JPS60165332A - Preparation of cast aluminum alloy article - Google Patents

Preparation of cast aluminum alloy article

Info

Publication number
JPS60165332A
JPS60165332A JP2240184A JP2240184A JPS60165332A JP S60165332 A JPS60165332 A JP S60165332A JP 2240184 A JP2240184 A JP 2240184A JP 2240184 A JP2240184 A JP 2240184A JP S60165332 A JPS60165332 A JP S60165332A
Authority
JP
Japan
Prior art keywords
alloy
casting
needle
molten metal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2240184A
Other languages
Japanese (ja)
Inventor
Yoji Awano
洋司 粟野
Yoshihiro Shimizu
吉広 清水
Junichi Takahata
高畠 淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2240184A priority Critical patent/JPS60165332A/en
Priority to CA000454955A priority patent/CA1235048A/en
Publication of JPS60165332A publication Critical patent/JPS60165332A/en
Priority to US06/945,241 priority patent/US4808374A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the lowering in the toughness of a cast article due to Fe, in preparing the cast article by casting an Al-Si alloy containing Fe as an impure substance, by applying over-heating treatment to the above mentioned Al- Si alloy. CONSTITUTION:In casting an Al-Si alloy containing 4-24wt% of Si and 0.25- 1.4wt% of Fe being an impure substance, this Al-Si alloy is melted by heating the same to 780-950 deg.C higher than a usual temp. Because Fe in the Al-Si alloy is precipitated as an Al-Si-Fe alloy in an amorphous or kanji form without forming a needle like crystal by casting said Al-Si alloy, the cast article of the Al-Si alloy having toughness markedly excellent as compared with the case of being precipitated as a needle-like crystal is obtained.

Description

【発明の詳細な説明】 本発明はアルミニウム合金鋳物、特にアルミニウムーシ
リコン系合金鋳物の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing aluminum alloy castings, particularly aluminum-silicon alloy castings.

高い靭性を有するアルミニウムーシリコン系合金鋳物は
不純物、特に鉄の少ない地金を用いて製造されていた。
Aluminum-silicon alloy castings with high toughness have been manufactured using base metals that are low in impurities, especially iron.

地金中に混入した不純物は、再度精錬しないと除去でき
ないものが多い。そのうち鉄は最も混入しやすい元素で
あり、針状のアルミニウムー鉄−シリコン化合物として
晶出し、鋳物の靭性低下だけでなく、鋳造欠陥を誘発し
やすいため、最も問題となる不純物であることは知られ
ている。
Many of the impurities mixed into the metal cannot be removed without refining it. It is known that iron is the element that is most likely to be mixed in, and is the most problematic impurity because it crystallizes as a needle-shaped aluminum-iron-silicon compound, which not only reduces the toughness of the casting but also tends to induce casting defects. It is being

二次地金やスクラップ、戻し材等を用いて鋳物を製造す
る場合、混入して増加した鉄の害を緩和する方法として
、適量のマンガンを添加して鉄を針状でなく不定形や漢
字状のAβ−(Fe。
When manufacturing castings using secondary ingots, scraps, returned materials, etc., as a way to alleviate the harm caused by the increased amount of iron mixed in, it is necessary to add an appropriate amount of manganese to make the iron not needle-like but irregularly shaped or kanji. Aβ-(Fe.

Mn ) −8i化合物として晶出させ、靭性を回復さ
せる方法が知られている。しかしながら、この方法でも
鉄の害をなくすまでには至らず、マンガンがある程度以
上多くなると鋳造性を害するという問題がある。
A method is known in which Mn)-8i is crystallized as a compound to recover toughness. However, even this method does not eliminate the harmful effects of iron, and there is a problem in that when the amount of manganese exceeds a certain level, it impairs castability.

そこで本発明は、マンガン等の他の元素を添加すること
なく、かつ鋳造性や鋳物の強度を犠牲にすることなく、
地金中の鉄の害を小さくして靭性にすぐれたアルミニウ
ム合金鋳物を製造する方法を提供することを目的とする
。更に具体的には従来法であれば鋳物中に針状晶が生じ
て靭性を低下させるような鉄量を含む地金を用いても、
すぐれた靭性の鋳物を得ることができる方法を提供する
ことを目的とするものである。
Therefore, the present invention has been developed to achieve the following: without adding other elements such as manganese, and without sacrificing castability or strength of the casting.
An object of the present invention is to provide a method for producing aluminum alloy castings with excellent toughness by reducing the damage caused by iron in the base metal. More specifically, even if a base metal containing iron is used, which would cause needle crystals to occur in the casting and reduce toughness in the conventional method,
The object of the present invention is to provide a method by which a casting having excellent toughness can be obtained.

アルミニウム合金鋳物は一般に地金を750°C前後の
温度で溶解し、溶湯に脱酸、脱ガス等の処理を施し、鋳
型に鋳造することによシ製造される。
Aluminum alloy castings are generally manufactured by melting base metal at a temperature of around 750°C, subjecting the molten metal to deoxidation, degassing, etc. treatments, and casting into a mold.

本発明は溶解工程において、溶湯を従来の処理温度よυ
も高い780°C〜950°Cに加熱処理(以下、過熱
処理という)することにより上記の目的を達成するもの
である。
In the melting process, the present invention lowers the temperature of the molten metal to
The above object is achieved by heat treatment at a temperature of 780° C. to 950° C. (hereinafter referred to as superheat treatment).

本発明はシリコンを4%(重量%を示す、以下同じ)〜
24%程度含む広い組成範囲のアルミニウムーシリコン
系合金鋳物に適用され得る。
The present invention contains silicon at 4% to 4% (indicates weight%, the same applies hereinafter).
It can be applied to aluminum-silicon alloy castings having a wide composition range including about 24%.

また本発明の効果は不純物たる鉄の含有量が0.25%
ないしそれ以上の合金において顕著であり、鉄の含有量
が1.4%程度という合金においてもその効果が発揮さ
れる。
In addition, the effect of the present invention is that the content of iron, which is an impurity, is 0.25%.
This effect is noticeable in alloys with an iron content of about 1.4% or more.

本発明は多くの研究、実験を重ねた結果達成されたもの
であシ、発明者らは、本発明の溶湯過熱処理により、鉄
含有量が0.25%〜1.4%において比較的少量の場
合には鉄化合物は切欠き効果の小さい漢字状ないし不定
形で晶出し、比較的多量の場合には針状に晶出するが極
めて微細であシ、これによシ靭性改善がなされることを
見出し、本発明を達成したのである。
The present invention was achieved as a result of many studies and experiments, and the inventors have discovered that by the molten metal superheating treatment of the present invention, the iron content is relatively small in the range of 0.25% to 1.4%. In the case of , the iron compound crystallizes in a kanji-like or amorphous shape with a small notch effect, and in the case of a relatively large amount, it crystallizes in a needle-like shape, but it is extremely fine, and this improves the toughness. They discovered this and achieved the present invention.

実験例1゜ 下表に示すAl−6XSi−0,3%Mg−0,4X 
Fe合金鋳物(第1合金)、およびkl−6%51−v
、5x Cu−o、a%Fe合金鋳物(第2合金)を用
いて、溶解時の溶湯温度を750°Cとしたもの、およ
び溶湯温度を850°Cまで高める過熱処理を行なった
ものとについて、鋳放し状態での衝撃曲げ強さを測定し
た。
Experimental Example 1゜Al-6XSi-0,3%Mg-0,4X shown in the table below
Fe alloy casting (first alloy), and kl-6%51-v
, 5x Cu-O, a%Fe alloy castings (second alloy), the molten metal temperature during melting was 750°C, and the molten metal temperature was superheated to increase to 850°C. The impact bending strength was measured in the as-cast state.

試験片の作製方法は次の通υである。即ち、第1合金で
は純Alと、Al−12%Si、 、Al−10,’7
%Mg1An−15%Feの母合金を用い、また第2合
金では母合金として上記A/−10,’7%Mgに代え
てA/−34XCuを用い、全量が1.5119となる
ように上記合金組成に配合し、アルミナコートした黒鉛
るつぼを用いて電気抵抗加熱炉中で750°Cで溶解し
た後、一つはそのままの温度で、他は更に850“c−
1で昇温させ、続いて脱酸のためNaC1とA IFm
を3対1で混合したフラックスを用い溶湯処理した。
The method for preparing the test piece is as follows. That is, in the first alloy, pure Al, Al-12%Si, Al-10,'7
A master alloy of %Mg1An-15%Fe was used, and in the second alloy, A/-34XCu was used in place of the above A/-10,'7%Mg as the master alloy, and the above was adjusted so that the total amount was 1.5119. After blending into the alloy composition and melting in an electric resistance heating furnace at 750°C using alumina-coated graphite crucibles, one was kept at that temperature and the other was further heated to 850°C.
1, followed by NaCl and AIFm for deoxidation.
The molten metal was treated using a flux containing a mixture of 3:1.

溶湯処理後、10分間鎮静してから除イし、直ちに75
0°Cに保った真空炉に移し、0.2 Torrの減圧
下で20分間脱ガス処理を行なった。
After processing the molten metal, let it calm down for 10 minutes, remove it, and immediately put it at 75%.
It was transferred to a vacuum furnace maintained at 0°C, and degassed for 20 minutes under reduced pressure of 0.2 Torr.

次に浴湯を大気中に取出し、珪砂シェル型に700 ’
0で鋳湯し、縦10mm、横IQms+、高さ130簡
の棒状の鋳物を得た。この鋳物を55順長さに切断し、
更に中心にノツチとして直径2鰭のキリ穴を付は鋳肌試
験片とした。これ等の試験片の凝固時間は第1合金の場
合は約40秒、第2合金の場合は約55秒であった。
Next, the bath water was taken out into the atmosphere and placed in a silica sand shell mold for 700'
A bar-shaped casting having a length of 10 mm, a width of IQms+, and a height of 130 pieces was obtained. This casting was cut into 55 lengths,
Furthermore, a cut hole with a diameter of 2 fins was attached as a notch in the center to form a cast skin test piece. The solidification time of these specimens was approximately 40 seconds for the first alloy and approximately 55 seconds for the second alloy.

測定結果は表に示す如くであって、両方の合金とも溶湯
を850°CK過熱処理したことにょシ衝撃値は約4〜
5割も向上し、このときの強きを示す破断荷重は750
°Cの場合とほとんど変化していなかった。
The measurement results are shown in the table, and the impact value of both alloys was approximately 4 to 4 when the molten metal was superheated to 850°CK.
It has improved by 50%, and the breaking load showing the strength at this time is 750
There was almost no change from the case at °C.

第1図は試験片のうち、第1合金の凝固組織を示す光学
顕微鏡写真(X400)で、第1図(8)は溶湯を75
0°Cとしたもの、第1図0は溶湯を850°Cに過熱
処理したものである。
Figure 1 is an optical micrograph (X400) showing the solidified structure of the first alloy among the test pieces, and Figure 1 (8) shows the molten metal at 75mm.
0°C, and Fig. 1 0 shows the molten metal heated to 850°C.

過熱処理を施さない場合は、不純物のFeはAJ7−F
e−8iの針状化合物として晶出しているのに対し、過
熱処理を施した場合は、FeO針状晶としての晶出は極
めて少なく、はとんどがAl−Fe−8iの漢字状晶と
なって晶出していることがわかる。このように、不純物
Fe を針状晶ではなく、切欠き効果の少ない漢字状晶
となるように鋳物の凝固組織を変化させたことが靭性の
向上に結びついていることは明かである。なお、漢字状
晶はX線回折によって針状晶とは異る化合物であること
が確められた。
If no overheating is applied, the impurity Fe will be AJ7-F.
While it crystallizes as a needle-like compound of e-8i, when superheating is applied, crystallization as needle-like FeO crystals is extremely rare, and most of the crystals are kanji-like crystals of Al-Fe-8i. It can be seen that crystallization occurs. In this way, it is clear that changing the solidification structure of the casting so that the Fe impurity becomes not acicular crystals but Kanji-shaped crystals with less notch effect leads to improved toughness. It was confirmed by X-ray diffraction that the Kanji-shaped crystals were a different compound from the needle-shaped crystals.

また、第2合金についても、750°Cの場合は針状晶
が晶出しているのに対し、850″Cに過熱処理した場
合は針状晶は極く僅かで、はとんどが漢字状や不定形に
晶出していることが確認された。
Also, regarding the second alloy, needle-like crystals were crystallized at 750°C, but when heated to 850"C, there were very few needle-like crystals, and most of them were kanji. It was confirmed that the crystals were crystallized in irregular shapes.

実験例2゜ 第3図に上記第2合金について、引張特性と溶湯の最高
加熱温度との関係の実験結果を示す。
Experimental Example 2 FIG. 3 shows the experimental results of the relationship between the tensile properties and the maximum heating temperature of the molten metal for the second alloy.

引張り試験片は珪砂シェル型に鋳込んで作った鋳肌のま
まのJ工Sツ号比例試験片の形状のものである。試験片
の平行部は幅15mm、厚さ8闘である。試験片の溶解
、鋳造方法は実験例1の場合と同じである。
The tensile test piece was in the shape of a J-Ko S No. 2 proportional test piece with the cast surface made by casting into a silica sand shell mold. The parallel part of the test piece has a width of 15 mm and a thickness of 8 mm. The method of melting and casting the test piece was the same as in Experimental Example 1.

引張試験片は、鋳放し材と、500°Cで5時間の溶体
化処理を行なってから氷水中へ焼入れした後、直ちに1
60°Cで5時間の時効を施したTs 材の2種類につ
いて行なった。結果を第3図に示す。図中、線A(Q印
)は鋳放し材、線B(・印)はT−処理材である。
Tensile test specimens were made of as-cast materials, which were solution-treated at 500°C for 5 hours, quenched in ice water, and then immediately
Two types of Ts materials aged at 60°C for 5 hours were tested. The results are shown in Figure 3. In the figure, line A (marked Q) is the as-cast material, and line B (marked *) is the T-treated material.

第3図で知られるように、溶湯の最高加熱温度を750
°Cから850°Cまで変えても引張強さはほとんど変
化しないが、伸びは775°C以上で徐々に大きくなり
、850 ’Oでは’750 ’Cよシも鋳放し材で約
3割、T6材で約5割も大きくなっている。
As shown in Figure 3, the maximum heating temperature of molten metal is 750.
Tensile strength hardly changes even when changing from °C to 850 °C, but elongation gradually increases above 775 °C. T6 material is about 50% larger.

また第3図には、Feが0.15%と少ない合金で75
0°Cで溶解し過熱処理を施さない従来法で作製した鋳
物で上記と同一の熱処理をしたTs 材(図中C印)の
伸びを示した。この鋳物の伸びは、本発明による過熱処
理、特に825°Cないしそれ以上の高温過熱処理をし
た鋳物よυも劣ることが確認された。
Figure 3 also shows an alloy with a low Fe content of 0.15%.
This figure shows the elongation of a Ts material (marked C in the figure) that was made using the conventional method of melting at 0°C without superheating, and was subjected to the same heat treatment as above. It was confirmed that the elongation of this casting was inferior to that of a casting subjected to the superheat treatment according to the present invention, particularly to a high temperature superheat treatment of 825°C or higher.

溶湯温度の異る各試験片の凝固組織を観察したところ、
Fe化合物の晶出は次の通りであり、伸びとよく対応し
ているととがわかった。
When observing the solidification structure of each test piece with different molten metal temperatures,
The crystallization of the Fe compound was as follows, and it was found that it corresponded well to the elongation.

即ち、Ad−6XSi−3,5XCu 合金テFe量が
0.25%および0.4%のいずれでも、750°Cで
溶解し過熱処理を施さない場合は、Mleは針状の化合
物として晶出していた。0.4%Feを含む合金鋳物で
最高加熱温度が’750 ’Oを越え高くなるにつれ、
Feは針状ではなく漢字状や不定形の化合物として晶出
するのが多くなり、850°Cでは針状は極く僅かで漢
字状や不定形の化合物として晶出した。
That is, in the Ad-6XSi-3,5XCu alloy, whether the Fe content is 0.25% or 0.4%, if it is melted at 750°C and no overheating is applied, Mle will crystallize as a needle-shaped compound. was. As the maximum heating temperature exceeds '750'O for alloy castings containing 0.4% Fe,
Fe often crystallized as kanji-shaped or amorphous compounds rather than needle-shaped, and at 850°C, there were very few needle-shaped crystals and crystallized as kanji-shaped or amorphous compounds.

実験例3゜ 第4図は、溶湯の最高加熱温度を、溶解温度そのままの
750°Cとした場合(線CSO印)と、それよりも高
く850°C(線り、・印)、950°0 (9AE、
ム印)とした場合について、T−処理したA7?−6x
si−mx Cu−Fe合金で、Fe量を0,25%か
ら1.6%まで変えたときの引張特性を示すものである
。引張試験片の作製方法およびその熱処理条件は実験例
2と同じである。
Experimental Example 3゜Figure 4 shows the case where the maximum heating temperature of the molten metal is 750°C, which is the same as the melting temperature (marked by line CSO), and the case where it is higher than that, 850°C (marked by line, ・), and 950°C. 0 (9AE,
In the case of A7 with T-processing? -6x
This figure shows the tensile properties of a si-mx Cu-Fe alloy when the amount of Fe is changed from 0.25% to 1.6%. The method for producing the tensile test piece and the heat treatment conditions were the same as in Experimental Example 2.

従来法による7 50 ’Cの溶解温度の場合と比較し
、溶湯を850’C,950°Cと高い温度に過熱処理
した場合は、Fe量が0.25%〜1.6%と広い範囲
にわたって伸びが改善されている。
Compared to the conventional method with a melting temperature of 750'C, when the molten metal is superheated to a high temperature of 850'C or 950°C, the Fe content ranges widely from 0.25% to 1.6%. Elongation has been improved across the board.

しかしFe量が1.4Xを越え、更に1.6%に達する
と伸び改善効果は小さくなる。一方、引張シ強さは、過
熱処理によシ低下することはない。
However, when the amount of Fe exceeds 1.4X and further reaches 1.6%, the effect of improving elongation becomes smaller. On the other hand, the tensile strength does not decrease due to overheating.

第2図はFe量1.4%の試験片の光学顕微鏡組織(X
200)t−示すもので第2図(8)は溶湯温度を75
0°Cとしたもの、第2図(ハ)は950°Cとしたも
のについてである。
Figure 2 shows the optical microscopic structure (X
200) t - Figure 2 (8) shows the molten metal temperature at 75
The temperature was set to 0°C, and FIG. 2 (c) shows the temperature set to 950°C.

溶湯温度750°Cのものと、950°Cのものと比べ
ると、950°Cのものも晶出したF’e化合物の形状
は針状であるが、明かにその大きさは小さくなっている
。この針状晶を共晶凝固で晶出したSi (溶体化処理
により丸味をおびてJいる)の大きさに比較すると75
0°Cで溶解しただけのものではSlよυ数倍も大きい
のが数多くみられるのに対し、950°Cまで過熱した
場合は5ol−とほぼ同じ程度に小さくなっている。
Comparing the molten metal temperature of 750°C with that of 950°C, the F'e compound crystallized at 950°C also has a needle-like shape, but its size is clearly smaller. . If we compare the size of these needle crystals with the size of Si crystallized by eutectic solidification (which has become rounded due to solution treatment), it is 75.
In many cases, when it is simply melted at 0°C, it is several times larger than Sl, but when it is heated to 950°C, it is almost as small as 5ol-.

実験例1でも示したように、溶湯を従来の溶解温度よシ
高い温度まで過熱することによシ、Feが0.4X前後
と比較的少ない場合はFe化合物は漢字状や不定形に晶
出する。Feが0.6%前後まで含まれる場合は、Fe
化合物は針状と、漢字状や不定形の両方が晶出されるよ
うになる。このように不純物のFeは針状でなく切欠効
果の小さい漢字状や不定形の晶出物として晶出すること
で合金鋳物の伸びが改善される。
As shown in Experimental Example 1, by heating the molten metal to a temperature higher than the conventional melting temperature, when the Fe content is relatively small, around 0.4 do. If Fe is included up to around 0.6%, Fe
The compound begins to crystallize in both needle-like shapes, kanji-like shapes, and amorphous shapes. In this way, the impurity Fe is crystallized not in the form of needles but in the form of Kanji-like or amorphous crystals with a small notch effect, thereby improving the elongation of the alloy casting.

また実験例3により知られる如く、Feが更に多く含ま
れている場合でも溶湯の過熱処理をすると伸びが改善さ
れるのは、針状に晶出するものの、この針状晶は微細で
あって、これが伸びの改善に貢献することは明かである
Furthermore, as is known from Experimental Example 3, elongation is improved by overheating the molten metal even when Fe is contained in a larger amount, although crystals crystallize into needles, but these needles are fine. , it is clear that this contributes to improving growth.

以上説明したように、従来のAl−5i系合金鋳物では
、その地金中に不純物としてFeが含まれると靭性が大
きく低下する。しかして本発明は地金を溶解する工程に
おいて溶湯温度を従来のそれよりも高いツ80°C〜9
50°Cに過熱することにより!物の強度を犠牲にする
ことなく靭性を大幅に改善することに成功したのである
As explained above, in conventional Al-5i alloy castings, if Fe is contained as an impurity in the base metal, the toughness is greatly reduced. However, in the process of melting the base metal, the present invention increases the temperature of the molten metal to 80°C to 90°C higher than that of the conventional method.
By heating to 50°C! They succeeded in significantly improving the toughness of the material without sacrificing its strength.

同時に発明者らは、従来の溶解により得られる鋳物では
不純物として含まれるFeの化合物が針状に晶出してお
り、これが靭性低下の原因となっていたところ、本発明
による浴湯の過熱によJF’e化合物は1゛θ量が比較
的少ないときは漢字状ないしは漢字状と不定形に、比較
的多くなると針状ではあるが極めて微細に晶出し、これ
が靭性向上に貢献するという新牛実を見出したのである
At the same time, the inventors discovered that in castings obtained by conventional melting, Fe compounds contained as impurities crystallize in the form of needles, which causes a decrease in toughness. When the amount of 1゛θ is relatively small, the JF'e compound crystallizes in a kanji-like or kanji-like amorphous shape, and when it is relatively large, it crystallizes in needle-like but extremely fine crystals, which contributes to improved toughness. They discovered this.

本発明はAl−8i系合金鋳物の信頼性を向上せしめる
のみでなく、yeを多く含む安価な地金の有効利用を可
能とし、Ae−8i、系合金鋳物の製造における経済性
にも大きく貢献するものである。
The present invention not only improves the reliability of Al-8i alloy castings, but also enables the effective use of inexpensive base metals containing a large amount of ye, and greatly contributes to the economic efficiency of manufacturing Ae-8i alloy castings. It is something to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鉄0.4Xを含むA/−8i 系合金鋳物の顕
微鏡組織(x400)を示すもので!i@1図(6)は
従来法により得られた鋳物の組織、第1図(ハ)は本発
明によシ得られた鋳物の組織を示す。 第2図は鉄1.4%を含むA/−Si系合金鋳物の顕微
鏡組織(X200)を示すもので第2図(8)は従来法
によシ得られた鋳物の組織、第2図(ハ)は本発明によ
り得られた鋳物の組織を示す。第3図は本発明および従
来法で得られた合金鋳物の溶湯最高温度と引張強さ、伸
びの関係を示す図、第4図は本発明および従来法により
得られた合金鋳物中の鉄含有量と引張)強さ、伸びの関
係を示す図である。 代理人 弁理士 伊藤求馬 へ :2 ) ン ト \− ゛5 介 j′ r゛ 伍 6°、 与 yゝ 第3図 第4図
Figure 1 shows the microscopic structure (x400) of an A/-8i alloy casting containing 0.4X iron! i@1 Figure (6) shows the structure of the casting obtained by the conventional method, and Figure 1 (c) shows the structure of the casting obtained by the present invention. Figure 2 shows the microscopic structure (X200) of an A/-Si alloy casting containing 1.4% iron, and Figure 2 (8) shows the structure of the casting obtained by the conventional method. (c) shows the structure of the casting obtained according to the present invention. Figure 3 is a diagram showing the relationship between the maximum temperature of molten metal, tensile strength, and elongation of alloy castings obtained by the present invention and the conventional method, and Figure 4 shows the iron content in the alloy castings obtained by the present invention and the conventional method. It is a figure showing the relationship between the amount, tensile strength, and elongation. To the agent and patent attorney Mokuma Ito: 2)

Claims (2)

【特許請求の範囲】[Claims] (1)4車量%ないし24重量%のシリコンを含むアル
ミニウムーシリコン系合金鋳物で鉄その他年可避の不純
物を含む合金から鋳物を製造するに際し、溶解時に溶湯
’k ’I 8o c〜950°Cの温度で加熱処理し
た後、鋳造することを特徴とするアルミニウム合金鋳物
の製造方法。
(1) When producing castings from aluminum-silicon alloy castings containing 4% to 24% silicon by weight and containing iron and other unavoidable impurities, the molten metal'k'I 8oC~950 during melting. A method for producing an aluminum alloy casting, the method comprising casting after heat treatment at a temperature of °C.
(2)上記鋳造合金中の鉄含有量が0.25恵量%ない
し1.4重量%である特許請求の範囲第1項記載のアル
ミニウム合金鋳物の製造方法。
(2) The method for producing an aluminum alloy casting according to claim 1, wherein the iron content in the casting alloy is 0.25% to 1.4% by weight.
JP2240184A 1983-05-23 1984-02-09 Preparation of cast aluminum alloy article Pending JPS60165332A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2240184A JPS60165332A (en) 1984-02-09 1984-02-09 Preparation of cast aluminum alloy article
CA000454955A CA1235048A (en) 1983-05-23 1984-05-23 Method for producing aluminum alloy castings and the resulting product
US06/945,241 US4808374A (en) 1983-05-23 1986-12-22 Method for producing aluminum alloy castings and the resulting product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2240184A JPS60165332A (en) 1984-02-09 1984-02-09 Preparation of cast aluminum alloy article

Publications (1)

Publication Number Publication Date
JPS60165332A true JPS60165332A (en) 1985-08-28

Family

ID=12081638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2240184A Pending JPS60165332A (en) 1983-05-23 1984-02-09 Preparation of cast aluminum alloy article

Country Status (1)

Country Link
JP (1) JPS60165332A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104278166A (en) * 2013-08-19 2015-01-14 济南大学 Method for reducing harmful effect of iron phase in aluminum-silicon alloy
CN109943741A (en) * 2019-04-10 2019-06-28 安徽信息工程学院 A kind of multi-functional improved materials and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104278166A (en) * 2013-08-19 2015-01-14 济南大学 Method for reducing harmful effect of iron phase in aluminum-silicon alloy
CN109943741A (en) * 2019-04-10 2019-06-28 安徽信息工程学院 A kind of multi-functional improved materials and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5116976B2 (en) Raw brass alloy for semi-fusion gold casting
CN109439971A (en) A kind of corrosion resistance, high-intensitive aluminium alloy and preparation method thereof
EP1882754B1 (en) Aluminium alloy
CN106480344B (en) A kind of vacuum pump rotor rare-earth containing aluminium alloy and preparation method thereof
US4808374A (en) Method for producing aluminum alloy castings and the resulting product
Moussa et al. Influence of chemical modification by Y2O3 on eutectic Si characteristics and tensile properties of A356 alloy
JPS64456B2 (en)
CN114214534A (en) Modified aluminum alloy and preparation method thereof
Tang et al. Effect of various Er/Al-Ti-C ratios on microstructure and tensile properties of the As-cast Al-10Si-0.8 Fe alloy
JP2006299305A (en) Heat resistant aluminum alloy wire, and method for producing the same
JP2005139552A (en) Aluminum alloy for casting, aluminum-alloy casting and method for manufacturing aluminum-alloy casting
Malekan et al. Effect of isothermal holding on semisolid microstructure of Al–Mg2Si composites
JPS60165332A (en) Preparation of cast aluminum alloy article
JP4065758B2 (en) Wear-resistant aluminum alloy elongated body and method for producing the same
CN111378876B (en) Sc-containing aluminum alloy for vacuum pump rotor and preparation method thereof
JPS6220847A (en) Metallic material having fine crystal grain and its production
WO2023015608A1 (en) High strength, high conductivity, intergranular corrosion-resistant aluminum alloy and preparation method therefor
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JPH07258784A (en) Production of aluminum alloy material for forging excellent in castability and high strength aluminum alloy forging
KR20200077966A (en) Cast type alpha+beta titanium alloy and method for manufacturing the same
US1707753A (en) Malleable iron alloy
JP3415345B2 (en) Heat-resistant fatigue aluminum alloy and method for producing the same
JP3344687B2 (en) Copper alloy for lead frame
Boyko et al. Effect of additional alloying and heat treatment on phase composition and morphology in Al-Mg-Si-type casting alloy
JPS63125632A (en) High-strength copper alloy having excellent thermal fatigue resistance