JPS60166026A - Preparation of double nuclear dispersion of microcapsule having synthetic polymer wall film - Google Patents

Preparation of double nuclear dispersion of microcapsule having synthetic polymer wall film

Info

Publication number
JPS60166026A
JPS60166026A JP59019010A JP1901084A JPS60166026A JP S60166026 A JPS60166026 A JP S60166026A JP 59019010 A JP59019010 A JP 59019010A JP 1901084 A JP1901084 A JP 1901084A JP S60166026 A JPS60166026 A JP S60166026A
Authority
JP
Japan
Prior art keywords
microcapsule
dispersion
synthetic polymer
polymer electrolyte
microcapsules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59019010A
Other languages
Japanese (ja)
Inventor
Fumio Okumura
史生 奥村
Toshizo Iida
飯田 稔三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP59019010A priority Critical patent/JPS60166026A/en
Publication of JPS60166026A publication Critical patent/JPS60166026A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Color Printing (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PURPOSE:To prepare the titled dispersion having improved pressure responsiveness by reducing the pH of a single nuclear dispersion of microcapsule having synthetic polymer wall film in the presence of an amphoteric polymer electrolyte and an anionic polymer electrolyte, then hardening the film of the wall of the microcapsule. CONSTITUTION:A hydrophobic substance which is immiscible with a polar dispersion medium is dispersed or emulsified in a soln. of a dispersant or an emulsifier in the polar dispersion medium so as to disperse or emulsify said hydrophobic substance to form discontinuous fine particles. Then, synthetic polymer wall film is formed around said fine particles to obtain a hydrophobic material. The single nuclear dispersion of microcapsule having synthetic polymer wall film comprises the hydrophobic material as the core material. The pH of the single nuclear dispersion is reduced in the presence of an amphoteric polymer electrolyte (e.g. gelatin) and an anionic polymer electrolyte (e.g. ethylene/maleic anhydride copolymer). Thus, plural numbers of the single nuclear microcapsule are agglomerated, then, dissociation of the agglomerate is prevented by affecting a hardening agent such as chrome alum. Obtd. double nuclear capsules have improved pressure responsiveness.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明はマイクロカプセルの製造方法に関する。更に詳
しくは、特にノーカーボン感圧記録紙製造に用いるのに
適した合成高分子壁膜マイクロカプセル複核分散体製造
方法に関する。 − B、従来技術 マイクロカプセルは不安定な物質(反応性のもの、液状
のもの1等)を安定に保有するのに適していて、芯物質
とその周囲に形成された自模とから成る。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for producing microcapsules. More specifically, the present invention relates to a method for producing a synthetic polymer-walled microcapsule binuclear dispersion particularly suitable for use in producing carbonless pressure-sensitive recording paper. - B, Prior Art Microcapsules are suitable for stably retaining unstable substances (reactive substances, liquid substances, etc.), and are composed of a core substance and a self-containing material formed around the core substance.

マイクロカプセルの製造方法には種々あるが一般に知ら
れている方法としては、物理的な方法、コアセルページ
璽ン法、界面重合法、inn口U重合法5等を代表例と
して挙げることができる。
There are various methods for producing microcapsules, but representative examples of generally known methods include physical methods, core cell page sealing methods, interfacial polymerization methods, and in-mouth U polymerization methods5. .

物理的な方法については、ある種の用途−薬剤−には適
しているが、カプセル膜が不完全であるので、内容物の
保有という点からは不十分なものであり、ノーカーボン
紙に用いることはできない。
As for physical methods, they are suitable for certain uses - medicines - but because the capsule membrane is incomplete, they are insufficient in terms of retaining the contents, so they cannot be used for carbonless paper. It is not possible.

コアセルベーション法は米国特許第zs o o。The coacervation method is covered by US Patent No. ZSOO.

457号、同第2,800,458号等明細書で提案さ
れて以来広く用いられでおり、ノーカーボン紙用無色染
料、接着剤、液晶、等の内容物を入れて使用されている
457 and 2,800,458, etc., and has been widely used since then, and is used with contents such as colorless dye for carbonless paper, adhesive, liquid crystal, etc.

この方法では壁膜形成材料として通常はゼラチンと、ア
ラビアゴム、アルギン酸ナトリウム、CMC1酢酸ビニ
ル−無水マレイン酸共重合体、ビニルメチルエーテル−
無水マレイン酸共重合体、ポリアクリル酸、等のアニオ
ン性物質から選ばれる1種以上とを使用する。本質的な
欠点としては、主体としてゼラチンを使用するので耐水
性や耐溶剤性が悪い、微生物によって改撃されやすい、
コアセルベーション現象が低濃度でのみ起るので原理的
に高濃度カプセルエマルジョンが作りにくい等が挙げら
れる。
In this method, the wall film forming materials are usually gelatin, gum arabic, sodium alginate, CMC1 vinyl acetate-maleic anhydride copolymer, vinyl methyl ether, etc.
One or more types selected from anionic substances such as maleic anhydride copolymer and polyacrylic acid are used. The essential drawbacks are that gelatin is used as the main ingredient, so it has poor water resistance and solvent resistance, and is easily tampered with by microorganisms.
Because the coacervation phenomenon occurs only at low concentrations, it is theoretically difficult to create high-concentration capsule emulsions.

一方合成高分子壁膜をもったマイクロカプセルの製造方
法には例えば界面重合法、1nsitu重合法等がある
。合成高分子壁膜カプセルは水や溶剤に対して強く、高
濃度に製造できるという特徴を有するので近年盛ん暢研
究され、工業化も相次いでおり、特にノーカーボン紙で
は合成高分子壁膜カプセルが新しく主流となりつつある
On the other hand, methods for producing microcapsules having a synthetic polymer wall include, for example, an interfacial polymerization method and a 1 nsitu polymerization method. Synthetic polymer wall capsules have the characteristics of being resistant to water and solvents and being able to be manufactured in high concentrations, so they have been actively researched in recent years and are being industrialized one after another.In particular, synthetic polymer wall capsules are new in the field of carbonless paper. It is becoming mainstream.

その中で界面重合法は疎水性液体と極性分散媒との界面
において、ポリアミド、エポキシ樹脂、ポリウレタン、
ポリ尿素等の皮膜を生成させるものであり、膜剤によっ
てはカプセルの性質として保有性に優れたものが可能で
ある(例えば特公昭38−19574号、特公昭42−
446号、特公昭42−771号、特公昭49−451
33号、特開昭55−159990号公報、英国特許第
1091077号、同第1091141号明細書等)。
Among them, the interfacial polymerization method uses polyamide, epoxy resin, polyurethane, etc. at the interface between a hydrophobic liquid and a polar dispersion medium.
It produces a film of polyurea, etc., and depending on the film agent, it is possible to create capsules with excellent retention properties (for example, Japanese Patent Publication No. 38-19574, Japanese Patent Publication No. 1957-1972,
446, Special Publication No. 42-771, Special Publication No. 49-451
33, JP-A-55-159990, British Patent No. 1091077, British Patent No. 1091141, etc.).

またアミノ樹脂を膜剤に利用するIn 5ltu重合法
も実用化されており、特許もいくつか出願されている。
In addition, an In 5 ltu polymerization method that utilizes an amino resin as a membrane agent has also been put to practical use, and several patents have been filed.

例えば特開昭51−9079号公報では系変性剤(乳化
剤)としてエチレン−無水マレイン酸共重合体、メチル
ビニルエーテル−無水マレイン酸共重合体、ポリアクリ
ル酸等を使用し、尿素−ホルマリン樹脂をカプセル膜剤
に利用しており、また特開昭54−49984号公報で
はスチレン−無水マレイン酸共重合体を、特開昭56−
51238号公報ではポリスチレンスルホン酸を乳化剤
として使用し、メラミン−ホルマリン樹脂をカプセル膜
材に利用している。
For example, in JP-A-51-9079, ethylene-maleic anhydride copolymer, methyl vinyl ether-maleic anhydride copolymer, polyacrylic acid, etc. are used as system modifiers (emulsifiers), and urea-formalin resin is encapsulated. The styrene-maleic anhydride copolymer is used as a membrane agent in JP-A-54-49984.
No. 51238 uses polystyrene sulfonic acid as an emulsifier and melamine-formalin resin as a capsule membrane material.

このように、合成高分子壁膜マイクロカプセルは壁膜材
料がゼラチンのような天然物とは異なって人工合成物な
ので化学素原料を種種選択したり、また化学変性を施こ
すことによりて膜物性を自由に設置″することができ、
工業的に合目的的な壁膜材料を得ることが遥五 かに容易となり、マイクロカプセル製造技術真に革新的
な変革をもたらすことができた。
In this way, synthetic polymer wall microcapsules have wall materials that are artificially synthesized, unlike natural products such as gelatin, so the physical properties of the membrane can be improved by selecting various types of chemical raw materials and by chemical modification. can be freely installed,
It has become much easier to obtain industrially suitable wall membrane materials and has brought about a truly revolutionary change in microcapsule manufacturing technology.

すなわち、今日までは壁膜材料に合成化学的なアプー−
チを行うことによりて、より進歩したマイクロカプセル
を得ることに努力が払われてきた。
In other words, until today, synthetic chemical apolymerization has been applied to wall membrane materials.
Efforts have been made to obtain more advanced microcapsules by performing

界面重合法にしろ、 In 5ltu重合法にしろ、合
成高分子壁膜マイクルカプセル粒子はいずれも形態とし
ては一つ一つがばらばらに離れて存在するほぼ球形の単
核独立粒子であった。
Regardless of whether the interfacial polymerization method or the In 5 ltu polymerization method was used, the synthetic polymer wall microcapsule particles were almost spherical mononuclear independent particles that existed separately one by one.

そして、その粒子径や膜厚は目的に応じてコントロール
されていた。しかし人為的に形態をコントロールできる
範囲は粒子径と膜厚とに限られており、更に新しい性質
を付与することは形態に関しては不可能であった。米国
特許第3041289号明細書には、ゼラチンを壁膜材
料とするコアセルページ7ン法マイクロカプセル団塊の
記載があるが、該特許の目的はゼラチン壁膜マイクロカ
プセルの凝集を制御し得ることにあると見られる。
The particle size and film thickness were controlled depending on the purpose. However, the range in which the morphology can be artificially controlled is limited to particle diameter and film thickness, and it has been impossible to impart new properties to the morphology. U.S. Pat. No. 3,041,289 describes a core cell microcapsule agglomerate using gelatin as a wall material, but the purpose of this patent is to be able to control the aggregation of gelatin wall microcapsules. It is seen that there is.

C1発明の目的 本発明は主として、マイクロカプセルの物理的な形態(
モーフォロジー)を重視して、形態を変えることによっ
て新しい特長をもつマイクロカプセルを得ることを目的
としており、既知の合成高分子壁膜マイクロカプセルを
含めて全ての合成カプセルについて、壁膜材料の主体は
合成高分子材料でしかも複数カプセル粒子がコントロー
ルされた集合を行って複数カプセルを形成しているよう
なマイクロカプセルの製造方法を提供するものである。
C1 Object of the Invention The present invention mainly relates to the physical form of microcapsules (
The purpose of this research is to obtain microcapsules with new features by changing their morphology, and for all synthetic capsules, including known synthetic polymer wall microcapsules, the main wall material is The present invention provides a method for producing microcapsules made of a synthetic polymeric material and in which a plurality of capsule particles form a plurality of capsules through controlled aggregation.

合成高分子壁膜マイクロカプセルを意図的に凝集させる
方法を提供するのは本発明が最初と思われる。
The present invention is believed to be the first to provide a method for intentionally aggregating synthetic polymer-walled microcapsules.

D0発明の構成 本発明は分散剤もしくは乳化剤の極性分散剤溶液中に該
分散媒と相溶しない疎水性物質を不連続な微小粒子とな
るように分散もしくは乳化させたのち微小粒子の周囲に
合成高分子壁膜を形成させて得られた疎水性物質を芯物
質として含む合成高分子壁膜マイクロカプセル単核分散
体について、男性高分子電解質およびアニオン性高分子
電解質の存在下にPHを降下させることにより上記マイ
クロカプセルの単核を複数個ずつ集合させ、しかる後再
び離散しないように硬膜処理を行なうことを特徴とする
合成高分子壁膜マイクロカプセル複核分散体の製造方法
である。
D0 Structure of the Invention The present invention involves dispersing or emulsifying a hydrophobic substance incompatible with the dispersion medium in a polar dispersant solution of a dispersant or emulsifier so as to form discontinuous microparticles, and then synthesizing it around the microparticles. The pH of a synthetic polymer wall microcapsule mononuclear dispersion containing a hydrophobic substance as a core substance obtained by forming a polymer wall film is lowered in the presence of a male polyelectrolyte and an anionic polyelectrolyte. This is a method for producing a synthetic polymer-walled microcapsule dinuclear dispersion, which comprises aggregating a plurality of mononuclear microcapsules, and then subjecting them to a hardening treatment to prevent them from being dispersed again.

本発明の製造方法においては、先ず、水で代表される極
性分散媒へ界面活性作用のある分散剤もしくは乳化剤を
溶解し、芯物質となるべき疎水性物質を分散もしくは乳
化したのち、界面重合法、 in s口U重合法、など
の方法を用いて合成高分子壁膜単核マイクロカプセル分
散体を製造する。これが−次粒子となる。
In the production method of the present invention, first, a dispersant or emulsifier having a surfactant effect is dissolved in a polar dispersion medium typified by water, and after dispersing or emulsifying a hydrophobic substance to be a core substance, an interfacial polymerization method is carried out. A synthetic polymer-walled mononuclear microcapsule dispersion is produced using a method such as , in-s mouth polymerization method, or the like. This becomes a -order particle.

次いで、ゼラチン、にかわ、カゼイン、などで代表され
る男性高分子電解質とアニオン性高分子電解質(最初の
分散剤もしくは乳化剤がこれを兼ねる場合もあり、その
時はわざわざ新たに加える必要はない)を加えてから酸
を加えてPHを降下させると、−次粒子が複数個寄り集
って二次粒子(凝集体)が生じる。
Next, add a male polyelectrolyte and an anionic polyelectrolyte such as gelatin, glue, casein, etc. (the initial dispersant or emulsifier may also serve as this, in which case there is no need to add a new one). When acid is then added to lower the pH, a plurality of secondary particles gather together to form secondary particles (agglomerates).

顕微鏡で遂次観察チェックしながら攪拌と酸添加を注意
して行なえば意図する大きさの二次粒子がほぼ揃った大
きさで得られる。−を降下させる際ゼラチンの如き両性
高分子電解質が存在しなくともアニオン性高分子電解質
が存在すれば凝集は起るが制御外(アウトオブコントロ
ール)の凝集というべきものであり、二次粒子の大ぎさ
がまことに不揃いで工業的に利用できるようなマイクロ
カプセル複核分散体は製造し得ない。ゼラチンの如き両
性高分子電解質の使用が本発明を成功させたポイントの
一つである。
If stirring and addition of acid are carefully performed while sequentially observing and checking with a microscope, secondary particles of the intended size can be obtained with almost uniform size. When lowering -, even if an amphoteric polyelectrolyte such as gelatin is not present, if an anionic polyelectrolyte is present, flocculation will occur, but it is an out-of-control aggregation, and the secondary particles It is not possible to produce a microcapsule binuclear dispersion that is extremely irregular in size and can be used industrially. The use of polyampholytes such as gelatin is one of the keys to the success of the present invention.

このあと、ホルムアルデヒド、グルタルアルデヒド、な
どで代表される有機アルデヒド化合物やクロムみょうば
んのような硬膜剤を作用させると、声を上昇させても再
び離散して単核に戻るようなことは無くなる。
After this, if an organic aldehyde compound such as formaldehyde or glutaraldehyde or a hardening agent such as chromium alum is applied, even if the voice rises, it will not become discrete again and return to mononuclear form.

本発明をノーカーボン感圧記録紙に応用する場合には、
−次粒子の大きさは数ミクロン以下、二次粒子(凝集体
)の大きさは数ミクロンないし数十ミクロンとするのが
通常であり、本発明において容易に製造される。
When applying the present invention to carbonless pressure-sensitive recording paper,
- The size of the secondary particles is usually several microns or less, and the size of the secondary particles (agglomerates) is usually several microns to several tens of microns, and can be easily produced in the present invention.

本発明に使用されるアニオン性高分子電解質は一般にマ
イクロカプセル製造の際乳化剤などとして使用されるも
のが使用でき5例えばエチレン−無水マレイン酸共重合
体、酢酸ビニル−無水マレイン酸共重合体、ポリアク 
・リル酸、スチレンー無水マレイン酸共重合体エチレン
−無水マレイン−マレイン酸ブチル共li合体、ポリス
チレンスルホン酸、スチレンスルホン酸−メタクリル酸
共重合体、イソブチレン−無水マンイン酸−ポリアクリ
ル酸メチル、アクリル酸−アクリルアミド共重合体、カ
ルボキシ変性PVAなと挙げられるが本発明の要旨を越
えない限り本発明を限定するものではない。
As the anionic polymer electrolyte used in the present invention, those generally used as emulsifiers in the production of microcapsules can be used.5 For example, ethylene-maleic anhydride copolymer, vinyl acetate-maleic anhydride copolymer, polyacrylate, etc.
・Rylic acid, styrene-maleic anhydride copolymer ethylene-maleic anhydride-butyl maleate copolymer, polystyrene sulfonic acid, styrene sulfonic acid-methacrylic acid copolymer, isobutylene-mannic anhydride-polymethyl acrylate, acrylic acid -acrylamide copolymer, carboxy-modified PVA, etc., but this does not limit the present invention unless it exceeds the gist of the present invention.

本発明に使用される疎水性物質は常温で液体でも気体で
あってもよい。
The hydrophobic substance used in the present invention may be a liquid or a gas at room temperature.

以下分り易いようにノーカーボン感圧記録紙用のカプセ
ルについて具体例を示すが、他の用途のカプセルも同様
に作ることができる。
For ease of understanding, a specific example of a capsule for carbonless pressure-sensitive recording paper will be shown below, but capsules for other uses can be made in the same way.

E、実施例 実施例1゜ 疎水性物質は3−ヂエチルアミノ−6−メチルー7−ア
ニリツフルオラン(ODB)6部を5ASN−296(
商品名、日本石油化学■製オイル)100部に溶解した
ものである。
E, Examples Example 1゜The hydrophobic substance was 6 parts of 3-diethylamino-6-methyl-7-anilite fluorane (ODB) and 5ASN-296 (
(trade name, oil manufactured by Nippon Petrochemical Co., Ltd.) dissolved in 100 parts.

分子量10万のスチレン−無水マレイン酸共重合体を苛
性ソーダで溶解し、PH4,5の5%水溶液を調製する
。この水溶液220部に上記疎水性物質(ODBのオイ
ル溶液)180部を乳化し、平均粒径2.5ミクロンの
乳化液をえた。
A styrene-maleic anhydride copolymer having a molecular weight of 100,000 is dissolved in caustic soda to prepare a 5% aqueous solution with a pH of 4.5. 180 parts of the hydrophobic substance (ODB oil solution) was emulsified in 220 parts of this aqueous solution to obtain an emulsion with an average particle size of 2.5 microns.

メラミン13部、37%ホルマリン25部、水280部
を苛性ソーダでPH9とし、80℃で加熱し溶解し、メ
ラミン−ホルマリン初期縮合物が得られた。この初期縮
合物を乳化液に加え、液温を60℃として、1時間攪拌
し、単核カプセルの生成を確認した。次いで、液温60
℃のままで10%ゼラチン水溶液20部を添加し、攪拌
混合後2%塩酸を除々に添加しPH3にし攪拌を続ける
と二次粒子の平均粒径9.7ミクロンの複核カプセルが
得られた。次いで37%ホルマリン4部を加え一晩攪拌
後PH8に調整したが、複核カプセルはもはや解離しな
かった。
13 parts of melamine, 25 parts of 37% formalin, and 280 parts of water were adjusted to pH 9 with caustic soda and dissolved by heating at 80°C to obtain a melamine-formalin initial condensate. This initial condensate was added to the emulsion, and the mixture was stirred for 1 hour at a temperature of 60° C., and the formation of mononuclear capsules was confirmed. Next, the liquid temperature is 60
20 parts of a 10% aqueous gelatin solution was added while the mixture was kept at 0.degree. C., and after stirring and mixing, 2% hydrochloric acid was gradually added to adjust the pH to 3, and stirring was continued to obtain binuclear capsules with an average secondary particle size of 9.7 microns. Next, 4 parts of 37% formalin was added and the pH was adjusted to 8 after stirring overnight, but the binuclear capsules no longer dissociated.

比較例1゜ 実施例1と、同様にして得られた単核カプセルのエマジ
ョンにゼラチンを添加せずそのまま2%塩酸でPH3に
すると制御し得ない凝集が起こった。この凝集はPHを
上げると解離した。
Comparative Example 1 When the emulsion of mononuclear capsules obtained in the same manner as in Example 1 was adjusted to pH 3 with 2% hydrochloric acid without adding gelatin, uncontrollable aggregation occurred. This aggregation dissociated when the pH was raised.

比較例2゜ 実施例1と同様にして得られた複核カプセルのエマルジ
ョンにホルマリンを添加しないでPHを上げると再解離
し単核カプセルに戻った。
Comparative Example 2 When the pH of the emulsion of multinuclear capsules obtained in the same manner as in Example 1 was raised without adding formalin, the emulsion redissociated and returned to mononuclear capsules.

実施例2゜ 疎水性物質はP−フェニルフェノール−ホルムアルデヒ
ドレジン(住人デーレツ■製)30部を5ASN−29
670部に加熱溶解したものである。
Example 2 The hydrophobic substance was 30 parts of P-phenylphenol-formaldehyde resin (manufactured by Jumin Deretsu) and 5ASN-29.
670 parts was heated and dissolved.

分子量5万のスチレン−無水マレイン酸共重合体を苛性
ソーダで溶解し、PH4,2の5%水溶液を調製する。
A styrene-maleic anhydride copolymer having a molecular weight of 50,000 is dissolved in caustic soda to prepare a 5% aqueous solution with a pH of 4.2.

この水溶液480部に上記疎水性物質360部を乳化し
、平均粒径2.3ミクロンにした。
360 parts of the above hydrophobic substance was emulsified in 480 parts of this aqueous solution to give an average particle size of 2.3 microns.

メラミン30部、37%ホルマリン52部、水520部
を苛性ソーダでP)19とし、80℃で加熱し溶解し、
メラミン−ホルマリン初期縮合物が得られた。この初期
縮合物を乳化液に加え、液温を60℃として、1時間攪
拌し、単核カプセルの生成を確認した。次いで、液温6
0℃のままで10%ゼラチン水溶液40部を添加し、攪
拌混合後、液温を40℃に下げ、4%塩酸を除々に添加
しPH3にし10分間攪拌の後液温を60℃に上げて攪
拌を続けると、二次粒子の平均粒径8.3ミクロンの複
核カプセルが得られた。
30 parts of melamine, 52 parts of 37% formalin, and 520 parts of water were prepared as P)19 with caustic soda, heated at 80°C, and dissolved.
A melamine-formalin initial condensate was obtained. This initial condensate was added to the emulsion, and the mixture was stirred for 1 hour at a temperature of 60° C., and the formation of mononuclear capsules was confirmed. Next, liquid temperature 6
40 parts of a 10% gelatin aqueous solution was added at 0°C, and after stirring and mixing, the liquid temperature was lowered to 40°C, and 4% hydrochloric acid was gradually added to adjust the pH to 3. After stirring for 10 minutes, the liquid temperature was raised to 60°C. When stirring was continued, binuclear capsules with an average particle size of secondary particles of 8.3 microns were obtained.

実施例3゜ 実施例1のスチレン−無水マレイン酸共重合体の代わり
に乳化剤としてインブチレン−無水マレイン−アクリル
酸メチル共重合体の6%水溶液240部を使用するほか
は実施例1と同様にして、平均粒径2.5ミクロンの単
核カプセルを作製した。このものに60℃で10%ゼラ
チン水溶液15部を添加し、攪拌混合後4%塩酸蛇 を除々に添加しPH2とし攪拌を続けると平均粒径6.
8ミクロンの複核カプセルが得られた。
Example 3 The same procedure as in Example 1 was carried out except that 240 parts of a 6% aqueous solution of imbutylene-maleic anhydride-methyl acrylate copolymer was used as an emulsifier instead of the styrene-maleic anhydride copolymer of Example 1. Thus, mononuclear capsules with an average particle size of 2.5 microns were produced. To this was added 15 parts of a 10% gelatin aqueous solution at 60°C, and after stirring and mixing, 4% hydrochloric acid was gradually added to adjust the pH to 2, and stirring was continued to obtain an average particle size of 6.
8 micron binuclear capsules were obtained.

実施例4゜ 疎水性物質は3gのクリスタルバイオレットラクトンと
1gのベンゾイルロイコメチレンブルーを、5ASN−
29697部に溶解した後、皮膜形成物質として10g
のスミジュールTPL2291(住人バイエル社製 へ
キサメチレンジイソシアネートの3量体)を添加溶解し
たもの。
Example 4 The hydrophobic substances were 3 g of crystal violet lactone and 1 g of benzoylleucomethylene blue, 5ASN-
10g as film-forming material after dissolving in 29697 parts
Sumidur TPL2291 (trimer of hexamethylene diisocyanate, manufactured by Bayer AG) was added and dissolved.

この疎水性物質を5%スチレン−無水マレイン酸共重合
体(pu4.3)220gに激しく攪拌しながら添加し
、平均粒径3.4ミクロンの疎水性液滴を形成した。乳
化終了後3.5gのジエチレントリアミンと3gの苛性
ソーダを水300gに溶解し系に加え、系の温度を60
℃にした。
This hydrophobic material was added to 220 g of 5% styrene-maleic anhydride copolymer (pu4.3) with vigorous stirring to form hydrophobic droplets with an average particle size of 3.4 microns. After emulsification, 3.5 g of diethylene triamine and 3 g of caustic soda were dissolved in 300 g of water, added to the system, and the temperature of the system was raised to 60°C.
It was set to ℃.

この間PRは9.5付近に保たれる。この温度下で、1
時間反応させると疎水性液滴のまわりにポリ尿素樹脂が
形成され疎水性溶液を被覆するマイクロカプセルが得ら
れた。この単核カブセルエマルジ1ンに60℃で10%
ゼラチン水溶液12部を添加し、攪拌混合後4%塩酸を
瓜々、に添加しPH3にし攪拌を続けると平均粒径11
ミクーンの複核カプセルが得られた。
During this period, PR is maintained around 9.5. At this temperature, 1
When reacted for a period of time, a polyurea resin was formed around the hydrophobic droplets, resulting in microcapsules covering the hydrophobic solution. Add 10% to this mononuclear capsule emulsion at 60°C.
Add 12 parts of gelatin aqueous solution, mix with stirring, add 4% hydrochloric acid to the melon, adjust the pH to 3, and continue stirring to obtain an average particle size of 11.
Dinuclear capsules of Mikuun were obtained.

実施例5゜ 実施例2で用いた疎水性物質200部をPH3,5,5
%のKMA−31(モンサント社製エチレンー無水マレ
イン酸共重合体)250部に平均粒径2.5ミクロンに
なる様60℃と乳化すaこの乳化液に尿素20部、レゾ
ルシフ2部を溶解した水34°0部を添加し、更に37
%ホルマリン47部を添加する。60℃で3時間攪拌し
た後、10%ゼラチン水溶液24部を添加し、凍 攪拌混合後4%塩酸を瞭々に添加しPH1,5にし攪拌
を続けると二次粒子の平均粒径10.2ミクロンの複核
カプセルが得られた。
Example 5 200 parts of the hydrophobic substance used in Example 2 was diluted to pH 3, 5, 5.
% KMA-31 (ethylene-maleic anhydride copolymer manufactured by Monsanto) and emulsified at 60°C so that the average particle size was 2.5 microns. In this emulsion, 20 parts of urea and 2 parts of Resolcif were dissolved. Add 34°0 parts of water, then add 37°
Add 47 parts of % formalin. After stirring at 60°C for 3 hours, 24 parts of a 10% gelatin aqueous solution was added, and after freezing and stirring, 4% hydrochloric acid was clearly added to adjust the pH to 1.5, and stirring was continued, resulting in an average particle size of secondary particles of 10.2. Micron binuclear capsules were obtained.

実施例1〜5で製造された合成高分子壁膜マ 。Synthetic polymer wall membranes manufactured in Examples 1 to 5.

イクロカプセル複核分散体はいずれもノーカーボン感圧
記録紙用として有用であった。
All of the microcapsule dinuclear dispersions were useful for carbonless pressure-sensitive recording paper.

F1発明の効果 本発明により既知の合成高分子壁膜マイクロカプセルを
含めて全ての合成カプセルについて、壁膜材料の主体は
合成高分子材料でしかも複数カプセル粒子がコントロー
ルされた集合を行なって複核カプセルを形成しているよ
うなマイクロカプセルの製造が可能となった。
F1 Effects of the Invention According to the present invention, for all synthetic capsules including synthetic polymer wall microcapsules known, the wall material is mainly a synthetic polymer material, and multiple capsule particles are assembled in a controlled manner to form a multinuclear capsule. It has now become possible to produce microcapsules that form .

本発明によって製造された合成高分子壁膜マイクロカプ
セル集合体言いかえれば合成高分子壁膜複核カプセルは
、従来既知の合成高分子壁膜単核カプセルにない次のよ
うな新しい特徴が現われる。
The synthetic polymer-walled microcapsule assembly produced by the present invention, in other words, the synthetic polymer-walled binuclear capsule, exhibits the following new features not found in conventionally known synthetic polymer-walled mononuclear capsules.

例えば、油状物質を芯物質とするマイクロカプセルを紙
上に塗工したのちに軽度ないしは中程度の圧力を加える
と一部のマイクロカプセルが破壊されて芯物質が放出さ
れるが、そのあと顕微鏡で観察すると単核カプセルでは
健全なカプセルと全く破壊されたカプセルの2通りのも
のしか見当らない。それに対し。
For example, if microcapsules with an oily substance as a core material are coated on paper and then mild to moderate pressure is applied, some of the microcapsules will be destroyed and the core material will be released, but this can then be observed under a microscope. Then, there are only two types of mononuclear capsules: healthy capsules and completely destroyed capsules. For it.

本発明になる複核カプセルでは健全なカプセルと全く破
壊されたカプセルのC1かに、複核カプセルを構成する
複数個の一次粒子のうちの一部のみが破壊され他は破壊
されずに残っているような不完全破壊複核カプセルが見
付かる。このことはノーカーボン感圧記録紙のような感
圧材料へ応用した場合に、単核カプセルより複核カプセ
ルの方が印加圧力の大きさにより対応した破壊(すなわ
ち芯物質放出)が行なわれることが期待でき、圧力応答
性が向上する(すなわち、印加圧と放出芯物質量との関
係がよりリニアになる。
In the binuclear capsule according to the present invention, it seems that only a part of the plurality of primary particles constituting the binuclear capsule is destroyed and the others remain undestructed, depending on the C1 of the healthy capsule and the completely destroyed capsule. An incompletely destroyed binuclear capsule was found. This means that when applied to pressure-sensitive materials such as carbonless pressure-sensitive recording paper, bi-nuclear capsules are more likely to break (i.e. release core material) depending on the applied pressure than mono-nuclear capsules. This is expected to improve the pressure response (that is, the relationship between the applied pressure and the amount of emitted core substance becomes more linear).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1で製造された合成高分子壁膜
マイクロカプセル複核分散体の光学顕微鏡写真(4oO
倍)である。 第2図は実施例1の途中の複核化処理前のマイクロカプ
セル単核分散体の光学顕微鏡写真(400倍)である。 図面の浄舎(内容に変更なし) 第1閃 第2図 手続補正書(方式) 昭和59年ジ月15日 特許庁長官 若杉和夫 殿 止虐 1、事件の表示 昭和59年 特 許 願力 1’?OIO号3、補正を
する者 事件との関係 特 許 出願人 4、代理人 居 所 〒100東京都千代田区丸の内三丁目4番2号
三菱製紙株式会社内 5、補正命令の日付 昭和59年4月24日(lL日) (1)明細書の図面の簡単な説明の欄。 「第1図は本発明の実施M1で製造された合成高分子壁
膜マイクロカプセル複核分散体の光学顕微鏡写真(40
0倍)である。 第2図は実施例1の途中の複核化処理前のマイクロカプ
セル単核分散体の光学顕微鏡写真(400倍)である。 jを 「第1図は本発明によって製造した合成高分子壁膜マイ
クロカプセル複核分散体の模式図である。 第2図は本発明に複核化処理前のマイクロカプセル単核
分散体の模式図である。」に補正する。 (2)図面を別紙のとおり補正する。
FIG. 1 is an optical micrograph (4oO
times). FIG. 2 is an optical micrograph (400x magnification) of the microcapsule mononuclear dispersion before the multinucleation treatment in the middle of Example 1. Purification of drawings (no change in content) 1st flash Figure 2 Procedural amendment (method) June 15, 1980 Commissioner of the Japan Patent Office Kazuo Wakasugi Stopping torture 1, Indication of the incident 1988 Patent Wish 1 '? OIO No. 3, Relationship with the case of the person making the amendment Patent applicant 4, agent address 5, Mitsubishi Paper Mills Co., Ltd., 3-4-2 Marunouchi, Chiyoda-ku, Tokyo 100, Date of amendment order: April 1982 Month 24th (1L day) (1) Column for a brief explanation of drawings in the specification. "Figure 1 is an optical micrograph (40
0 times). FIG. 2 is an optical micrograph (400x magnification) of the microcapsule mononuclear dispersion before the multinucleation treatment in the middle of Example 1. Figure 1 is a schematic diagram of a synthetic polymer-walled microcapsule dinuclear dispersion produced according to the present invention. Figure 2 is a schematic diagram of a microcapsule mononuclear dispersion before dinucleation treatment according to the present invention. There is.” (2) Amend the drawing as shown in the attached sheet.

Claims (1)

【特許請求の範囲】 1、分散剤もしくは乳化剤の極性分散媒溶液中に該分散
媒と相溶しない疎水性物質を不連続な微小粒子となるよ
うに分散もしくは乳化させたのち微小粒子の周囲に合成
高分子壁膜を形成させて得られた疎水性物質を芯物質と
して含む合成高分子壁膜マイクロカプセル単核亀 分散体について、両性高分子電解質およびアニオン性高
分子電解質の存在下にpHを降下させることにより上記
マイクロカプセルの単核を複数個ずつ集合させ、しかる
後再び離散しないように硬膜処理を行なうことを特徴と
する合成高分子壁膜マイクロカプセル複核分散体の製造
方法。
[Claims] 1. A hydrophobic substance incompatible with the dispersion medium is dispersed or emulsified in a polar dispersion medium solution of a dispersant or emulsifier so as to form discontinuous fine particles, and then dispersed or emulsified around the fine particles. Regarding the mononuclear turtle dispersion of synthetic polymer wall microcapsules containing a hydrophobic substance as a core substance obtained by forming a synthetic polymer wall membrane, pH was adjusted in the presence of an amphoteric polymer electrolyte and an anionic polymer electrolyte. A method for producing a synthetic polymer-walled microcapsule dinuclear dispersion, characterized in that a plurality of mononuclei of the microcapsules are aggregated by lowering the microcapsules, and then a hardening treatment is performed to prevent them from being dispersed again.
JP59019010A 1984-02-03 1984-02-03 Preparation of double nuclear dispersion of microcapsule having synthetic polymer wall film Pending JPS60166026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59019010A JPS60166026A (en) 1984-02-03 1984-02-03 Preparation of double nuclear dispersion of microcapsule having synthetic polymer wall film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59019010A JPS60166026A (en) 1984-02-03 1984-02-03 Preparation of double nuclear dispersion of microcapsule having synthetic polymer wall film

Publications (1)

Publication Number Publication Date
JPS60166026A true JPS60166026A (en) 1985-08-29

Family

ID=11987528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59019010A Pending JPS60166026A (en) 1984-02-03 1984-02-03 Preparation of double nuclear dispersion of microcapsule having synthetic polymer wall film

Country Status (1)

Country Link
JP (1) JPS60166026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU643806B2 (en) * 1990-07-20 1993-11-25 Mitsubishi Paper Mills Ltd. Carbonless copying paper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU643806B2 (en) * 1990-07-20 1993-11-25 Mitsubishi Paper Mills Ltd. Carbonless copying paper

Similar Documents

Publication Publication Date Title
US4409156A (en) Process for producing microcapsules
US3691090A (en) Encapsulation method
JPS602100B2 (en) Method for manufacturing microcapsules
US4450123A (en) Process for producing microcapsules
US5277979A (en) Process for microencapsulation
US4025455A (en) Cross-linked hydroxypropylcellulose microcapsules and process for making
US4785048A (en) Polyurea and polyurea-epoxy microcapsules
JPS646815B2 (en)
JP2005505443A (en) Microcapsules with improved printing characteristics and efficiency
JP3476223B2 (en) Manufacturing method of microcapsules
ZA200303248B (en) Core-shell particles and process for their preparation.
US5709340A (en) Article having microencapsulated adhesive thereon
JP2002233749A (en) Microcapsule with polyurea wall
EP0305212B1 (en) Process for microencapsulation, uses of polymers prepared by said process, and compositions containing polymers prepared by said process
AU716412B2 (en) Microencapsulation process and product
US4898780A (en) Production of microcapsules
JPS60166026A (en) Preparation of double nuclear dispersion of microcapsule having synthetic polymer wall film
US3565819A (en) Process of producing microcapsules
JP4077359B2 (en) Micro capsule
EP0484546B1 (en) Method of making microcapsules
JPH028774B2 (en)
JPS60216838A (en) Preparation of microcapsule
JPS63256127A (en) Micro-capsulating method of hydrophobic oil and micro-capsule and usage thereof
US4333849A (en) Encapsulation process
JP2649796B2 (en) Method for producing sustained-release microcapsules