JPS60166785A - Self-lubricating rotary compressor - Google Patents

Self-lubricating rotary compressor

Info

Publication number
JPS60166785A
JPS60166785A JP59021603A JP2160384A JPS60166785A JP S60166785 A JPS60166785 A JP S60166785A JP 59021603 A JP59021603 A JP 59021603A JP 2160384 A JP2160384 A JP 2160384A JP S60166785 A JPS60166785 A JP S60166785A
Authority
JP
Japan
Prior art keywords
gas
discharge
compressor
oil
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59021603A
Other languages
Japanese (ja)
Inventor
Masakazu Aoki
優和 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59021603A priority Critical patent/JPS60166785A/en
Publication of JPS60166785A publication Critical patent/JPS60166785A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the discharge pressure without increasing the discharge temperature of an oil screw compressor by cooling discharged gas and jetting a portion of said cooled gas into a compression chamber immediately after the completion of suction cycle. CONSTITUTION:The gas inhaled into a screw compressor 1 is compressed in a compression chamber and discharged in the form having a high pressure and a high temperature. The discharged gas passes through a heat exchanger 4 for primary cooling, check valve 6, and a heat exchanger 5 for secondary cooling which are arranged in a discharge gas conduit 3, and is cooled nearly to a suction temperature. The cooled gas is jetted into the compression chamber immediately after the completion of the suction cycle of the screw compressor 1, and the effective capacity of the compressor is increased. Therefore, the same effect of increasing the amount of inhaled gas is obtained, and the gas can be pressurized to a high pressure.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、無給油式回転圧縮装置に係り、特に無給油式
で吐出温度が高温になる単段の回転形空気圧縮機で高吐
出圧力を得るのに好適な無給油式回転圧縮装置に関する
ものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an oil-free rotary compressor, and in particular to a single-stage rotary air compressor that is oil-free and has a high discharge temperature, and is capable of achieving high discharge pressure. The present invention relates to an oil-free rotary compression device suitable for obtaining the desired results.

〔発明の背景〕[Background of the invention]

従来の単段無給油式の回転形空気圧縮機、たとえばスク
リュー圧縮機は、R,雄噛み合うロータ゛の歯形の改良
、生産加工方法の改善等によって、従来、吐出圧力4k
H/cm” Bていどであったものを、7kg/c+n
” gまで上げられるようになった。
Conventional single-stage oil-free rotary air compressors, such as screw compressors, have been able to achieve a discharge pressure of 4k by improving the radius, the tooth profile of the male-meshing rotor, and improving the production method.
H/cm” B was changed to 7kg/c+n
” I was able to raise it to G.

しかし、市場、特に米国で要求されている吐出圧力8 
、5 kg、7cm” gないし8 、8 kg/ c
m2gのものを生産するためには、単に圧力比を上げる
だけでは、従来350℃を超えていた吐出温度が更に上
昇することになり、ロータ等の熱膨張を抑えることが困
難となり、ロータ接触等の危険を抑えていく上でも、非
常に実現が難しい問題であった。
However, the discharge pressure 8 required in the market, especially in the United States.
, 5 kg, 7cm” g to 8, 8 kg/c
In order to produce 2.0 m2g, simply increasing the pressure ratio will further increase the discharge temperature, which previously exceeded 350°C, making it difficult to suppress the thermal expansion of the rotor, etc. This was an extremely difficult problem to realize in terms of minimizing the dangers.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の従来技術の間顛点に鑑みなされたもの
で、無給油式回転圧縮機における吐出温度を、実績のあ
る現状の温度から上昇させることなく、かつ単純な機器
構成で、 8 、5 kg/c、ra” (<ないし8
 、8 kg/ am” gの吐出圧力を得ることので
きる無給油式回転圧縮装置を提供することを、その目的
としている。
The present invention has been made in view of the above-mentioned developments in the prior art, and it is possible to achieve the following without increasing the discharge temperature of an oil-free rotary compressor from the current proven temperature, and with a simple equipment configuration. , 5 kg/c, ra” (< to 8
, 8 kg/am''g of discharge pressure.

〔発明の概要〕[Summary of the invention]

本発明に係る無給油式回転圧縮装置の構成は、無給油式
回転圧縮機により圧縮された気体を吐出する吐出ガス管
路に、冷却用熱交換器を配設するとともに、その冷却さ
れた吐出ガスの一部を前記回転圧縮機の吸入側へ戻して
吸入圧力を上昇させることによって、あらかじめ定めで
ある圧縮比のままで吐出圧力を上昇させうるように、流
量制御手段を備えた戻しガス配管を、−ヒ記吐出ガス管
路から分岐して前記回転圧縮機の吸入側へ接続したもの
である。
The configuration of the oil-free rotary compressor according to the present invention is such that a cooling heat exchanger is disposed in a discharge gas pipe line that discharges gas compressed by the oil-free rotary compressor, and the cooled discharge gas is Return gas piping equipped with a flow rate control means so that a part of the gas is returned to the suction side of the rotary compressor to increase the suction pressure, thereby increasing the discharge pressure while maintaining a predetermined compression ratio. is branched from the discharge gas pipe line described in (A) and connected to the suction side of the rotary compressor.

なお、本発明を開発した考え方を付記すると、次のとお
りである。
Additionally, the idea behind developing the present invention is as follows.

通常、回転圧縮機の吐出圧力を上げるには、設計圧縮比
を上昇させる。すなわち、吐出圧力を変えるのが普通で
ある。しかし、憤投の無給油式回転圧縮材では、吐出温
度の問題が大きい。そこで。
Normally, to increase the discharge pressure of a rotary compressor, the design compression ratio is increased. That is, it is common to change the discharge pressure. However, in the oil-free rotary compressed material, there is a big problem with the discharge temperature. Therefore.

本発明では、設計上室めである圧縮比をそのままにして
吸入圧力を上げて高吐出圧力を得ることを考えた。ブロ
ワを用いて吸入気体の圧力を上昇させることもできるが
、本発明では、構成をできるだけ単純にするため、圧縮
機自身の吐出空気を吸入側へ戻して圧縮比はそのままで
吐出圧力を上昇させることにしたものである。
In the present invention, the idea was to obtain a high discharge pressure by increasing the suction pressure while keeping the compression ratio, which is designed to be roomy, as it is. Although it is possible to increase the pressure of suction gas using a blower, in the present invention, in order to simplify the configuration as much as possible, the discharge air of the compressor itself is returned to the suction side to increase the discharge pressure while maintaining the compression ratio. That's what I decided to do.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

図は、本発明の一実施例に係る空気圧縮装置の略示構成
図である。
The figure is a schematic configuration diagram of an air compressor according to an embodiment of the present invention.

図において、1は単段の無給油式回転形空気圧縮*(以
下圧縮機という)、たとえばスクリュー圧縮機で、2は
気体の吸入管、3は、圧縮された気体を吐出する吐出ガ
ス管路、4は、吐出ガス管路3に配設された一次冷却用
熱交換器、5は、同じく吐出ガス管路3に配設された二
次冷却用熱交換器でいずれも冷却水を流通させるもので
ある。
In the figure, 1 is a single-stage oil-free rotary air compressor* (hereinafter referred to as a compressor), for example a screw compressor, 2 is a gas suction pipe, and 3 is a discharge gas pipe that discharges compressed gas. , 4 is a primary cooling heat exchanger disposed in the discharge gas pipe line 3, and 5 is a secondary cooling heat exchanger also disposed in the discharge gas pipe line 3, both of which circulate cooling water. It is something.

6は逆止弁である。6 is a check valve.

7は、吐出ガス管路3の二次冷却用熱交換器5を過ぎた
位置から分岐し、圧縮機1の吸入側に接続された戻しガ
ス配管である。その戻しガス配管7の管路に、電磁弁8
と流量制御手段に係る調整弁9とが配設されている。
Reference numeral 7 denotes a return gas pipe that branches off from a position past the secondary cooling heat exchanger 5 of the discharge gas pipe line 3 and is connected to the suction side of the compressor 1. A solenoid valve 8 is connected to the return gas pipe 7.
and a regulating valve 9 related to flow rate control means are provided.

圧縮機1、たとえばスクリュー圧縮機に吸入された気体
は、ケーシング内における雌雄一対のロータの噛合い(
図示せず)にともなう圧縮室容積の減少のため圧力が上
昇する。無給油式の圧縮機では、ロータ、ケーシング間
はもちろん、雌雄一対のロータ同志も非接触、かつ非常
に小さい隙間で高速回転しているものである。圧縮作用
の間、圧縮室中には冷却油が噴射されていないため、ケ
ーシングの水冷却を行なっても、単段の圧縮機で吐出圧
力フkg/cm2gを得ようとすると、吐出温度は32
0〜380℃の高温となっている。
The gas sucked into the compressor 1, for example, a screw compressor, is caused by the meshing of a pair of male and female rotors within the casing.
(not shown), the pressure increases due to the reduction in compression chamber volume. In an oil-free compressor, not only the rotor and the casing, but also the male and female rotors rotate at high speed with very small gaps between them. During compression, no cooling oil is injected into the compression chamber, so even if the casing is cooled with water, if a single-stage compressor is used to obtain a discharge pressure of kg/cm2g, the discharge temperature will be 32
The temperature is between 0 and 380 degrees Celsius.

昇圧された気体は、吐出ガス管路3に配設されている一
次冷却用熱交換器4、逆止弁6、二次冷却用熱交換器5
を通過して吸入温度近くまで冷却され吐出さ扛る。
The pressurized gas is transferred to a primary cooling heat exchanger 4, a check valve 6, and a secondary cooling heat exchanger 5 disposed in the discharged gas pipe line 3.
It is cooled down to near the suction temperature and then discharged.

本実施例では、冷却用熱交換器4,5を通過後の冷却さ
れた吐出ガスを圧縮機1の吸入側へ、わずかな量戻すよ
うにしている。
In this embodiment, a small amount of the cooled discharge gas that has passed through the cooling heat exchangers 4 and 5 is returned to the suction side of the compressor 1.

吐出ガスが戻される位置は、図示しないが、圧縮室1が
吸入気体の吸込を完了し吸入管2から隔離された直後の
位置であることが望まし、い。
Although not shown in the drawings, the position to which the discharged gas is returned is preferably the position immediately after the compression chamber 1 completes suction of the suction gas and is isolated from the suction pipe 2.

前記の戻しガス配管7には、アンロード運転時に、この
戻し気体の流れをしゃ断するための電磁弁4.戻し気体
の流量を調整するための調整弁5が配設されている。電
磁弁4は、アンロード時、吸入側に圧力が残ることによ
るアンロード効率の低下を防ぐための必要なものである
The return gas pipe 7 is provided with a solenoid valve 4 for cutting off the flow of the return gas during unloading operation. A regulating valve 5 is provided to regulate the flow rate of the return gas. The solenoid valve 4 is necessary to prevent deterioration in unloading efficiency due to pressure remaining on the suction side during unloading.

一方、問題となる圧縮機の吐出温度Tdは理論ここで TS:吸入温度 Pd:吐出圧力 Ps:吸入出力 γ:断熱圧縮指数 m:圧縮段数 高い吐出圧力を得るためには、圧縮比Pd/Psを上げ
るのが通常の方法であるが、この場合。
On the other hand, the discharge temperature Td of the compressor, which is a problem, is theoretically calculated as follows: TS: Suction temperature Pd: Discharge pressure Ps: Suction output γ: Adiabatic compression index m: Number of compression stages In order to obtain a high discharge pressure, the compression ratio Pd/Ps The usual method is to raise the value, but in this case.

吐出温度Tdが上昇するのは(1)式から見ても明らか
である。また、吐出圧力のみを上げると圧縮室相互の圧
力差が大きくなり圧縮室間相互の漏れが増大し、理論式
(1)の(Pd/Ps)の増加による分以上の吐出温度
上昇が起こるため、この方法で吐出圧力を上げることは
無給油式回転圧縮機では、ロータ管の熱膨張を抑えるこ
とが困難となり実現が難しいわけである。
It is clear from equation (1) that the discharge temperature Td increases. In addition, if only the discharge pressure is increased, the pressure difference between the compression chambers will increase, the leakage between the compression chambers will increase, and the discharge temperature will rise by more than the amount due to the increase in (Pd/Ps) in theoretical formula (1). Increasing the discharge pressure using this method is difficult to achieve in an oil-free rotary compressor because it is difficult to suppress the thermal expansion of the rotor tube.

本実施例では、圧縮比P d / P sを一定とした
まま、吸入圧力Psを上昇させることにより吐出圧力P
dを上昇させるわけであり、吸入側へ戻される気体の温
度が充分に低ければ(1)式により吐出温度の上昇は非
常に小さいものに抑えることができる。例えば、現状の
圧縮比7.8(吸入圧力ニ 1.033kg/am” 
a 、吐出圧力ニ 8.033kg/c、n+” a)
の圧縮機を使用したまま吐出圧力8.5にα/cm2g
即ち9.533kg/ cm” aを得るには吸入側に
閉じ込められた直後の圧縮室へ吐出気体を戻し P s = P d、 / 7 、8 =1.22kg/cm” a に上昇さ・仕てやれば良い。
In this embodiment, the discharge pressure P is increased by increasing the suction pressure Ps while keeping the compression ratio P d / P s constant.
d is increased, and if the temperature of the gas returned to the suction side is sufficiently low, the increase in the discharge temperature can be suppressed to a very small value using equation (1). For example, the current compression ratio is 7.8 (suction pressure is 1.033 kg/am).
a, discharge pressure d 8.033kg/c, n+” a)
While using the compressor, increase the discharge pressure to 8.5 α/cm2g.
That is, in order to obtain 9.533 kg/cm" a, the discharged gas is returned to the compression chamber immediately after being confined on the suction side, and the pressure rises to P s = P d, / 7, 8 = 1.22 kg/cm" a. Just do it.

吐出気体を吸入側へ戻すごとにより圧縮機の体積効率は
吐下するが、単段の無給油式回転圧縮機では、吐出温度
を低く抑えることが何よりも優先され、その意味で本実
施例の効果は大きい。
The volumetric efficiency of the compressor decreases each time the discharged gas is returned to the suction side, but in a single-stage oilless rotary compressor, keeping the discharge temperature low is the top priority, and in that sense, this example The effect is great.

本実施例によれば、単段の無給油式回転形空気圧縮機を
用いて、現状の”g/cm2g以上の吐出圧力を持った
圧縮機をそのままI3!用し、吐出温度上昇によるロー
タの熱膨服5ひいてはロータ接触などの危険を最少に抑
えながら、8 、5 kg/ cm2Eないし8 、8
 kg/cIIl” Hの吐出圧力を達成できるという
効果がある。
According to this embodiment, a single-stage, oil-free rotary air compressor is used, and the current compressor with a discharge pressure of ``g/cm2g or more'' is used as it is, and the rotor is damaged due to an increase in discharge temperature. 8.5 kg/cm2E or 8.8 kg/cm2E to 8.5 kg/cm2E or 8.5 kg/cm2E to 8.5 kg/cm2E or 8.5 kg/cm2E or 8.5 kg/cm2E or 8.5 kg/cm2E or
There is an effect that a discharge pressure of kg/cIIl"H can be achieved.

なお、前記の実施例は、無給油式回転圧縮機の一例とし
て無給油式のスクリュー圧縮機を説明し、だが、本発明
は、スクリュー圧縮機に限るものでなく、同等の効果が
期待できる無給油式回転圧縮機の範囲で汎用的なもので
ある。
Note that in the above embodiment, an oil-free rotary compressor is explained as an example of an oil-free rotary compressor, but the present invention is not limited to screw compressors, but can be applied to any other oil-free rotary compressor that can be expected to have the same effect. It is a general-purpose type in the range of oil-fed rotary compressors.

〔発明の効果〕〔Effect of the invention〕

以上述べたように5本発明によれば、無給油式回転圧縮
機における吐出温度を、実績のある現状の温度から上昇
させろことなく、かつ単純な機器構成で、8 、5 k
g/ cm” Hないし8 、8 kg/ cI112
gの吐出圧力を得ることのできる無給油式回転圧N1j
tqを提供することができる。
As described above, according to the present invention, the discharge temperature of an oil-free rotary compressor can be increased to 8.5 k without increasing it from the current proven temperature, and with a simple equipment configuration.
g/cm” H to 8, 8 kg/cI112
Oil-free rotational pressure N1j that can obtain a discharge pressure of g
tq can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例に係る空気圧縮装置の略示構成図
である。
The figure is a schematic configuration diagram of an air compressor according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、無給油式回転圧縮機により圧縮された気体を吐出す
る吐出ガス管路に、冷却用熱交換器を配設するとともに
、その冷却された吐出ガスの一部を前記回転圧縮機の吸
入側へ戻して吸入圧力を上昇させることによって、あら
かじめ定めである圧縮比のままで吐出圧力を上昇させう
るように、流量制御手段を備えた戻しガス配管を、上記
吐出ガス管路から分岐して前記回転圧縮機の吸入側へ接
続したことを特徴とする無給油式%式%
1. A cooling heat exchanger is installed in the discharge gas pipe line that discharges the gas compressed by the oil-free rotary compressor, and a part of the cooled discharge gas is transferred to the suction side of the rotary compressor. A return gas pipe equipped with a flow rate control means is branched from the discharge gas pipe to increase the discharge pressure while maintaining a predetermined compression ratio by returning the gas to the discharge gas pipe and increasing the suction pressure. Oil-free % type % characterized by being connected to the suction side of the rotary compressor
JP59021603A 1984-02-10 1984-02-10 Self-lubricating rotary compressor Pending JPS60166785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021603A JPS60166785A (en) 1984-02-10 1984-02-10 Self-lubricating rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021603A JPS60166785A (en) 1984-02-10 1984-02-10 Self-lubricating rotary compressor

Publications (1)

Publication Number Publication Date
JPS60166785A true JPS60166785A (en) 1985-08-30

Family

ID=12059610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021603A Pending JPS60166785A (en) 1984-02-10 1984-02-10 Self-lubricating rotary compressor

Country Status (1)

Country Link
JP (1) JPS60166785A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725210A (en) * 1985-10-09 1988-02-16 Hitachi, Ltd. Oilless rotary-type compressor system
US4812110A (en) * 1986-08-11 1989-03-14 Kabushiki Kaisha Kobe Seiko Sho Oil-free screw compressor with bypass of cooled discharged gas
WO2024047780A1 (en) * 2022-08-31 2024-03-07 株式会社日立産機システム Air compression device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725210A (en) * 1985-10-09 1988-02-16 Hitachi, Ltd. Oilless rotary-type compressor system
US4812110A (en) * 1986-08-11 1989-03-14 Kabushiki Kaisha Kobe Seiko Sho Oil-free screw compressor with bypass of cooled discharged gas
WO2024047780A1 (en) * 2022-08-31 2024-03-07 株式会社日立産機システム Air compression device

Similar Documents

Publication Publication Date Title
US3568466A (en) Refrigeration system with multi-stage throttling
US3848422A (en) Refrigeration plants
US6385981B1 (en) Capacity control of refrigeration systems
CN107238240A (en) The control method and device of cooling by wind and its blower fan
JP4140488B2 (en) Screw compressor and refrigeration equipment
CN105241125A (en) Compressor, refrigeration system and method for lowering temperature and adding gas for compressor
CN107850071B (en) Screw compressor economizer plenum for pulsation reduction
US2481605A (en) Refrigerator system
JPS60166785A (en) Self-lubricating rotary compressor
CN207437307U (en) A kind of double frequency conversion air compressors of Two-stage Compression permanent magnetism
US4812110A (en) Oil-free screw compressor with bypass of cooled discharged gas
JPH045836B2 (en)
WO2018097190A1 (en) Oil-free compressor and method of operating same
JPH024793B2 (en)
WO2021022767A1 (en) Compressor and air conditioning system
JP7461255B2 (en) Compressed gas cooling method and compressed gas cooling device in compressor
CN215260742U (en) Refrigerating equipment set for novel ice maker
CN213392663U (en) Oil-free dry type screw compressor two-stage series compression system
CN211259055U (en) Vapor compressor and air conditioning unit
CN210861766U (en) Integrated frequency conversion module cold water machine
CN219282090U (en) Air compressor cooling system
CN114109823B (en) Control method for combining frequency conversion and capacity-regulation slide valve of screw compressor
TWI663334B (en) Inter-stage discharge air compressor
Hood et al. Helium Refrigerators for Operation in the 10–30 K Range
JPH0756276B2 (en) Oil-free screw type vacuum pump