JPS60168534A - Synthesis of polishing particles - Google Patents
Synthesis of polishing particlesInfo
- Publication number
- JPS60168534A JPS60168534A JP59023009A JP2300984A JPS60168534A JP S60168534 A JPS60168534 A JP S60168534A JP 59023009 A JP59023009 A JP 59023009A JP 2300984 A JP2300984 A JP 2300984A JP S60168534 A JPS60168534 A JP S60168534A
- Authority
- JP
- Japan
- Prior art keywords
- stock material
- abrasive grains
- raw material
- carbon
- polishing particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は砥粒合成方法、特に金属或いは金属酸化物の線
材、条片材、粉末等に衝撃的に通電して砥粒を生成する
方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing abrasive grains, and particularly to a method for producing abrasive grains by applying an impact current to a metal or metal oxide wire, strip, powder, or the like.
一般に、研削加工等に用いられる砥粒には、強度及び硬
度が大きく、靭性に富むこと等の性質を兼ね備えている
ことが要求される。この砥粒の性質は加工速度や加工効
率に大きく影響するから、加工速度や加工効率を向上さ
せるために、強度及び硬度が高く、靭性に富む新規な砥
粒の開発が強く要望されている。Generally, abrasive grains used for grinding and the like are required to have properties such as high strength and hardness, and high toughness. Since the properties of this abrasive grain greatly affect machining speed and efficiency, there is a strong demand for the development of new abrasive grains with high strength, hardness, and toughness in order to improve machining speed and efficiency.
而して、砥粒の材料となるチタン、タングステン、ニオ
ブ、タンタル、ジルコニウム、ハフニウム、珪素、硼素
等の炭化物や窒化物は、これらの金属或いは金属酸化物
と炭素や炭素化合物或いは窒素との反応によって造られ
るのであるが、従来の方法では生成物質中にこれらの金
属の酸化物や遊離炭素等の不純物が残留する。また、こ
れらの不純物は金属炭化物や金属窒化物と固溶体を作る
ことが多いため、生成物質から不純物を除去することは
非常に困難であり、純度の高い金属炭化物や金属窒化物
、或いは金属硼化物が得られず、砥粒として要求される
強度、硬度及び靭性等を兼ね備えたものを得ることは困
難であり、これを用いて切削加工等を行なった場合に充
分に高い加工速度及び加工効率が得られないという問題
点があった。Therefore, carbides and nitrides such as titanium, tungsten, niobium, tantalum, zirconium, hafnium, silicon, and boron, which are the materials of abrasive grains, are produced by the reaction of these metals or metal oxides with carbon, carbon compounds, or nitrogen. However, in conventional methods, impurities such as oxides of these metals and free carbon remain in the product. In addition, these impurities often form solid solutions with metal carbides and metal nitrides, so it is extremely difficult to remove them from the generated material. However, it is difficult to obtain abrasive grains that have the required strength, hardness, and toughness, and it is difficult to obtain abrasive grains that have the required properties such as strength, hardness, and toughness. There was a problem that I couldn't get it.
また、炭化チタン、炭化タングステン、炭化タンタル等
の炭化物を二種以上混合し、これらを固溶体或いは複1
合化合物として用いた砥粒も提案されているが、それで
も尚、充分満足し得る強度、硬度及び靭性等が得られな
いと云う問題点があった。In addition, two or more types of carbides such as titanium carbide, tungsten carbide, tantalum carbide, etc. may be mixed, and these may be mixed as a solid solution or as a composite.
Although abrasive grains used as composite compounds have been proposed, there is still a problem in that sufficiently satisfactory strength, hardness, toughness, etc. cannot be obtained.
このため本発明者等は、一つの圧力容器内にチタン、タ
ングステン、ニオブ、タンタル、ジルコニウム、ハフニ
ウム、珪素、硼素及びこれらの酸化物より成る群の中か
ら選ばれた線状、箔状、状片状、又は粉末状等の形状の
第一の原料と、炭化水素、アンモニア、炭素、酸化炭素
、水素、酸素、窒素、水及び硼素から成る群の中から選
ばれた1種又は2種以上の混合物から成る第二の原料と
を装填し、上記第二の原料から成る雰囲気中で上記第一
の原料に衝撃的に通電してこれを爆発的に気化させ、上
記第二の原料と反応させ、直接上記金属等の炭化物、窒
化物、硼化物等から成る砥粒の製造方法を提案した。For this reason, the inventors of the present invention have prepared a wire-shaped, foil-shaped, or shaped material selected from the group consisting of titanium, tungsten, niobium, tantalum, zirconium, hafnium, silicon, boron, and their oxides in one pressure vessel. A first raw material in the form of flakes or powder, and one or more selected from the group consisting of hydrocarbons, ammonia, carbon, carbon oxide, hydrogen, oxygen, nitrogen, water, and boron. A second raw material consisting of a mixture of the above is charged, and the first raw material is explosively vaporized by shockingly energizing it in an atmosphere consisting of the second raw material, and reacts with the second raw material. We proposed a method for directly producing abrasive grains made of carbides, nitrides, borides, etc. of the above-mentioned metals.
尚、上記第二の原料は、炭化物を生成させる場合は、例
えば炭素微粉とそのキャリアガス、炭化水素のキャリア
ガスによる噴霧、酸化炭素と還元水素との混合ガス、酸
化炭素ガス等の如くであり、又窒化物を生成させる場合
には、例えば窒素ガス、アンモニア蒸気又はキャリアガ
スによる噴霧等、又炭化物と窒化物とを混合生成させる
場合には、上記例示の混合物とか、炭化用の原料のキャ
リアガスを窒素とするとか、又は逆にアンモニアを酸化
炭素で噴霧するとか、更に炭素微粉を混合等して実施す
ることができ、又硼化物の生成には、勿論硼素の供給が
必要であって、他方第一の原料が酸化物の場合には放電
による反応時に還元性雰囲気とする等の考慮の下に行な
われるものである。In addition, when producing a carbide, the second raw material may be, for example, carbon fine powder and its carrier gas, spraying with a hydrocarbon carrier gas, mixed gas of carbon oxide and reduced hydrogen, carbon oxide gas, etc. In the case of producing nitrides, for example, spraying with nitrogen gas, ammonia vapor, or carrier gas, and in the case of producing a mixture of carbides and nitrides, use the above-mentioned mixture or a carrier of the raw material for carbonization. This can be carried out by using nitrogen as the gas, or conversely by atomizing ammonia with carbon oxide, or by mixing fine carbon powder, and of course, boron needs to be supplied to produce boride. On the other hand, when the first raw material is an oxide, consideration is given to creating a reducing atmosphere during the reaction by discharge.
この方法によれば、結晶の大きさが均斉で純度が高く、
強度及び硬度が大きく、靭性に富む優れた性質の砥粒が
得られるが、本発明は上記の方法を更に改良、発展させ
たものであり、その要旨とするところは、チタン、タン
グステン、ニオブ、タンタル、ジルコニウム、ハフニウ
ム、珪s、i素及びこれらの酸化物より成る群の中から
選ばれた線状、箔状、条片状、又は粉末状等の形状の第
一の原料にランタン、セリウム、ネオジム、サマリウム
、イツトリウム、ユーロピウム、プラセオジウム等の希
土類元素を重量比で(以下同じ)0゜1%以上2%未満
混入して反応させることにある。According to this method, the crystal size is uniform and purity is high;
Abrasive grains with excellent properties such as high strength, hardness, and toughness can be obtained.The present invention is a further improvement and development of the above method, and its gist is that titanium, tungsten, niobium, Lanthanum or cerium is used as the first raw material in the form of a wire, foil, strip, or powder selected from the group consisting of tantalum, zirconium, hafnium, silicon, i, and oxides thereof. , neodymium, samarium, yttrium, europium, praseodymium and other rare earth elements are mixed in a weight ratio of 0.1% or more and less than 2% (the same applies hereinafter) and reacted.
この希土類元素の最も望ましい添加量は1.2%〜1.
5%であり、その添加量が0.1%未満となると見るべ
き効果がなく、又、2%以上の添加量は却って有害であ
る。The most desirable addition amount of this rare earth element is 1.2% to 1.2%.
If the amount added is less than 0.1%, there will be no noticeable effect, and if the amount added is more than 2%, it will be harmful.
このようにして生成した砥粒は結晶の大きさが均斉で不
純物の析出が少なく、そのため砥粒の強度、硬度及び靭
性が向上し、これを研削等に用いれば加工速度及び加工
効率を格段に向上させることができるものである。The abrasive grains produced in this way have uniform crystal sizes and less precipitation of impurities, which improves the strength, hardness and toughness of the abrasive grains, and if used for grinding etc., machining speed and processing efficiency can be significantly increased. This is something that can be improved.
以下、本発明に係る砥粒合成方法によって合成した砥粒
を用いてラップ加工した例について説明する。Hereinafter, an example of lapping using abrasive grains synthesized by the abrasive grain synthesis method according to the present invention will be described.
第1図は本発明に係る砥粒合成方法によって合成した’
l”1Lac及びTjCeCを成分とする砥粒を用いて
加工を行なった例を、従来公知の砥粒を用いた加工例と
対比して示すグラフ、第2図はTiCeC及びT1Ce
CNを成分とする砥粒を用いて加工を行なった例を、従
来公知の砥粒を用いた加工例と対比して示すグラフであ
る。Figure 1 shows the abrasive grains synthesized by the abrasive synthesis method according to the present invention.
A graph showing an example of machining using abrasive grains containing l"1Lac and TjCeC in comparison with a machining example using conventionally known abrasive grains.
It is a graph showing an example of machining using abrasive grains containing CN in comparison with a machining example using conventionally known abrasive grains.
第1図及び第2図中、縦軸は共に加工速度(g/m1n
)、横軸は共に加工面荒さくμRmax)を表わし、1
はTi La C(La 1%含有)の砥粒を用いた場
合の実験結果を示す直線、2はTiCeC(Ce1.5
%含有)の砥粒を用いた場合の結果を示す直線、3はT
t Ce C(Ce 1.2%含有)の砥粒を用いた場
合の結果を示す直線、4はT1Ce CN (Ce 1
.2%含有、C、N )の砥粒を用いた場合の結果を示
す直線であり、鎖線で示したものはダイヤモンド砥粒を
用いた場合の結果を示し、一点鎖線で示したものは従来
のTiC砥粒を用いた場合の結果を示すものである。In Figures 1 and 2, the vertical axis is the machining speed (g/m1n
), the horizontal axis both represent the machined surface roughness μRmax), and 1
2 is a straight line showing the experimental results when TiLaC (La 1% content) abrasive grains are used;
A straight line showing the results when using abrasive grains containing %), 3 is T
t Ce C (containing 1.2% Ce) abrasive grains are used, and 4 is a straight line showing the results when using abrasive grains of
.. This is a straight line showing the results when using abrasive grains containing 2% C, N), the dashed line shows the results when using diamond abrasive grains, and the dashed line shows the results when using conventional abrasive grains. This shows the results when using TiC abrasive grains.
尚、加工条件は、 ラップ板の回転数416,00Or、p、m。Furthermore, the processing conditions are as follows: The number of rotations of the lap plate is 416,00 Or, p, m.
被加工体:5KD11鋼、硬度HRC65加工面積:1
cla
であり、上記の砥粒をヒマシ油に混合して用いた。Workpiece: 5KD11 steel, hardness HRC65 Machining area: 1
The above abrasive grains were mixed with castor oil and used.
第1図及び第2図に示されるように本発明に係る砥粒合
成方法によって合成した砥粒は、従来の砥粒に比べて同
一の加工面荒さに対して加工速度が一段と向上すること
が分かる。As shown in FIGS. 1 and 2, the abrasive grains synthesized by the abrasive grain synthesis method according to the present invention can further improve machining speed for the same machined surface roughness compared to conventional abrasive grains. I understand.
本発明は畝上の如く構成されるから、本発明によるとき
は、強度、硬度が大きく、靭性に富み、研削加工等に用
いた場合、加工速度及び加工効率が格段に向上する砥粒
を提供することことができる。Since the present invention has a ridge-like structure, the present invention provides abrasive grains that have high strength, hardness, and toughness, and when used in grinding, etc., significantly improve processing speed and processing efficiency. can be done.
尚、本発明は畝上の実施例に限定されるものではなく、
例えば、上記実施例では第一の原料に混入する希土類元
素としてランタン及びセリウムを用いたものを示したが
、これはネオジム、サマリウム、インドリウム、ユーロ
ピウム、プラセオジウム等を用いてもよく、本発明はこ
れらの一切を包摂するものである。Note that the present invention is not limited to the embodiments on the ridges,
For example, in the above embodiment, lanthanum and cerium were used as the rare earth elements mixed into the first raw material, but neodymium, samarium, indolium, europium, praseodymium, etc. may also be used. It encompasses all of these.
第1図は本発明に係る砥粒合成方法によって合成したT
i La C及びTi Ce Cを成分とする砥粒を用
いて加工を行なった例を、従来公知の砥粒を用いた加工
例と対比して示すグラフ、第2図はTi Ce C及び
T1CeCNを成分とする砥粒を用いて加工を行なった
例を、従来公知の砥粒を用いた加工例と対比して示すグ
ラフである。
1−−−−−−−−−−Ti La C(La 1%含
有)の砥粒を用いた場合の実験結果を示す直線
2−−−−−−−−−−−Tt Ce C(Ce 1.
5%含有)の砥粒を用いた場合の結果を示す直線
3−−−−−−−−−−−−Ti Ce C(Ce 1
.5%含有)の砥粒を用いた場合の結果を示す直線
4−−−−−−−−−Ti Ce CN (Ce 1%
含有)の砥粒を用いた場合の結果を示す直線Figure 1 shows T synthesized by the abrasive grain synthesis method according to the present invention.
A graph showing an example of machining using abrasive grains containing i La C and Ti Ce C in comparison with a machining example using conventionally known abrasive grains. It is a graph showing an example of processing using abrasive grains as a component in comparison with a processing example using conventionally known abrasive grains. 1 ------------- Straight line 2 showing the experimental results when using Ti La C (La 1% content) abrasive grains 2 ----------Tt Ce C (Ce 1.
Straight line 3 shows the results when using abrasive grains containing 5% Ti Ce C (Ce 1
.. Straight line 4 shows the results when using abrasive grains containing TiCeCN (Ce 1%)
A straight line showing the results when using abrasive grains containing
Claims (1)
ンタル、ジルコニウム、ハフニウム及びこれらの酸化物
より成る群の中から選ばれた線状、箔状、又は粉末状等
の形状の第一の原料と、炭化水素、アンモニア、炭素、
酸化炭素、水素、酸素、窒素、水及び硼素から成る群の
中から選ばれた1種又は2種以上の混合物から成る第二
の原料とを装填し、上記第二の原料から成る雰囲気中で
上記第一の原料に衝撃的に通電してこれを爆発的に気化
させ、上記第二の原料と反応させ、直接上記金属等の炭
化物、窒化物、硼化物等から成る砥粒を生成する方法に
於て、 上記第一の原料に希土類元素を重量比で0.1%以上2
%未満の範囲内で混入したことを特徴とする上記の砥粒
合成方法。[Claims] In one pressure vessel, a material selected from the group consisting of titanium, tungsten, niobium, tantalum, zirconium, hafnium, and oxides thereof, in the form of a wire, foil, or powder, etc. First raw material, hydrocarbons, ammonia, carbon,
and a second raw material consisting of one or a mixture of two or more selected from the group consisting of carbon oxide, hydrogen, oxygen, nitrogen, water and boron, and in an atmosphere consisting of the second raw material. A method of explosively vaporizing the first raw material by shockingly energizing it, causing it to react with the second raw material, and directly producing abrasive grains made of carbides, nitrides, borides, etc. of the metals, etc. In the above first raw material, a rare earth element is added in a weight ratio of 0.1% or more2.
The abrasive grain synthesis method described above is characterized in that the abrasive grains are mixed within a range of less than %.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59023009A JPS60168534A (en) | 1984-02-13 | 1984-02-13 | Synthesis of polishing particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59023009A JPS60168534A (en) | 1984-02-13 | 1984-02-13 | Synthesis of polishing particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60168534A true JPS60168534A (en) | 1985-09-02 |
JPH0475055B2 JPH0475055B2 (en) | 1992-11-27 |
Family
ID=12098489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59023009A Granted JPS60168534A (en) | 1984-02-13 | 1984-02-13 | Synthesis of polishing particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60168534A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01278403A (en) * | 1988-03-22 | 1989-11-08 | Inst Strukturnoi Makrokinetiki An Sssr | Method for manufacturing powder-like fire-resistant inorganic compound and metal composition |
JP2009241025A (en) * | 2008-03-31 | 2009-10-22 | Japan Science & Technology Agency | Method of preparing microparticle |
CN113943014A (en) * | 2021-10-19 | 2022-01-18 | 安徽理工大学 | Preparation method of zinc-titanium composite metal oxide |
-
1984
- 1984-02-13 JP JP59023009A patent/JPS60168534A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01278403A (en) * | 1988-03-22 | 1989-11-08 | Inst Strukturnoi Makrokinetiki An Sssr | Method for manufacturing powder-like fire-resistant inorganic compound and metal composition |
JP2009241025A (en) * | 2008-03-31 | 2009-10-22 | Japan Science & Technology Agency | Method of preparing microparticle |
CN113943014A (en) * | 2021-10-19 | 2022-01-18 | 安徽理工大学 | Preparation method of zinc-titanium composite metal oxide |
Also Published As
Publication number | Publication date |
---|---|
JPH0475055B2 (en) | 1992-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5163975A (en) | Method of coating alumina particles with refractory material, abrasive particles made by the method and abrasive products containing the same | |
EP0598140B1 (en) | Cubic boron nitride-base sintered ceramics for cutting tool | |
EP1313887B1 (en) | Method of producing an abrasive product containing cubic boron nitride | |
JPH0713279B2 (en) | High-pressure phase boron nitride sintered body for cutting tool and manufacturing method thereof | |
US4990410A (en) | Coated surface refined sintered alloy | |
US5569862A (en) | High-pressure phase boron nitride sintered body for cutting tools and method of producing the same | |
JPS58211862A (en) | Composite silicon nitride cutting tool also executing coating | |
JPS60168534A (en) | Synthesis of polishing particles | |
JP2000044348A (en) | High-hardness sintered compact for cutting working of cast iron | |
RU2413699C2 (en) | Superhard material | |
JPS63134644A (en) | Metal-ceramics monolithic composite | |
JPH0583634B2 (en) | ||
JP2710287B2 (en) | Polycrystalline diamond for tools | |
US6461990B1 (en) | Cubic boron nitride composite particle | |
JP2001019411A (en) | Cubic boron nitride-base composite grain | |
JP2794111B2 (en) | Diamond coated cutting tool | |
JPH11335174A (en) | Cubic boron nitride sintered compact | |
JP3255750B2 (en) | Method for producing diamond-like sintered body | |
JP2970016B2 (en) | Hard layer coated cemented carbide cutting tool | |
KR960000556B1 (en) | Centring tool material | |
JPH0235931A (en) | Production of abrasive particles of cubic boron nitride | |
KR930010199B1 (en) | Diamond coated sintered body | |
JPS62108716A (en) | Production of cubic boron nitride | |
JPH04240006A (en) | Cutting tip made of cubic boron nitride group extra high pressure sintered material having high strength | |
JPH0663092B2 (en) | Diamond-coated sintered body excellent in peeling resistance and method for producing the same |