JPS6016745B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor

Info

Publication number
JPS6016745B2
JPS6016745B2 JP6193179A JP6193179A JPS6016745B2 JP S6016745 B2 JPS6016745 B2 JP S6016745B2 JP 6193179 A JP6193179 A JP 6193179A JP 6193179 A JP6193179 A JP 6193179A JP S6016745 B2 JPS6016745 B2 JP S6016745B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
manufacturing
oxide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6193179A
Other languages
Japanese (ja)
Other versions
JPS55153318A (en
Inventor
喜代二 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP6193179A priority Critical patent/JPS6016745B2/en
Publication of JPS55153318A publication Critical patent/JPS55153318A/en
Publication of JPS6016745B2 publication Critical patent/JPS6016745B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は固体電解コンデンサの製造方法特に半導体層の
形成に関するもので、陰極物質であるグラファィト粒子
と誘電体皮膜との接触による短絡を防止し、かつ二酸化
マンガン生成時の熱分解回数を少なくして漏れ電流、耐
電圧特性を向上させることを目的としたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solid electrolytic capacitor, particularly to the formation of a semiconductor layer. The purpose is to reduce the number of times of thermal decomposition and improve leakage current and withstand voltage characteristics.

従来焼結固体電解コンデンサは弁作用金属粉粒を成形一
瞬結してコンデンサ素子とし誘電体皮膜一半導体層(例
えば二酸化マンガン層)ーグラファィト層−陰極層を順
次形成した構成からなるが上記二酸化マンガン層の形成
はコンデンサ素子を硝酸マンガン水溶液に浸潰して含浸
しこれを200〜400qoで加熱し含浸した硝酸マン
ガンを熱分解することによって得ている。
Conventional sintered solid electrolytic capacitors have a structure in which a dielectric film, a semiconductor layer (for example, a manganese dioxide layer), a graphite layer, and a cathode layer are sequentially formed by molding valve action metal powder particles and instantly solidifying them. is obtained by impregnating a capacitor element by immersing it in an aqueous solution of manganese nitrate, heating it at 200 to 400 qo, and thermally decomposing the impregnated manganese nitrate.

しかるに該二酸化マンガン層は繊密にかつ一定の厚さに
形成することが肝要であるが、このような二酸化マンガ
ン層を得るには上記硝酸マンガンの含浸−熱分解の工程
を数回から1増攻回繰り返し行う必要がある。しかしな
がら前記熱分解の回数増加にともなって漏れ電流は大き
く耐電圧は低下するなどの特性上の問題点のほか、同じ
工程を繰り返すことによる作業能率上、労務上の欠点が
ある。したがってこの硝酸マンガンの含浸−熱分解の回
数をできるだけ少なくすることが望ましいが、単に熱分
解の回数を少なくした場合には陰極物質であるグラフア
ィトを塗布したときに誘電体皮膜との間で短絡する割合
が大きくなる。これは熱分解回数が少ないと二酸化マン
ガン層が均一に生成されていず、グラフアィト粒子が直
接譲電体皮膜に接触するためである。本発明は上記の点
に鑑みてなされたものでグラフアィト粒子が入り込むよ
うな二酸化マンガン層の隙間を絶縁物である無機酸化物
の微粒子で埋め込むことによって前記グラフアィト粒子
が直接誘電体皮膜に接触することを防止したもので、こ
れによって熱分解回数が少ない場合でも漏れ電流が小さ
く短絡不良が少ない、かっ歩蟹りの向上する固体電解コ
ンデンサの製造方法も提供するものである。
However, it is important to form the manganese dioxide layer delicately and with a constant thickness, but in order to obtain such a manganese dioxide layer, the above-mentioned impregnation-pyrolysis process of manganese nitrate is increased from several times to one. It is necessary to repeat the attack. However, as the number of thermal decompositions increases, there are problems in terms of characteristics such as a large leakage current and a decrease in withstand voltage, as well as drawbacks in terms of work efficiency and labor due to repeating the same process. Therefore, it is desirable to reduce the number of impregnation-pyrolysis cycles of manganese nitrate as much as possible, but if the number of cycles of pyrolysis is simply reduced, a short circuit with the dielectric film may occur when graphite, which is a cathode material, is applied. The proportion increases. This is because if the number of times of thermal decomposition is small, the manganese dioxide layer is not uniformly generated and the graphite particles come into direct contact with the conductor film. The present invention has been made in view of the above points, and the graphite particles are brought into direct contact with the dielectric film by filling the gaps in the manganese dioxide layer where the graphite particles can enter with fine particles of an inorganic oxide which is an insulator. The present invention also provides a method for manufacturing a solid electrolytic capacitor with low leakage current, few short-circuit failures, and improved short circuit failure even when the number of thermal decompositions is small.

以下実施例により詳述する。重量1.鼓のタンタル粉末
の暁結素子をコンデンサ素子とし該コンデンサ素子を電
解液中で35V印加して陽極酸化を行って誘電体皮膜を
形成する。
This will be explained in detail below using examples. Weight 1. A dielectric film is formed by applying 35 V to the capacitor element in an electrolytic solution to form a dielectric film by applying a 35 V to the capacitor element using a crystallized element made of tantalum powder.

しかるのち濃度25重量%の硝酸マンガン水溶液に浸潰
して合浸し250℃中で加熱し熱分解を行いさらに電解
液中で25Vの再化成を施した。上記の操作を2回繰り
返したのち濃度6の重量%の硝酸マンガン水溶液に浸潰
して含浸し25ぴC中で熱分解を行いさらに電解液中で
25V再化成を行う工程を4回繰り返した。前記再化成
までの工程の繰り返しののち1の重量%の硝酸マンガン
水溶液に無機酸化物である酸化珪素の超微粒子粉末(平
均粒径0.012仏m)を0.01,0.05 0.1
,0.5,1,2,5重量%それぞれ添加した種々の水
分散液中にコンデンサ素子を浸潰し引き上げて200℃
中で18分間加熱しグラフアィト塗布、銀ペースト塗布
を行い、これらのコンデンサ素子をそれぞれ金属ケース
に収容して外装を行ったタンタル固体電解コンデンサ各
5川風こついて前記酸化珪素の添加量と短絡不良率との
関係を第1図に、また酸化珪素の添加量とtan6との
関係を第2図に示した。なお従来例はコンデンサ素子を
硝酸マンガン水溶液に浸簿、含浸したのち熱分解を行う
工程について硝酸マンガン水溶液25重量%のものにつ
いて含浸−熱分解−再化成を2回繰り返し行ったのち硝
酸マンガン水溶液6の重量%のものについて含浸−熱分
解一再化成を10回繰り返し、かつ酸化珪素と硝酸マン
ガンとの水溶液中への浸債を除きすべて前記実施例と同
じものとし、この従来例について特性を測定した結果短
絡不良率は2%tan6は2.8%であった。その他の
特性は前記実施例(第1図および第2図に示したもの)
および従来例とも静電容量は330一Fで差はないが漏
れ電流は前記実施例は0.1rA、従来例は1.0〃A
であった。(平均値)以上の結果から明らかなように短
絡不良の発生は酸化珪素の添加量が0.1重量%以上で
皆無となりtan6は2重量%を越えた場合に急激な上
昇を示しており酸化珪素の添加量が0.1〜2.の重量
%が本発明の範囲となる。このようにしてできた固体電
解コンデンサの構造は二酸化マンガン層の中に酸化珪素
が点々と入り込んだ構成を有し、該酸化珪素の存在によ
ってグラフアィト粒子が誘電体皮膜に接触することがな
くなり短絡不良を防止しているわけである。よって前述
のように硝酸マンガン含浸〜再化成工程の繰り返した回
数が従来例は計la団、本発明では計6回であるのにか
かわらず、短絡不良の発生は酸化珪素の添加率が0.1
%以上の本発明では皆無であるのに対し、従来例は2%
また漏れ電流については約1/1明星度の値となる。こ
の漏れ電流特性は前にも述べたとおり熱分解回教に比例
して大きくなるものであり本発明の効果が顕著なところ
である。なお前記実施例では弁作用金属としてタンタル
粉末を使用した場合について述べたが、アルミニウム固
体電解コンデンサでも同様の効果が得られ、また水分散
液に用いられる無機酸化物としては化学的、熱的に安定
で電気的に絶縁物であることが条件であり、前記実施例
では酸化珪素について述べたが酸化アルミニウム、酸化
チタン、酸化亜鉛なども同様の効果が撮られ、またこれ
ら無機酸化物の粒子の大きさは0.2ムm以下が望まし
く0.2ムmを越える場合は短絡不良の発生率が本発明
より若干多くなる。さらにこの水分散液に前記無機酸化
物とともに加える硝酸マンガンは加熱によって二酸化マ
ンガンを生成することにより無機酸化物をコンデンサ素
子中に固着させるバィンダの機能を有するものでありこ
の硝酸マンガン水溶液の濃度は5〜2の重量%の範囲が
望ましい。この理由は5重量%未満ではバィンダとして
の機能が不充分でありまた2の重量%を越えた場合には
生成した二酸化マンガン層の中に無機酸化物が介在する
ことになり二酸化マンガン層の隙間を詰める作用が充分
でなくなるためである。
Thereafter, it was immersed in an aqueous manganese nitrate solution having a concentration of 25% by weight, mixed and heated at 250°C for thermal decomposition, and then reconstituted at 25V in an electrolytic solution. After repeating the above operation twice, the process of impregnating by impregnating with a manganese nitrate aqueous solution having a concentration of 6% by weight, thermal decomposition at 25 picoC, and further reconstitution at 25V in an electrolytic solution was repeated four times. After repeating the steps up to reconstitution, 0.01, 0.05 0.01,0.050. 1
, 0.5, 1, 2, and 5% by weight were added to various aqueous dispersions.
Each tantalum solid electrolytic capacitor was heated for 18 minutes, coated with graphite and coated with silver paste, and these capacitor elements were housed in a metal case and packaged. Figure 1 shows the relationship between tan6 and the amount of silicon oxide added. In the conventional example, a capacitor element is immersed in a manganese nitrate aqueous solution, impregnated, and then thermally decomposed.The process of impregnation, thermal decomposition, and reconstitution is repeated twice for a 25% by weight manganese nitrate aqueous solution, and then the capacitor element is immersed in a manganese nitrate aqueous solution 6. The impregnation-pyrolysis-reformation process was repeated 10 times for a sample with a weight percent of As a result, the short-circuit failure rate was 2%, and tan6 was 2.8%. Other characteristics are those of the above example (shown in Figures 1 and 2).
The capacitance is 330 F, which is the same as the conventional example, but the leakage current is 0.1 rA in the above embodiment and 1.0 A in the conventional example.
Met. (Average value) As is clear from the above results, the occurrence of short circuit failures is completely eliminated when the amount of silicon oxide added is 0.1% by weight or more, and tan6 shows a rapid increase when the amount of silicon oxide added exceeds 2% by weight, indicating that oxidation The amount of silicon added is 0.1 to 2. is within the scope of the present invention. The structure of the solid electrolytic capacitor made in this way has a structure in which silicon oxide is dotted into the manganese dioxide layer, and the presence of the silicon oxide prevents the graphite particles from coming into contact with the dielectric film, resulting in short circuit failure. This is to prevent this. Therefore, as mentioned above, although the number of repetitions of the manganese nitrate impregnation to reconstitution steps is a total of 1 times in the conventional example and 6 times in the present invention, short circuit failures occur only when the addition rate of silicon oxide is 0. 1
% or more in the present invention, while in the conventional example it is 2%.
Furthermore, the leakage current has a value of approximately 1/1 brightness. As mentioned above, this leakage current characteristic increases in proportion to the thermal decomposition rate, and this is where the effects of the present invention are remarkable. In the above example, tantalum powder was used as the valve metal, but the same effect can be obtained with an aluminum solid electrolytic capacitor, and the inorganic oxide used in the aqueous dispersion has chemical and thermal properties. The condition is that the material be stable and electrically insulating.Although silicon oxide was described in the above example, similar effects have been observed with aluminum oxide, titanium oxide, zinc oxide, etc., and the use of particles of these inorganic oxides The size is desirably 0.2 mm or less, and if it exceeds 0.2 mm, the incidence of short circuit defects will be slightly higher than in the present invention. Furthermore, the manganese nitrate added to this aqueous dispersion together with the inorganic oxide has the function of a binder that fixes the inorganic oxide in the capacitor element by generating manganese dioxide by heating, and the concentration of this manganese nitrate aqueous solution is 5. A range of .about.2% by weight is desirable. The reason for this is that if it is less than 5% by weight, its function as a binder is insufficient, and if it exceeds 2% by weight, inorganic oxides will be present in the formed manganese dioxide layer, resulting in gaps between the manganese dioxide layers. This is because the effect of packing the particles is not sufficient.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の実施例の特性を示したもので第
1図は酸化珪素の添加量と短絡不良率との関係を示す曲
線図、第2図は酸化珪素の添加量とねn6との関係を示
す曲線図である。 第1図 第2図
The drawings all show the characteristics of the embodiments of the present invention. Figure 1 is a curve diagram showing the relationship between the amount of silicon oxide added and the short-circuit failure rate, and Figure 2 is a curve diagram showing the relationship between the amount of silicon oxide added and the short-circuit failure rate. It is a curve diagram showing the relationship. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 弁作用金属からなるコンデンサ素子上に誘電体皮膜
−半導体層−グラフアイト層−陰極層を順次形成する工
程を有する固体電解コンデンサの製造方法において、前
記半導体層の形成後、硝酸マンガン5〜20重量%水溶
液に大きさが0.2μm以下の酸化珪素、酸化アルミニ
ウム、酸化チタン、酸化亜鉛の中の1種または2種以上
の混合物からなる微粒子状の無機酸化物を0.1〜2重
量%添加した水分散液に浸漬−加熱することを特徴とす
る固体電解コンデンサの製造方法。
1. In a method for manufacturing a solid electrolytic capacitor, which includes the steps of sequentially forming a dielectric film, a semiconductor layer, a graphite layer, and a cathode layer on a capacitor element made of a valve metal, after forming the semiconductor layer, 5 to 20% of manganese nitrate is added. 0.1 to 2% by weight of a fine particulate inorganic oxide consisting of one or a mixture of two or more of silicon oxide, aluminum oxide, titanium oxide, and zinc oxide with a size of 0.2 μm or less is added to an aqueous solution. A method for manufacturing a solid electrolytic capacitor, which comprises immersing and heating a solid electrolytic capacitor in an aqueous dispersion.
JP6193179A 1979-05-18 1979-05-18 Manufacturing method of solid electrolytic capacitor Expired JPS6016745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6193179A JPS6016745B2 (en) 1979-05-18 1979-05-18 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6193179A JPS6016745B2 (en) 1979-05-18 1979-05-18 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS55153318A JPS55153318A (en) 1980-11-29
JPS6016745B2 true JPS6016745B2 (en) 1985-04-27

Family

ID=13185399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6193179A Expired JPS6016745B2 (en) 1979-05-18 1979-05-18 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6016745B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3801729A1 (en) * 1988-01-21 1989-07-27 Siemens Ag METHOD FOR PRODUCING SOLID ELECTROLYTIC CAPACITORS

Also Published As

Publication number Publication date
JPS55153318A (en) 1980-11-29

Similar Documents

Publication Publication Date Title
US3825802A (en) Solid capacitor
US3054029A (en) Electrical condenser
TW200919511A (en) Method for manufacturing electrolytic capacitor and electrolytic capacitor
US6010660A (en) Method for doping sintered tantalum pellets with nitrogen
US3627520A (en) Method of producing porous sintered tantalum
US3872579A (en) Method of making electrolytic capacitors
US3214648A (en) Organic semiconductor solid capacitor
US3330999A (en) Electrolytic capacitor with dielectric film formed on ceramic material
US5938797A (en) Low impedance solid electrolytic capacitor and method for fabricating the same
US6214271B1 (en) Thermal treatment process for valve metal nitride electrolytic capacitors having manganese oxide cathodes
JP3209995B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6016745B2 (en) Manufacturing method of solid electrolytic capacitor
US2989447A (en) Manufacture of dry electrolytic devices
US3314124A (en) Method of manufacturing solid electrolytic capacitor
US2236270A (en) Electrolytic condenser
US3127660A (en) gerondeau
US3467895A (en) Manganous nitrate-catalytic agent solution for solid electrolyte capacitor
US3320494A (en) Method and capacitor comprising oxide electrolyte derived from permanganic acid
US3255390A (en) Electrical capacitor
JPH04324612A (en) Manufacture of organic semiconductor solid electrolytic capacitor
US3226607A (en) Electrical capacitor
JP3391364B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
EP0607781A1 (en) Solid electrolytic capacitor
US3586923A (en) Electrolytic capacitor and method for manufacturing solid electrolyte
US3553087A (en) Method of manufacturing solid electrolytic capacitors