipped with optical switches that separate wavelength-multiplexed light into light of each wavelength and pass the light separately are installed in parallel, and the branch parts thereof are installed in series, so that multiplexing is possible. The purpose of this invention is to make it possible to overlap the reflection wavelength bands of each spectroscopic element that separates the separated lights, thereby narrowing the spacing between each wavelength of multiplexed light and increasing the number of wavelengths multiplexed.

而して」−記1]的を実現すべく、本発明は、複数の異
なる波長の光を入光し、各波長の光を分光素子の反射特
性でそれぞれの導光路へ分離し、該善導光路に設けた光
スィッチで各波長の光の透過又は遮断を選択せしめ、再
び導光を集めて出光口から出光するようにした光セレク
タにおいて、上記各導光路を並列に配設すると共に光を
取り入れる各導光路の分岐部を直列的に配置し、該分岐
部に、対応する上記分光素子を配設し、上記分光素子に
、対応する波長の光及び少なくとも直前の分光素子で反
射された反射の光を反射し得る反射特性を備えるように
構成したものである。
In order to achieve the objective of "1", the present invention introduces light of a plurality of different wavelengths, separates the light of each wavelength into respective light guide paths using the reflection characteristics of a spectroscopic element, and In the optical selector, in which transmission or blocking of light of each wavelength is selected by an optical switch provided in the optical path, the guided light is collected again, and the light is emitted from the light exit. Branch parts of each light guide path to be taken in are arranged in series, and the corresponding above-mentioned spectroscopic element is arranged in the branch part, and the light of the corresponding wavelength and at least the reflection reflected by the immediately preceding spectroscopic element are transmitted to the above-mentioned spectroscopic element. It is constructed so that it has a reflection characteristic that can reflect the light of .

以下に本発明の好適一実施例を添付図面に基づいて説明
する。
A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

第3図は本発明に係る光セレクタを示し、この光セレク
タ(8)は、図中左端に入光口(8)を有し、図中右端
に出光口(lO)を有し、入光口(8)と出光口(10
)との間に、分岐されることによって形成された3木の
導光路(11)、(12)、(13)を並列に配設して
成る。光セレクタ(8)は、例えばプラスチックで形成
され導光作用を有する。各導光路(11)、(12) 
、(13)の分岐部は直列的に配置され、この各分岐部
には例えばダイクロイックミラー(干渉薄膜フィルタ)
の如き分光素子(14) 、(15) 、(1G) 。
FIG. 3 shows an optical selector according to the present invention. Exit (8) and Idemitsu Exit (10)
), three light guide paths (11), (12), and (13) formed by branching are arranged in parallel. The optical selector (8) is made of plastic, for example, and has a light guiding function. Each light guide path (11), (12)
, (13) are arranged in series, and each branch is equipped with, for example, a dichroic mirror (interference thin film filter).
Spectroscopic elements such as (14), (15), (1G).

(17)が蒸着又は機械的な手段によって固定されると
共に、各導光路(11)、(12)、(13)のほぼ中
央位置にはI!Jl隔が形成され、この間隔にて伝送さ
れてきた光の透過又は遮断を選択する遮光板(1B)、
(19)。
(17) is fixed by vapor deposition or mechanical means, and the I! a light shielding plate (1B) in which a Jl interval is formed and selects transmission or blocking of transmitted light at this interval;
(19).

(20)から成る光スィッチを備えている。(20).

]二配分光素子(14)、(15)、(1B)、(17
)は波長に応じ反射又は透過することにより、多重化さ
れた光を分離する作用を有し、特に本実施例では、波長
多重光が入j、入シ、λ5の光から成る場合において、
分光素子(14) 、(17)は波長λ′lの光のみを
反射し且つ他の波長入シ、入5の光を透過し、また分光
素子(15)、(1B)は波長λ′!、入シの光を反射
し且つ波長入5の光を通過する作用を有する。
] Two-distribution optical element (14), (15), (1B), (17
) has the effect of separating multiplexed light by reflecting or transmitting it depending on the wavelength. Particularly in this embodiment, when the wavelength multiplexed light consists of light of input j, input shi, and λ5,
The spectroscopic elements (14) and (17) reflect only the light of wavelength λ'l and transmit the light of other wavelengths input A and I, and the spectroscopic elements (15) and (1B) reflect only the light of wavelength λ'! , has the function of reflecting the incoming light and passing the incoming light of 5 wavelengths.

また、J記聞遮光板(1B) 、(19) 、(20)
の動作は例えば不図示のソレノイド装置によって行われ
、図中上下動する遮光板が上記間隔の巾に移動するとき
遮断作用を生じ、間隔外に移動するときに透過作用を生
じる。
In addition, J Kibun light shielding plates (1B), (19), (20)
This operation is performed, for example, by a solenoid device (not shown), and when the light shielding plate, which moves up and down in the figure, moves within the width of the above-mentioned interval, it produces a blocking action, and when it moves outside the interval, it produces a transmitting action.

」配分のように構成される光セレクタ(8)は一体重に
ユニット化されて形成される。また導光路の数、分光素
子の数は、多重化される光の数に応じて任意に変更する
ことができる。
The optical selector (8) configured as shown in FIG. Further, the number of light guide paths and the number of spectroscopic elements can be arbitrarily changed depending on the number of lights to be multiplexed.

以上において1図示されるように、例えばコリメータレ
ンズ(不図示)を介してほぼ平行な光として入光口(9
)に入ってきた各波長入j、λシ。
In the above, as shown in FIG. 1, for example, the light enters the light entrance (9
) for each wavelength input j, λ.

入5の光は、分光素子(14)、(15)の作用で次の
ように分離される。先ず、分光素子(14)によって導
光路(11)に波長λ′1の光のみが導かれる。次に分
光素子(15)によって導光路(11)には波長λ′1
゜λシの光が導かれるが、波長λ′lの光は既に分光素
子(14)によって反射され除去されているから波長入
しの光のみが導かれる。更に分光素子(14)。
The input light 5 is separated by the action of the spectroscopic elements (14) and (15) as follows. First, only light with wavelength λ'1 is guided to the light guide path (11) by the spectroscopic element (14). Next, the light guide path (11) is set to the wavelength λ'1 by the spectroscopic element (15).
Light of wavelength λ'l is guided, but since the light of wavelength λ'l has already been reflected and removed by the spectroscopic element (14), only the light of the wavelength is guided. Furthermore, a spectroscopic element (14).

(15)を透過した波長入5の光は導光路(13) (
実際は本線路に相当)に導かれる。このようにして導光
路(11)には波長λ′1の光が、導光路(12)には
波長入シの光が、導光路(13)には波長入5の光が、
それぞれ通過することになる。そして、各導光路(11
)、(12)、(13)では遮光板(18) 、(19
)、(20)が適当な動作状態をとり、これらの遮光板
(1B)、(19) 。
The light with wavelength input 5 transmitted through (15) passes through the light guide path (13) (
It is actually equivalent to the main railway). In this way, the light guide path (11) receives light with wavelength λ'1, the light guide path (12) receives light with wavelength input 5, and the light guide path (13) receives light with wavelength input 5.
They will pass through each. Then, each light guide path (11
), (12), and (13), the light shielding plates (18) and (19
), (20) assume appropriate operating states, and these light shielding plates (1B), (19).

(20)の動作状態の組合せによって各波長λ′1゜入
シ、入りの光の透過、遮断の組合せが形成され、所要の
信号状態が発生することになる。
By the combination of operating states (20), a combination of incoming light of each wavelength λ'1°, transmission and blocking of the incoming light is formed, and a desired signal state is generated.

その後、各光スイッチを通過した光は、分光素子(18
)、(17)によって再び多重化され、出光口(10)
から出光される。この場合において、導光路(11)の
波長λ′lの光は分光素子(17)で反射され、導光路
(12)の波長λシの光は分光素子(16)で反射され
ると共に分光素子(17)を透過し、導光路(13)の
波長入5の光は分光素子(1B) 、 (+7)を透過
する。
Thereafter, the light that has passed through each optical switch is sent to a spectroscopic element (18
), (17), and exit light exit (10)
Light is emitted from. In this case, the light of wavelength λ'l in the light guide (11) is reflected by the spectroscopic element (17), and the light of wavelength λ'l of the light guide (12) is reflected by the spectroscopic element (16) and (17), and the light at wavelength 5 of the light guide path (13) passes through the spectroscopic elements (1B) and (+7).

に記において、本発明に係る光セレクタ(8)によれば
、光スィッチを備えた各導光路(11)、(12)。
According to the optical selector (8) according to the present invention, each light guide path (11), (12) is provided with an optical switch.

(13)を並列に形成し、且つ入光又は出光するそれら
の分岐部を直列的に配置するようにしたため、多重化さ
れた波長λ′!、λシ、λ5の光を各分光素子によって
各波長の光に分離するとき、配列順番上二番目の分光素
子(15)に波長入シの他に波長λ′1の光を反射する
フィルタ特性を持たせることが許容される。何故なら波
長λ′1の光は、既に分光素子(14)によって反射さ
れているため分光素子(15)にまで至らず、分光素子
(15)に斯かるフィルタ特性を持たせたとしても導光
路(12)に導かれる光の波長は、結局λシのみとなる
からである。故に、第5図に示されるように二番目の分
光素子(15)の反射*長帯域に係るフィルタ特性(1
5’ )は、分光素子(14)のフィルタ特性(14’
 )と重複部分が生じてもかまわない。このフィルタ特
性は、三番1」以降の分光素子が存在する場合にも同様
に適用される。第5図中、(24)は三番目の分光素子
のフィルタ特性を示し、これはフィルタ特性(15′)
との重複部分を有している。そして、L記のようにフィ
ルタ特性を持たせることができるため、第5図に示され
るように、多重化される光の各波長入′l、入シ、入5
は、特別に波長間隔を開ける必要はなく、はとんど波長
的に近接した状態で設定することができるので波長多重
数を増加することができるのである。
(13) are formed in parallel, and the branch parts for light input or light output are arranged in series, so that the multiplexed wavelength λ'! , λ, and λ5 are separated into light of each wavelength by each spectroscopic element, the second spectroscopic element (15) in the arrangement order has a filter characteristic that reflects the light of wavelength λ'1 in addition to the input wavelength. It is allowed to have. This is because the light with wavelength λ'1 has already been reflected by the spectroscopic element (14), so it does not reach the spectroscopic element (15), and even if the spectroscopic element (15) has such filter characteristics, it will not reach the light guide path. This is because the wavelength of the light guided to (12) ends up being only λ. Therefore, as shown in FIG. 5, the reflection * long band filter characteristic (1
5') is the filter characteristic (14') of the spectroscopic element (14).
) may overlap. This filter characteristic is similarly applied to the case where there are spectroscopic elements after ``No. 3''. In Figure 5, (24) shows the filter characteristic of the third spectroscopic element, which is the filter characteristic (15')
There is some overlap between the two. Since filter characteristics can be provided as shown in L, each wavelength input 'l, input
There is no need for a special wavelength spacing, and the wavelengths can be set close to each other in terms of wavelengths, so the number of wavelengths multiplexed can be increased.

第4図は本発明の第2実施例を示す。この実施例では、
波長入′l、λし、λ5の各光を通過せしめる導光路(
21) 、(22) 、(23)が並列に設けられてい
る点については前記実施例と同じであるが、外周の全体
的形状がほぼU字型(図示例では横向きとなっている)
の形状に形成されている点に特徴がある。分光素子(1
4)、(15)、(1B)、(17) 、遮光板(11
1) 、(19) 、(20)の構成は前記実施例と同
様である。この光セレクタ(28)によっても前記と同
様な原理によって波長多重数を増加することができる。
FIG. 4 shows a second embodiment of the invention. In this example,
A light guide path (
21), (22), and (23) are provided in parallel, which is the same as in the above embodiment, but the overall shape of the outer periphery is approximately U-shaped (in the illustrated example, it is oriented horizontally).
It is distinctive in that it is formed in the shape of Spectroscopic element (1
4), (15), (1B), (17), light shielding plate (11
The configurations of 1), (19), and (20) are the same as in the previous embodiment. This optical selector (28) also allows the number of wavelengths to be multiplexed to be increased using the same principle as described above.

また、この光セレクタ(28)によれば、入光口(9)
と出光口(10)の向きが同一側となっているために光
セレクタ(28)を通過すると光信号(Sl)の向きが
反対となる。それ故に、光伝送において従来狭いスペー
スにて光ケーブルの向きを反転させることが困難であっ
た(光ケーブルの屈曲不可)が、これを容易に行うこと
ができる。
Moreover, according to this light selector (28), the light entrance (9)
Since the direction of the light output port (10) is on the same side, the direction of the light signal (Sl) becomes opposite when passing through the light selector (28). Therefore, in optical transmission, it has conventionally been difficult to reverse the direction of an optical cable in a narrow space (the optical cable cannot be bent), but this can be easily done.

以上の説明で明らかなように本発明によれば、複数の波
長の光を各導光路へ別々に分離して信号を伺与する光セ
レクタにおいて、各導光路を並列にルつその分岐部を直
列に設けるようにしたため、分光素子の反射波長帯域に
重複部分が生じるのを許容でき、これによって波長多重
数を増加することができるという効果を発揮する。
As is clear from the above description, according to the present invention, in an optical selector that separately separates light of a plurality of wavelengths into each light guide path and outputs a signal, each light guide path is connected in parallel and the branch portion thereof is connected. Since they are arranged in series, it is possible to allow an overlap in the reflection wavelength bands of the spectroscopic elements, thereby achieving the effect that the number of wavelengths multiplexed can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の光セレクタの構成図、第2図は従来に
おける波長多重光の波長の関係と各分光素子の反射波長
帯域を示す図、第3図は本発明に係る光セレクタの構成
図、第4図は本発明の別実施例に係る光セレクタの構成
図、第5図は本発明における波長多重光の波長の関係と
各分光素子の反射波長帯域を示す図である。 図面中、(1)、(2)、(3)、(11) 、(12
) 、(13)、(21) 。 (22)、 (23)は導光路、 (5)、(8)、(
7)、(14)、(15)。 (1B)、(17)は分光素子、(5’ )、(8′)
、(7′)。 (14′)、 (15’) 、(24)は各分光素子の
反則波長帯域、(Ia)、(2a)、(3a)、(18
)、(1G)、(2Q)は遮光板、λ1.入2.入3.
λ′l、入シ、λ5は多重化された光の波長である。 特許出願人 本田技研工業株式会社 同 東洋電装株式会社 代理人 弁理士 下 ロ] 容一部 間 弁理士 大 橋 邦 彦 同 弁理士 小 山 有
FIG. 1 is a diagram showing the configuration of a conventional optical selector, FIG. 2 is a diagram showing the wavelength relationship of conventional wavelength-multiplexed light and the reflection wavelength band of each spectroscopic element, and FIG. 3 is a configuration diagram of an optical selector according to the present invention. 4 is a configuration diagram of an optical selector according to another embodiment of the present invention, and FIG. 5 is a diagram showing the relationship between wavelengths of wavelength multiplexed light and the reflection wavelength bands of each spectroscopic element in the present invention. In the drawings, (1), (2), (3), (11), (12
), (13), (21). (22), (23) are light guide paths, (5), (8), (
7), (14), (15). (1B), (17) are spectroscopic elements, (5'), (8')
, (7'). (14'), (15'), (24) are the foul wavelength bands of each spectroscopic element, (Ia), (2a), (3a), (18
), (1G), (2Q) are light shielding plates, λ1. Enter 2. Enter 3.
λ′l, input and λ5 are the wavelengths of the multiplexed light. Patent applicant Honda Motor Co., Ltd. Toyo Denso Co., Ltd. Agent Patent attorney (Part 2) Patent attorney Kunihiko Ohashi Patent attorney Yu Koyama

Claims (1)

【特許請求の範囲】 複数の異なる波長の光を入光し、各波長の光を分光素子
の反射特性でそれぞれの導光路へ分離し、該善導光路に
設けた光スィッチで各波長の透過又は遮断を選択せしめ
、再び導光を集めて多重化し出光するようにした光セレ
クタにおいて。 ]二記各導光路を並列に配設すると共に光を分離する各
導光路の分岐部を直列的に配置し、該各分岐部に、対応
する上記分光素子を配設し、 上記分光素子に、対応する波長の光と、少なくとも直前
の分光素子で反射された波長の光を反射し得る反射特性
を備える、 ようにしたことを特徴とする光セレクタ。
[Claims] Light of a plurality of different wavelengths is input, the light of each wavelength is separated into each light guide path by the reflection characteristics of the spectroscopic element, and an optical switch provided in the good light guide path is used to transmit or transmit each wavelength. In the optical selector that selects blocking, collects the guided light again, multiplexes it, and outputs the light. ] 2. Each of the light guide paths is arranged in parallel, and the branch parts of each light guide path for separating light are arranged in series, and the corresponding above-mentioned spectroscopic element is arranged in each of the branch parts, , a light selector having a reflection characteristic capable of reflecting light of a corresponding wavelength and at least light of a wavelength reflected by an immediately preceding spectroscopic element.
JP2669384A 1983-07-21 1984-02-15 Optical selector Granted JPS60170805A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2669384A JPS60170805A (en) 1984-02-15 1984-02-15 Optical selector
US06/631,851 US4707057A (en) 1983-07-21 1984-07-18 Optical switching unit
GB08418559A GB2144236B (en) 1983-07-21 1984-07-20 Optical switching unit
DE19843426835 DE3426835A1 (en) 1983-07-21 1984-07-20 OPTICAL SWITCHING UNIT
FR8411529A FR2549611B1 (en) 1983-07-21 1984-07-20 OPTICAL SWITCHING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2669384A JPS60170805A (en) 1984-02-15 1984-02-15 Optical selector

Publications (2)

Publication Number Publication Date
JPS60170805A true JPS60170805A (en) 1985-09-04
JPS6310406B2 JPS6310406B2 (en) 1988-03-07

Family

ID=12200464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2669384A Granted JPS60170805A (en) 1983-07-21 1984-02-15 Optical selector

Country Status (1)

Country Link
JP (1) JPS60170805A (en)

Also Published As

Publication number Publication date
JPS6310406B2 (en) 1988-03-07

Similar Documents

Publication Publication Date Title
US5608825A (en) Multi-wavelength filtering device using optical fiber Bragg grating
CA2223674C (en) Optical multiplexing/demultiplexing device
CA2255346C (en) Optical multiplexor/demultiplexor
WO1997000459A3 (en) Optical multiplexing device
WO1997000459B1 (en) Optical multiplexing device
US4441181A (en) Optical wavelength-division multiplex system
US9223090B2 (en) Bidirectional wavelength cross connect architectures using wavelength routing elements
US5909295A (en) Hybrid bi-directional wavelength division multiplexing device
US6201907B1 (en) Optical drop circuit having group delay compensation
US6192175B1 (en) Method and system for providing a multi-channel optical filter
US6243179B1 (en) Banded add drop device
US6516112B1 (en) Optical wavelength filter and demultiplexer
US5933260A (en) Method and system for wavelength division multiplexer
US20040005115A1 (en) Optoelectronic add/drop multiplexer
CN113740971B (en) Optical switching device, redirection method, reconfigurable optical add-drop multiplexer and system
US6614569B2 (en) System and method for narrow channel spaced dense wavelength division multiplexing/demultiplexing
US6928210B2 (en) Apparatus for demultiplexing optical signals at a large number of wavelengths
JPS60170805A (en) Optical selector
JP3308148B2 (en) Optical submarine cable branching device for WDM communication system and WDM optical submarine cable network using the same
US6549701B1 (en) Selectable wavelength channel filter for optical WDM systems
KR20190143649A (en) Wavelength multiplexing/demultiplexing apparatus
JPH09211383A (en) Multiple wavelength multiplexing/demultiplexing circuit
JPS6024504A (en) Optical selector
JPS60133407A (en) Optical switch device
RU2199823C2 (en) Optical multiplexer/demultiplexer