JPS6016807B2 - Electric car control device - Google Patents

Electric car control device

Info

Publication number
JPS6016807B2
JPS6016807B2 JP53142363A JP14236378A JPS6016807B2 JP S6016807 B2 JPS6016807 B2 JP S6016807B2 JP 53142363 A JP53142363 A JP 53142363A JP 14236378 A JP14236378 A JP 14236378A JP S6016807 B2 JPS6016807 B2 JP S6016807B2
Authority
JP
Japan
Prior art keywords
frequency
signal
induction motor
output
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53142363A
Other languages
Japanese (ja)
Other versions
JPS5568802A (en
Inventor
茂俊 岡松
孝 坪井
英二 高津
正彦 射場本
博 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP53142363A priority Critical patent/JPS6016807B2/en
Publication of JPS5568802A publication Critical patent/JPS5568802A/en
Publication of JPS6016807B2 publication Critical patent/JPS6016807B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 本発明は電気車の制御装置に係り、特に、誘導電動機を
用いるものにおいて力行時の良好なノッチ止め及び再力
行制御を行なうに最適な電気車の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for an electric vehicle, and more particularly to a control device for an electric vehicle that is optimal for performing good notch stop and re-powering control during power running in a vehicle using an induction motor.

第1図は誘導電動機の一般的な特性を示す図であるが、
周知のとおり、議導電動機を電気車の駆動用として用い
る場合には、トルクー定制御の必要性から、第1図にお
けるすべり周波数fsを一定に保ち、かつ電流を一定に
制御する方式が一般的に行なわれている。
Figure 1 is a diagram showing the general characteristics of an induction motor.
As is well known, when a conduction motor is used to drive an electric vehicle, it is common to maintain a constant slip frequency fs in Figure 1 and control the current constant due to the need for constant torque control. It is carried out in

第2図はこのような制御特性を実現する制御回路の一例
である。すなわち、誘導電動機1のすべり周波数を一定
に保つために、談議導電動機1と直結したパルスジェネ
レータ2、この出力信号をf−V変換し誘導電動機1の
回転数に対応した電圧を発生する周波数−電圧変換回路
(f−V変換器)3、該f−V変換器3の出力とすべり
周波数パターンSPとを加算する加算器4、この加算結
果の電圧によって誘導電動機1に電力を供給するィンバ
ータ5の周波数を周波数制御する周波数制御ブロック6
が備えられている。
FIG. 2 shows an example of a control circuit that realizes such control characteristics. That is, in order to keep the slip frequency of the induction motor 1 constant, a pulse generator 2 is directly connected to the induction motor 1, and this output signal is converted into f-V to generate a voltage corresponding to the rotation speed of the induction motor 1. - A voltage conversion circuit (f-V converter) 3, an adder 4 that adds the output of the f-V converter 3 and the slip frequency pattern SP, and an inverter that supplies power to the induction motor 1 using the voltage of this addition result. Frequency control block 6 that controls the frequency of 5
is provided.

また、誘導電動機1に流れる電流を変流器7によって検
出し、この値が電流パターンIPを少しでも越えると、
比較器8が出力信号を発生し、電圧制御ブロック9がィ
ンバータ5の出力電圧を下げる様に動作する。一方、電
気車を運転する場合には、運転者のマスコン(主幹制御
器)の操作に応じて電気車の速度を調整する方式が一般
的であるが、第2図の制御方式の周波数リミッタ10が
ない場合にはィンバータ5の出力周波数は常に誘導電動
機1の回転周波数よりすべり周波数の分だけ高いので速
度がどこまでも上昇してしまう。
In addition, the current flowing through the induction motor 1 is detected by the current transformer 7, and if this value exceeds the current pattern IP even slightly,
Comparator 8 generates an output signal, and voltage control block 9 operates to reduce the output voltage of inverter 5. On the other hand, when driving an electric car, it is common to adjust the speed of the electric car according to the driver's operation of a master controller. If there is no inverter, the output frequency of the inverter 5 will always be higher than the rotational frequency of the induction motor 1 by the amount of the slip frequency, so the speed will increase indefinitely.

このために周波数リミッ夕10を設けてインバータ5の
周波数上昇を押え、マスコンのハンドルの位置に応じて
周波数の最高制限値を切換えるようにすればよい。しか
しながらこの場合には加速後の再力行のときなどのよう
に高い速度から再運転する場合にはマスコン11が必ず
低ノッチを通過するので必ず低い周波数からインバータ
5が動作し始めることになり、再力行でなく最初は回生
(周知の如く誘導電動機に回転単周波数よりも低い周波
数の電圧を印加する回生状態となる。)状態となる不都
合があつた。本発明の目的は、駆動用誘導電動機のすべ
り周波数を制御することにより力行時に良好な速度制御
のできる電気車を提供することにある。本発明は、マス
コンのそれぞれのハンドル位置に応じて周波数の制限値
を設定し、誘導電動機の回転速度に対応する信号、例え
ば出力周波数がこれらの設定値を越えないように、誘導
電動機の回転周波数がマスコンの指定する制限値を越え
る場合には、その越えた量に比例した値をすべり周波数
から引くようにし、良好なノッチ止め制御と再力行制御
を可能にしたものである。
For this purpose, a frequency limiter 10 may be provided to suppress the increase in the frequency of the inverter 5, and the maximum limit value of the frequency may be changed according to the position of the handle of the master controller. However, in this case, when re-operating from a high speed such as during re-powering after acceleration, the master controller 11 will always pass through a low notch, so the inverter 5 will always start operating from a low frequency. There was an inconvenience that the motor was initially in a regenerative state (as is well known, a regenerative state in which a voltage of a frequency lower than the rotational single frequency is applied to the induction motor) rather than power running. An object of the present invention is to provide an electric vehicle that can perform good speed control during power running by controlling the slip frequency of a driving induction motor. The present invention sets a frequency limit value according to the position of each handle of the mascon, and controls the rotation frequency of the induction motor so that the signal corresponding to the rotation speed of the induction motor, for example, the output frequency, does not exceed these set values. When the limit value specified by the master controller is exceeded, a value proportional to the amount exceeded is subtracted from the slip frequency, making it possible to perform good notch stop control and repowering control.

第3図は本発明の実施例を示すブロック図である。FIG. 3 is a block diagram showing an embodiment of the present invention.

本実施例は第2図の装置における周波数制御ブロック6
の入力回路に変更を加えた構成であり、あらたに減算器
12、リミツター13、ダイオード14、/ッチ止め回
路16、比較器15の各々を加えたものである。すなわ
ち、周波数−電圧変換器3の出力電圧がマスコン11と
ノッチ止め回路16とによって設定された電圧fPを越
えると、その越えた量に応じて比較器15が正の出力を
出し、すべり周波数パターンSPから減算器12によっ
て減少させるものである。減算器12の出力はリミッタ
ー13、ダイオード14の各々を介して加算器4に印加
する。この場合、リミツタ13を入れるのはすべりの最
大値を制限する為(信号SP自体に制限がかかっておれ
ば必要ない)であり、ダイオード14を用いるのはリミ
ツター13の出力値が負になったとき逆流するのを防止
する為である。その他の回路動作については第1図の場
合と同様である。かかる構成により、誘導電動機の回転
速度(f‐V変換器3の出力)に加算されるすべり周波
数を連続的に調整するため、力行時にはインバータ5の
出力周波数は、必ず譲導電動機1の回転周波数以下にな
らないので、加速後の再力行のときにも最初に回生状態
になることがなく、スムーズな運転ができる。特に、速
度の超過量に応じてすべり周波数が連続的に減少させら
れるので、発生トルクの変化がスムーズとなる。以上説
明したように、本発明によれば加速後の再力行の場合に
も、誘導電動機のすべり周波数は負にならず、また、す
べり周波数をゼロから設定すべり周波数まで連続的に変
化でき、モータトルクも連続的に変化できるため、スム
ーズな電気車運転が可能になる。
In this embodiment, the frequency control block 6 in the apparatus shown in FIG.
This configuration is a modification of the input circuit shown in FIG. 1, in which a subtracter 12, a limiter 13, a diode 14, a /ch stop circuit 16, and a comparator 15 are newly added. That is, when the output voltage of the frequency-voltage converter 3 exceeds the voltage fP set by the mask controller 11 and the notch stopper circuit 16, the comparator 15 outputs a positive output according to the amount exceeded, and the slip frequency pattern It is subtracted from SP by the subtracter 12. The output of the subtracter 12 is applied to the adder 4 via a limiter 13 and a diode 14, respectively. In this case, the reason for inserting the limiter 13 is to limit the maximum value of the slip (not necessary if the signal SP itself is limited), and the reason for using the diode 14 is to limit the maximum value of the slip.The reason for using the diode 14 is to limit the maximum value of the slip. This is to prevent backflow. Other circuit operations are the same as in the case of FIG. With this configuration, the slip frequency added to the rotational speed of the induction motor (output of the f-V converter 3) is continuously adjusted, so that the output frequency of the inverter 5 is always equal to the rotational frequency of the transfer motor 1 during power running. Since this does not occur, even when re-powering after acceleration, there is no initial regeneration state, and smooth operation is possible. In particular, since the slip frequency is continuously reduced in accordance with the amount of excess speed, the generated torque changes smoothly. As explained above, according to the present invention, even when repowering after acceleration, the slip frequency of the induction motor does not become negative, and the slip frequency can be continuously changed from zero to the set slip frequency, and the motor Since the torque can also be changed continuously, smooth electric vehicle operation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は誘導電動機の一般的特性を示す特性図、第2図
は従来の電気車の制御装置を示すブロック図、第3図は
本発明の実施例を示すブロック図である。 1……誘導電動機、2…・・・パルスジェネレー夕、3
……周波数−電圧変換回路、4・・・・・・加算器、5
・・・・・・ィンバータ、6・・・・・・周波数制御ブ
ロック、11・・・・・・マスコン、12・・・・・・
減算器、13……リミッター、14……ダイオード、1
5……比較器、16・・…・ノッチ止め回路。 豹l図 努Z図 符3図
FIG. 1 is a characteristic diagram showing general characteristics of an induction motor, FIG. 2 is a block diagram showing a conventional electric vehicle control device, and FIG. 3 is a block diagram showing an embodiment of the present invention. 1...Induction motor, 2...Pulse generator, 3
...Frequency-voltage conversion circuit, 4... Adder, 5
...Inverter, 6...Frequency control block, 11...Mascon, 12...
Subtractor, 13...Limiter, 14...Diode, 1
5... Comparator, 16... Notch stop circuit. Leopard l figure Tsutomu Z figure 3 figure

Claims (1)

【特許請求の範囲】[Claims] 1 すべり周波数パターンに基づいて可変電圧、可変周
波数の交流出力を発生するインバータによつて駆動用誘
導電動機を制御する電気車の制御装置において、上記誘
導電動機の回転数に対応した信号に基いた第1の信号と
主幹制御器の操作位置に対応して予め設定された第2の
信号とを比較し、第1の信号が第2の信号を越えたとき
に、その越えた量に応じた出力信号を発生する比較手段
と、該比較手段の出力により上記誘導電動機のすべり周
波数パターンを減少させる演算手段と、この演算手段の
出力を上記第1の信号から加減算して上記インバータの
周波数パターンを得る手段とを備えたことを特徴とする
電気車の制御装置。
1. In an electric vehicle control device that controls a driving induction motor using an inverter that generates an AC output of variable voltage and variable frequency based on a slip frequency pattern, Compare the first signal with a second signal preset corresponding to the operating position of the main controller, and when the first signal exceeds the second signal, output according to the amount exceeded. Comparing means for generating a signal, calculating means for reducing the slip frequency pattern of the induction motor by the output of the comparing means, and adding or subtracting the output of the calculating means from the first signal to obtain the frequency pattern of the inverter. A control device for an electric vehicle, characterized by comprising: means.
JP53142363A 1978-11-20 1978-11-20 Electric car control device Expired JPS6016807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53142363A JPS6016807B2 (en) 1978-11-20 1978-11-20 Electric car control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53142363A JPS6016807B2 (en) 1978-11-20 1978-11-20 Electric car control device

Publications (2)

Publication Number Publication Date
JPS5568802A JPS5568802A (en) 1980-05-23
JPS6016807B2 true JPS6016807B2 (en) 1985-04-27

Family

ID=15313633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53142363A Expired JPS6016807B2 (en) 1978-11-20 1978-11-20 Electric car control device

Country Status (1)

Country Link
JP (1) JPS6016807B2 (en)

Also Published As

Publication number Publication date
JPS5568802A (en) 1980-05-23

Similar Documents

Publication Publication Date Title
JP2555038B2 (en) Induction motor type electric vehicle controller
EP0022267B1 (en) Control system for induction motor-driven car
JPS6016807B2 (en) Electric car control device
JPH11299012A (en) Controller of dc electric vehicle
JP3622410B2 (en) Control method of electric motor by inverter
JP3287877B2 (en) Electric vehicle torque control device
JPH05161208A (en) Regenerative brake force regulator for electric automobile
JPH0424957B2 (en)
JP2001169403A (en) Controller for direct current electric car
JPH0467410B2 (en)
JPS61161974A (en) Regenerative controller of ac motor
JPH027241B2 (en)
JP2561554B2 (en) Electric braking and auxiliary accelerators for vehicles
JP3060814B2 (en) Control circuit of magnetic flux control type inverter
JPH0467408B2 (en)
JPS61121783A (en) Current command generator for controlling induction motor
JPS6053557B2 (en) Induction motor control device
JPS6013490A (en) Speed controller of elevator
JPH0467407B2 (en)
JP2892800B2 (en) Inverter constant braking force control method
JPH02214402A (en) Controller for electric vehicle
JP2534202B2 (en) Inverter regenerative control device
JPS62250804A (en) Controller for electric rolling stock
JP2528885B2 (en) Electric vehicle control device
JPS5828832B2 (en) Induction motor control device