JPS60169764A - Measurement of ion speed using ion chromatography - Google Patents

Measurement of ion speed using ion chromatography

Info

Publication number
JPS60169764A
JPS60169764A JP2588984A JP2588984A JPS60169764A JP S60169764 A JPS60169764 A JP S60169764A JP 2588984 A JP2588984 A JP 2588984A JP 2588984 A JP2588984 A JP 2588984A JP S60169764 A JPS60169764 A JP S60169764A
Authority
JP
Japan
Prior art keywords
ion
measured
amount
standard solution
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2588984A
Other languages
Japanese (ja)
Other versions
JPH0312703B2 (en
Inventor
Takeshi Murayama
健 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP2588984A priority Critical patent/JPS60169764A/en
Publication of JPS60169764A publication Critical patent/JPS60169764A/en
Publication of JPH0312703B2 publication Critical patent/JPH0312703B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • G01N2030/965Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange suppressor columns

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To enable the measurement of ion concn. from the relation of a peak area value by moisture and the injection amount of a standard solution, and that of the peak area value of each ion seed and the ion amount thereof. CONSTITUTION:When a pump 2 is driven, the eluate of a tank 1a is flowed through a flowline of pump 2 damper 4 connection ports 3a, 3b pre-column 5 separation column 6 detector 7 waste solution tank 1b. Next, a standard solution is injected from a connection port 3d and, when an injector 3 is turned ON, an internal flowline is changed over from the solid line to the broken line and the eluate through the damper 4 flows a flowline of connection ports 3a, 3f metering pipe 3g connection ports 3c, 3b pre-column 5 while the standard solution in the pipe 3g is fed in the pre-column 5 by the eluate and receives predetermined signal processing by on integrator 8 to obtain a chromatogram and an integrated value. Herein, the injection amount of a specimen to be measured (standard solution) can be known from the proportional relation between the injection amount of the standard solution and a water dip area value while the ion amount of each ion can be known from the proportional relation between each ion amount and a peak area value. Hereupon, the concn. of an ion speed is obtained from the quotient (W/V) of the injection amount V of the specimen to the measured and the ion amount W of the ion speed to be measured.

Description

【発明の詳細な説明】 〔発明の属する分野〕 本発明は、イオンクロマトグラフィにおいて採取された
試料の量ととの試量中のイオン濃度とを同時に測定でき
るようなイオン臘測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method for measuring ion concentration that can simultaneously measure the amount of a sample collected in ion chromatography and the ion concentration in a sample amount.

〔従来技術〕[Prior art]

イオンクロマトグラフィにおける試料の採取方法は、計
量管を有するインジェクタを駆動させて一定量の試料を
移動相(溶離液)中に注入する方法と、マイクロシリン
ジなどを用いて大略一定量の試料を移動相中に注入する
方法とがある。前者においては、標準液(若しくは標準
ガス)と被測定試料とによるクロマトグラム作成を行な
い、このイオン濃度をめる所謂絶対検量線法が採用され
ることが多い。また、後者においては、被測定試料中に
一定量の内部標準物質を加えてのちクロ料中のイオン濃
度をめる所謂内部標準法が採用されることが多い。
There are two methods for collecting samples in ion chromatography: one method is to drive an injector with a measuring tube to inject a fixed amount of sample into the mobile phase (eluent), and the other is to use a microsyringe etc. to pump a roughly fixed amount of sample into the mobile phase. There is a method of injecting it inside. In the former case, a so-called absolute calibration curve method is often adopted, in which a chromatogram is created using a standard solution (or standard gas) and a sample to be measured, and the ion concentration is calculated. In the latter case, a so-called internal standard method is often adopted in which a certain amount of an internal standard substance is added to the sample to be measured and then the ion concentration in the chromate is measured.

然し乍ら、上記絶対検量線法を採用した場合、試料中の
イオン濃度に対応させてクロマトグラムのピークの大き
さを調節することが一般に困難となる欠点があった。こ
れは、ピークの大きさが上記インジェクタの計量管内容
積に比例するのに、該計量管内容積の増減は一般に困難
だからである。
However, when the above-mentioned absolute calibration curve method is adopted, there is a drawback that it is generally difficult to adjust the size of the peak of the chromatogram in accordance with the ion concentration in the sample. This is because although the magnitude of the peak is proportional to the volume within the metering tube of the injector, it is generally difficult to increase or decrease the volume within the metering tube.

また、上記内部標準法を採用した場合には、内部標準物
質を被測定試料に正確に添加するという面倒な操作が必
要になる欠点があった。これは、内部標準物質は、被測
定試料中に存在するイオン種と異なるものであってクロ
マトグラム上もこれらイオン種と完全分離するようなも
のでなければならないことに起因している。
Furthermore, when the internal standard method described above is adopted, there is a drawback that a troublesome operation of accurately adding the internal standard substance to the sample to be measured is required. This is because the internal standard substance must be different from the ion species present in the sample to be measured and must be completely separated from these ion species on the chromatogram.

〔発明の目的〕 本発明は、かかる欠点に鑑みてなされたものであシ、そ
の目、的は、被測定試料を正確に計量することなく採取
された試料の量とこの試料中のイオン濃度とを同時に測
定できるようなイオン種測定方法を提供することにある
[Object of the Invention] The present invention has been made in view of the above drawbacks, and its purpose is to reduce the amount of a sample collected without accurately weighing the sample to be measured and the ion concentration in this sample. It is an object of the present invention to provide a method for measuring ion species that can simultaneously measure ion species.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、イオンクロマトグラフィを用いて被測
定試料中のイオン種を測定する方法において、被測定イ
オン種と同一の各糧イオン種および水分を含む標準液を
用いて、あらかじめ、水分によるピークの面積値と標準
液注入量との関係を示す第1グラフと、前記各種イオン
種のピーク面積値とイオン量との関係を示す第2グラフ
とを作成し、その後、被測定試料を用いて得られるクロ
マトグラムの水分ピークおよび各イオンピークの夫々の
面積値と前記第1および第2のグラフとから、被測定試
料の注入量Vと被測定イオン種のイオン量町とをめ、こ
れらの商(Wl/V)から前記被測定イオン種の濃度を
めるようにしたことにある。
A feature of the present invention is that in a method for measuring ion species in a sample to be measured using ion chromatography, a standard solution containing the same ion species as the ion species to be measured and water is used to detect peaks due to moisture in advance. A first graph showing the relationship between the area value and the amount of standard solution injected, and a second graph showing the relationship between the peak area value of the various ion species and the ion amount are created, and then, using the sample to be measured, From the respective area values of the moisture peak and each ion peak in the obtained chromatogram and the first and second graphs, determine the injection amount V of the sample to be measured and the ion amount of the ion species to be measured, and calculate these values. The reason is that the concentration of the ion species to be measured is calculated from the quotient (Wl/V).

〔実施例〕〔Example〕

以下、本発明について図を用いて詳細に説明する。第1
図は、本発明実施例の構成説明図であシ、図中、laは
例えば濃度5 mMの11 N O、でなる溶離液が貯
留されている槽、2は例えば1ランジヤー型(若しくは
ダイヤフラム型又はシリンジ型等)の送液ポンプでなシ
溶離液を圧送するポンプ、3は例えは第1〜第6の接続
口3&〜3fおよび計量管3gを有し第1図の実線接続
状態と破線接続状態とが交互に切換えられるインジェク
タ、4は溶離液の脈動を防止するダンパー、5および6
は例えば低イオン交換容景の陽イオン交換体が充填され
てなるプレカラムおよび分離カラム、7は例えば導電率
検出器でなる検出器、8は検出1i 7がらの検出信号
を受けて信号処理するインテグレータ、9はプレカラム
5.分離カラム6、および検出器7を収容しこれらを所
定温度(例えばjOll:)に保つ恒温槽、1bは検出
器7から排出される液体を収容する廃液槽である。尚、
計量管3gの内容積は、通常2mLのものが使用される
(第1図の実施例の場合も2mt)が、これに限定され
るものではなく、例えば10mtや20mtでありても
よい。
Hereinafter, the present invention will be explained in detail using the drawings. 1st
The figure is an explanatory diagram of the configuration of an embodiment of the present invention. In the figure, la is a tank in which an eluent containing, for example, 11 N O at a concentration of 5 mM is stored, and 2 is a tank of, for example, a 1-lunger type (or diaphragm type). The pump 3 is a pump for pumping the eluent, such as a syringe type or syringe type, and has, for example, first to sixth connection ports 3 & ~ 3f and a metering tube 3g, and the solid line connection state and the broken line in Fig. 1 are connected. an injector whose connected state is alternately switched; 4 is a damper that prevents pulsation of the eluent; 5 and 6;
are a precolumn and a separation column filled with a cation exchanger with a low ion exchange capacity, 7 is a detector made of, for example, a conductivity detector, and 8 is an integrator that receives the detection signal from the detection 1i and 7 and processes the signal. , 9 is the precolumn 5. A constant temperature bath that houses the separation column 6 and the detector 7 and keeps them at a predetermined temperature (for example, jOll:) is a waste liquid tank that houses the liquid discharged from the detector 7. still,
The internal volume of the measuring tube 3g is usually 2 mL (also 2 mt in the embodiment shown in FIG. 1), but is not limited to this, and may be, for example, 10 mt or 20 mt.

以下、上記構成からなる本発明実施例の動作について説
明する。第1図において、ポンプ2が駆動すると、槽l
a内の溶離液は、ポンプ2→ダンパー4→インジエクタ
3の第1および第2接続口3a、3b→プレ力ラム5→
分離カラム6→検出器7→廃液槽1bの流路で流れる。
The operation of the embodiment of the present invention having the above configuration will be described below. In FIG. 1, when pump 2 is driven, tank l
The eluent in a is pump 2 → damper 4 → first and second connection ports 3a, 3b of injector 3 → pre-force ram 5 →
The flow path is from the separation column 6 to the detector 7 to the waste liquid tank 1b.

また、Li+αtPpm。Also, Li+αtPpm.

N−α5 ppm、 NH4+α5ppm*およびに+
1 ppmを含む溶液(以下「標準液」という)を20
0μtだけマイクロシリンジで正確に計量し、インジェ
クタ3の第4接続口3dから計量管3g内に注入する。
N-α5ppm, NH4+α5ppm* and Ni+
A solution containing 1 ppm (hereinafter referred to as "standard solution") was
Accurately measure 0 μt using a microsyringe, and inject it into the measuring tube 3g from the fourth connection port 3d of the injector 3.

この状態で、インジェクタ3をオンにすると、インジェ
クタ3の内部流路は、第1図の実線状態から破線状態に
切換わる。このため、ダンパー4を経由した溶離液は、
インジェクタ3の第1接続口3a→第6接続ロ3f→計
量管3g−+第6接続ロ3C→第2接続ロ3b→プレカ
ラム5の流路で流れる。
When the injector 3 is turned on in this state, the internal flow path of the injector 3 switches from the solid line state in FIG. 1 to the broken line state. Therefore, the eluent passing through the damper 4 is
It flows in the flow path of the first connection port 3a of the injector 3→sixth connection port 3f→metering tube 3g−+sixth connection port 3C→second connection port 3b→precolumn 5.

従って、計量管3g内に注入されていた上記標準液は、
溶離液によってプレカラム5に搬入されるようになる。
Therefore, the above standard solution injected into the measuring tube 3g is
The eluent is carried into the precolumn 5.

この標準液は、プレカラム5および分離カラム6で含有
イオン種が所定の分離を受け、その後、検出器7に到達
して、その導電率が検出される。この検出器7から出力
される検出信号は、インテグレータ8に導ひかれて所定
の信号処理を受け、第2図に示すようなりロマトグラム
と積分値等を与える。次に、上記標準液を1,000μ
tだけマイクロシリンジで正確に計量し、インジェクタ
3に注入して同様の操作を行なうと、第3図に示すよう
なりロマトグラムと積分値等が得られる。
The ionic species contained in this standard solution undergo predetermined separation in the precolumn 5 and the separation column 6, and then reach the detector 7, where its conductivity is detected. The detection signal output from the detector 7 is led to an integrator 8 and subjected to predetermined signal processing to provide a romatogram, an integral value, etc. as shown in FIG. Next, add 1,000μ of the above standard solution.
By accurately measuring t with a microsyringe, injecting it into the injector 3, and performing the same operation, a romatogram, an integral value, etc. as shown in FIG. 3 are obtained.

第2図および第3図において、クロマトグラムの各ピー
クは導電率が減少する方向に出ておシ、最初のピークが
水分によるピーク(所謂ウォータディップ)である。こ
のクォータディップは、標準液の注入量が増加すると飽
和することが多い。また、クロマトグラムのベースライ
ンを示している導電率の絶対値は約2400μS/ls
 である。同様にして、上記標準液がI DOpl、 
500pj 、および2000μtの各場合についてク
ロマトグラムと積分値等を得る。このようにして得られ
た積分値等に基ずいて、上記インジェクタ3への標準液
注入量(μt)とウォータディップの面積値(1面積カ
ウントを0.125μ■・seeとする)との関係をプ
ロットすると第4図が得られる。この第4図から、上記
標準液注入量とウォータディップ面積値との間には比例
関係があることが分り、試料注入量(標準液注入量)を
Vとし、ウォータディップ面積値をAWdとすると、下
式(1)が成立する。
In FIGS. 2 and 3, each peak in the chromatogram appears in the direction of decreasing conductivity, and the first peak is a peak due to moisture (so-called water dip). This quarter dip often becomes saturated as the amount of standard solution injected increases. Additionally, the absolute value of conductivity, which indicates the baseline of the chromatogram, is approximately 2400 μS/ls.
It is. Similarly, the above standard solution is IDOpl,
Chromatograms, integral values, etc. are obtained for each case of 500 pj and 2000 μt. Based on the integral value etc. obtained in this way, the relationship between the amount of standard solution injected into the injector 3 (μt) and the area value of water dip (one area count is 0.125μ·see) Figure 4 is obtained by plotting. From this Figure 4, it can be seen that there is a proportional relationship between the standard solution injection amount and the water dip area value, and if the sample injection amount (standard solution injection amount) is V and the water dip area value is AWd. , the following formula (1) holds true.

V ” 4.9X10−’ XAアd ・・・・・・・
・・(1)一方、第2図や第6図のようにして得られた
クロマトグラム等から、1g+、 NH4+、 N&+
、およびに+に関して各イオン量(ng)に対するピー
ク面積値をプロットすると、第5図が得られる。この第
5図から、上記各イオン量(ng)とピーク面積値(1
面積カウントα125μV−see )との間には比例
関係があることが分る。また、J”、 NH4+、 N
a十、およびK のイオン量を夫々WL、i+、WNH
4+、 WNjL+、およびWK+とし、LI+、 N
H,+、 Na+、およびに十のピーク面積値を夫々A
L、+、 ANH4+−ANa”およびAX+とすると
、第5図から下式(2)〜(5)が導びき出される。
V ” 4.9X10-' XA ad ・・・・・・・・・
...(1) On the other hand, from the chromatograms etc. obtained as shown in Figures 2 and 6, 1g+, NH4+, N&+
When the peak area values for each ion amount (ng) are plotted for , and +, FIG. 5 is obtained. From this Figure 5, the amount of each of the above ions (ng) and the peak area value (1
It can be seen that there is a proportional relationship between the area count α125 μV-see). Also, J”, NH4+, N
The ion amounts of a0 and K are WL, i+, and WNH, respectively.
4+, WNjL+, and WK+, LI+, N
The peak area values of H, +, Na+, and Ni
L, +, ANH4+-ANa'' and AX+, the following equations (2) to (5) are derived from FIG.

WL 1+=2.44 X j CI X AL l+
 ・・・・・・・・・(2)WNa+=8.13X10
 XANIL+ −−−−−−−−131WNH4+=
6.71X10 XANH4+ ・・・・・・・・・(
4)” ” ’L 49 X I Q−’ ×A K+
 −曲、、、、(5)従って、第2図や第3図に示した
ようなりロマトダラム等を、被測定試料の場合について
作成すると、ウォータディップの面積値と上記第+11
式(即ち第2図)から被測定試料の注入量を知ることが
できる。また、このクロマトグラム等における各イオン
のピーク面積値と上記第(2)弐〜第(5)式(即ち第
6図)から各イオンのイオン量を知ることができる。更
に、上記第(2)弐〜第(5)式を夫々上記第(1)式
で割った値(商)が各イオンのイオン濃度Cng/μ1
=ppn+) となる。このため、L、”、 N +、
 NH4+。
WL 1+=2.44 X j CI X AL l+
・・・・・・・・・(2) WNa+=8.13X10
XANIL+ −−−−−−−131WNH4+=
6.71X10 XANH4+ ・・・・・・・・・(
4) ” ” 'L 49 X I Q-' ×A K+
(5) Therefore, if we create a romatodalum etc. for the sample to be measured as shown in Figures 2 and 3, we can calculate the area value of the water dip and the above +11
The injection amount of the sample to be measured can be determined from the formula (ie, FIG. 2). Further, the ion amount of each ion can be known from the peak area value of each ion in this chromatogram etc. and the above-mentioned formulas (2) to (5) (ie, FIG. 6). Furthermore, the value (quotient) obtained by dividing each of the above equations (2) 2 to (5) by the above equation (1) is the ion concentration Cng/μ1 of each ion.
=ppn+). Therefore, L,”, N +,
NH4+.

および鱈イオンの各イオン濃度値を夫々CL i +。and CL i + for each ion concentration value of cod ions.

CN、L+・CNH4+ 、およびCK+とすると、下
式(6)〜(9)が成立し、この式から被測定試料中の
各イオン濃度が容易にめられるようになる。
When CN, L+·CNH4+, and CK+ are represented, the following equations (6) to (9) are established, and the concentration of each ion in the sample to be measured can be easily determined from these equations.

以上詳しく説明したような本発明の実施例によれば、ウ
ォータディップの面積値から被測定試料の注入量を知シ
各イオンのピーク面積値から各イオンのイオン量を知る
ような構成であるため、被測定試料を正確に計量するこ
となく採取された試料の量とこの試料中のイオン濃度と
を測定できる利点がある。また、被測定試料のイオン濃
度が低い場合に被測定イオン種を濃縮するために行なわ
れる従来の所謂濃縮カラム法においては、濃縮カラムに
一定量の試料を正確に注入しなければならないという煩
雑な操作を必要としていたが、本願発明によれば、濃縮
カラムに注入する程度の概略量だけ被測定試料を注入す
ればよく操作が簡単になる利点がある。更に、従来の上
記濃縮カラム法においては、被測定イオン種のマトリク
スによって濃縮カラムに完全に捕捉されないようなイオ
ン種も生じていたが、本願発明によれば、注入された試
料中の被測定イオン場は全てプレカラム等に搬送される
ようになるため、被測定イオン樵の測定誤差が著しく減
少するようになる利点もある。
According to the embodiment of the present invention as described in detail above, the injection amount of the sample to be measured is determined from the water dip area value, and the ion amount of each ion is determined from the peak area value of each ion. This method has the advantage that the amount of a sample taken and the ion concentration in the sample can be measured without accurately weighing the sample to be measured. In addition, the conventional so-called concentration column method, which is used to concentrate the ion species to be measured when the ion concentration of the sample to be measured is low, requires the complicated process of precisely injecting a certain amount of sample into the concentration column. However, according to the present invention, it is possible to simplify the operation by injecting the sample to be measured in the approximate amount to be injected into the concentration column. Furthermore, in the conventional concentration column method described above, some ion species were generated that were not completely captured by the concentration column due to the matrix of the ion species to be measured, but according to the present invention, the ion species to be measured in the injected sample were Since all the fields are transported to the pre-column etc., there is also the advantage that the measurement error of the ion beam to be measured is significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成説明図、第2図および第3
図は標準液を用いて作成したクロマトグラム等、第4図
は標準液注入量とクォータディップビークの面積値との
関係を示す図、第5図は標準液に含有されるイオンの各
イオン量とピーク面積値との関係を示す図である。 Ia、lb・・・檜、2・・・ポンプ、3・・・インジ
ェクタ、4・・・ダンパー、5・・・プレカラム、6・
・・分離カラム、7・・・検出器、8・・・インテグレ
ータ、9・・・恒温槽0 第2図 M5図 イオン量]n91
Fig. 1 is an explanatory diagram of the configuration of an embodiment of the present invention, Figs.
The figure shows the chromatogram created using the standard solution, Figure 4 shows the relationship between the amount of the standard solution injected and the area value of the quarter dip beak, and Figure 5 shows the amount of each ion contained in the standard solution. It is a figure which shows the relationship between and a peak area value. Ia, lb... Cypress, 2... Pump, 3... Injector, 4... Damper, 5... Precolumn, 6...
...Separation column, 7...Detector, 8...Integrator, 9...Thermostat 0 Fig. 2 M5 ion amount] n91

Claims (3)

【特許請求の範囲】[Claims] (1) イオンクロマトグラフィを用いて被測定試料中
のイオン種を測定する方法において、被測定イオン種と
同一の各種イオン種および水分を含む標準液を用いて、
あらかじめ、前記水分によるピークの面積値と標準液注
入量との関係を示す第1グラフと、前記各種イオン種の
ピーク面積値とイオン量との関係を示す第2グラフとを
作成し、その後、被測定試料を用いてクロマトグラムを
作成し、該クロマトグラム上の水分ピークの面積値と前
記第1グラフから前記被測定試料の注入量Vを得ると共
に、前記クロマトグラム上の各イオンピークの面積値と
前記第2グラフから前記被測定試料中に含まれる各被測
定イオン種のイオン量W1を得、これらの商(Wi/v
)から前記被測定イオン種の濃度をめることを特徴とす
るイオン種測定方法。
(1) In a method of measuring ion species in a sample to be measured using ion chromatography, using a standard solution containing the same various ion species and water as the ion species to be measured,
A first graph showing the relationship between the area value of the peak due to moisture and the amount of standard solution injected, and a second graph showing the relationship between the peak area value of the various ion species and the amount of ions are created in advance, and then, Create a chromatogram using the sample to be measured, obtain the area value of the water peak on the chromatogram and the injection amount V of the sample to be measured from the first graph, and calculate the area of each ion peak on the chromatogram. The ion amount W1 of each ion species to be measured contained in the sample to be measured is obtained from the value and the second graph, and the quotient (Wi/v
), the concentration of the ion species to be measured is determined from the following.
(2) 前記水分ピークはウォータディップでなる特許
請求範囲第(1)項記載のイオン種測定方法。
(2) The ion species measuring method according to claim (1), wherein the moisture peak is a water dip.
(3) 前記各被測定イオン種は、Ll”、 N@+、
 NH4” 。 および鱈の各イオンでなる特許請求範囲第(1)項若し
くは第(2)項記載のイオン種測定方法。
(3) Each of the ion species to be measured is Ll'', N@+,
NH4" and each ion of cod.
JP2588984A 1984-02-14 1984-02-14 Measurement of ion speed using ion chromatography Granted JPS60169764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2588984A JPS60169764A (en) 1984-02-14 1984-02-14 Measurement of ion speed using ion chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2588984A JPS60169764A (en) 1984-02-14 1984-02-14 Measurement of ion speed using ion chromatography

Publications (2)

Publication Number Publication Date
JPS60169764A true JPS60169764A (en) 1985-09-03
JPH0312703B2 JPH0312703B2 (en) 1991-02-20

Family

ID=12178352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2588984A Granted JPS60169764A (en) 1984-02-14 1984-02-14 Measurement of ion speed using ion chromatography

Country Status (1)

Country Link
JP (1) JPS60169764A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262962A (en) * 1990-03-13 1991-11-22 Shin Etsu Handotai Co Ltd Dispenser and its using method
AU627649B2 (en) * 1990-02-28 1992-08-27 Koji Hashimoto Amorphous alloy catalysts for conversion of carbon dioxide
EP0646239A1 (en) * 1993-03-30 1995-04-05 Dionex Corporation Methods for chromatography analysis
JP2002372521A (en) * 2001-06-14 2002-12-26 Tosoh Corp Measuring method of alkalinity using ion chromatograph method and simultaneous measuring method with monovalent cation
CN110702171A (en) * 2019-10-29 2020-01-17 深圳慧格科技服务咨询有限公司 Method, device and system for monitoring building waste accepting field

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU627649B2 (en) * 1990-02-28 1992-08-27 Koji Hashimoto Amorphous alloy catalysts for conversion of carbon dioxide
JPH03262962A (en) * 1990-03-13 1991-11-22 Shin Etsu Handotai Co Ltd Dispenser and its using method
EP0646239A1 (en) * 1993-03-30 1995-04-05 Dionex Corporation Methods for chromatography analysis
EP0646239A4 (en) * 1993-03-30 1995-09-13 Dionex Corp Methods for chromatography analysis.
JP2002372521A (en) * 2001-06-14 2002-12-26 Tosoh Corp Measuring method of alkalinity using ion chromatograph method and simultaneous measuring method with monovalent cation
CN110702171A (en) * 2019-10-29 2020-01-17 深圳慧格科技服务咨询有限公司 Method, device and system for monitoring building waste accepting field

Also Published As

Publication number Publication date
JPH0312703B2 (en) 1991-02-20

Similar Documents

Publication Publication Date Title
May et al. Determination of the aqueous solubility of polynuclear aromatic hydrocarbons by a coupled column liquid chromatographic technique
Ramsing et al. Miniaturization in analytical, chemistry—a combination of flow injection analysis and ion-sensitive field effect transistors for determination of ph, and potassium and calcium ions
Slanina et al. The use of ion-selective electrodes in manual and computer-controlled plow injection systems
Kubáň et al. Flow injection‐capillary electrophoresis system with contactless conductivity detection and hydrostatic pressure generated flow. Application to the quantitative analysis of inorganic anions in water samples
JPS60219554A (en) Method and apparatus for measuring minor component in major component
Alexander et al. Rapid flow analysis with inductively coupled plasma atomic-emission spectroscopy using a micro-injection technique
JPS60169764A (en) Measurement of ion speed using ion chromatography
US5312528A (en) Method of determining, with the aid of an ion-selective electrode, the concentration of a substance to be determined, and apparatus to be used in said method
US5132018A (en) Isoconductive gradient ion chromatography
CN112611810A (en) Method for analyzing and measuring alkaline organic compound containing anionic surfactant in diluent
Simpson et al. Design and evaluation of a potentiometric detection system for flow injection titrimetry
Tarter The determination of non-oxidizable species using electrochemical detection in ion chromatography
JP2844876B2 (en) Ion chromatography
Manege et al. Ion association reactions in aqueous solutions between non-UV-absorbing crown ether–alkali metal complexes with picrate ion by capillary zone electrophoresis
Yu et al. Determination of chloride in human body fluids by ion chromatography with piezoelectric sensor as detector
JP3003310B2 (en) Analysis method for trace ion species
Nguyen Ion Chromatographic determination of trace anions and cations in high-purity water
JP2613237B2 (en) Liquid chromatography and apparatus therefor
Olin et al. Automated instrumentation for determination of stability constants from solubility
JPS6067856A (en) Quantitative analysis method and apparatus for anion
JPS60190859A (en) Method and apparatus for analyzing ion seed
JPH01113657A (en) Calibrating method for cation analyzing apparatus
JPS6193955A (en) Ion chromatography
SU1002942A1 (en) Hexamethylendiamine polarographic determination method
Evmiridis et al. Flow apparatus for monitoring dissolution rate curves using ion-exchange resins. Part I. Phosphite dissolution rate curve