JPS60165034A - Split ion analyzing device by collision activation - Google Patents

Split ion analyzing device by collision activation

Info

Publication number
JPS60165034A
JPS60165034A JP59021226A JP2122684A JPS60165034A JP S60165034 A JPS60165034 A JP S60165034A JP 59021226 A JP59021226 A JP 59021226A JP 2122684 A JP2122684 A JP 2122684A JP S60165034 A JPS60165034 A JP S60165034A
Authority
JP
Japan
Prior art keywords
ion
collision chamber
ions
collision
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59021226A
Other languages
Japanese (ja)
Inventor
Takehiro Takeda
武弘 竹田
Yuichi Kuratani
蔵谷 雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP59021226A priority Critical patent/JPS60165034A/en
Publication of JPS60165034A publication Critical patent/JPS60165034A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/28Static spectrometers
    • H01J49/32Static spectrometers using double focusing

Abstract

PURPOSE:To improve detection sensibility of CA ions by making it possible to regulate the position along the ion orbit surface while in the orthogonal direction to the ion orbit as well as the inclination around the axis vertical to the ion orbit surface in an analyzing device of a collision chamber by external operation. CONSTITUTION:A collision chamber CC is finely adjustable in the Y-direction orthogonal to the ion orbit inside the ion orbit surface while being minutely rotatable around the Z-axis vertical to the ion orbit surface. When only an incident hole Si is accorded with the center of an ion beam Ib by moving the collision chamber in the Y-direction, the ions being incident to the collision chamber are increased but the split ions in the same direction hit on the periphery of the outgoing hole So thus lowering the outgoing efficiency of ions. By adjusting the position of the collision chamber in the Y-direction together with adjusting the inclination around the Z-axis, the ion incident and outgoing efficiency can be hightened by almost 100%.

Description

【発明の詳細な説明】 イ・ 産業上の利用分野 本発明は質量分析法によって分別上れた一つの質量の親
イオンが開裂して生ずる開裂イオンを濱1]定するいわ
ゆるM工KES (Mass−analyzeaIon
 Kinetic Energy Spectrum)
の測定を行う装置に関する。
[Detailed Description of the Invention] B. Industrial Application Field The present invention is directed to the so-called M-KES (Mass -analyzeaIon
Kinetic Energy Spectrum)
The present invention relates to a device for measuring.

ン(親イオン)をに、とすると、親イオンは飛行中に奉
安iイオンにと中性分子Nとに開裂する。即ちにオーk
” +N oこのような開裂の様子を調べるこ長 とによって、イオンの構造、@合物の定性r定量に有益
な情報が得られる。上述した測定では試料をイオン化し
て生成された一次イオンが始めに持っていた内部エネル
ギーによって自然に開裂するのを利用しているが、この
方法を発展させて一次イオンに適当なガス分子を衝突さ
せて、−次イオイし ンを活性緩(Collision Activatio
n: CA)して開裂させ、生じた開裂イオンを測定す
る分析法がある。このだめの分析装置は、質量分析部と
エネルギー分析部を有し、試料をイオン化して生成され
た一次イオンを質量分析部で分別して一種類のイオンを
選択し、選択されたイオンにガス分子を衝突させて、生
成した開裂イオンをエネルギー分析部に入射させてエネ
ルギースペクトルを測定するようになっている。
When the parent ion is 2, the parent ion is cleaved into the ion and the neutral molecule N during flight. In other words, OK
”+No By investigating the state of such cleavage, useful information can be obtained for the structure of the ion and the qualitative determination of the compound.In the above-mentioned measurement, the primary ions generated by ionizing the sample are This method takes advantage of the natural cleavage caused by the internal energy that the primary ion possesses, but this method has been developed by colliding the primary ion with an appropriate gas molecule.
There is an analysis method in which the cleavage ion is measured by cleavage using n: CA). This useless analyzer has a mass spectrometry section and an energy analysis section, and the mass spectrometer separates the primary ions generated by ionizing the sample to select one type of ion, and the selected ions are combined with gas molecules. The energy spectrum is measured by colliding the ions and making the generated cleavage ions enter the energy analyzer.

今質量分析部から出射したイオン(開裂イオンから見て
親イオン)己の質量をM、速度をVとし、開裂して生じ
た傘安牛イオン針の質量をml・ 中性分子Nの質量を
m2とすると、開裂によって生じたkとNの速度も■で
あり、夫々の運動のエネルギーは −mlV2. Am2V2 2 となる。従って、エネルギー分析部で開裂イオンのエネ
ルギー分析を行うことによって開裂イオンを質量によっ
て弁別し、イオン種を分析することができる。
Let the mass of the ion (parent ion seen from the cleavage ion) that has just been emitted from the mass spectrometer be M, the velocity be V, the mass of the umbrella ion needle produced by the cleavage is ml, and the mass of the neutral molecule N is m2, the velocity of k and N produced by the cleavage is also ■, and the energy of each movement is -mlV2. Am2V2 2 . Therefore, by performing energy analysis of the cleavage ions in the energy analysis section, the cleavage ions can be distinguished by mass and the ion species can be analyzed.

上述したようなCAイオンの渭]定を行う従来装置は高
分解能質量スペクトルを得る目的でエネルギー分析用電
場と質量分析用磁場を組合せた二重収束型質量分析計の
イオン飛行方向を逆にした構成の装置で磁場と電場の中
間のイオン収束点に衝突ガスが導入される衝突室を配置
した構成を有する。この衝突室は質量分析部によって質
量スペクトルが形成される面に配置されて一つのスペク
トルピークを選択する機能が必要であるから、イオン入
射孔はせまいスリット(例えば幅0−2 m m、長さ
6〜’7mm)であり、内部で衝突ガスの必要圧力を維
持するためイオン出射孔もせまいスリットになっている
。このため衝突室のイオン人出射孔は正確にイオン軌道
と一致させておく必要があるが、従来は衝突室取付は構
造の工作精度に依存して、設計上のイオン軌道に対して
衝突室のイオン人出射孔を一致させるようにして固定し
ていた。
Conventional equipment for determining the position of CA ions as described above uses a dual-focusing mass spectrometer that combines an electric field for energy analysis and a magnetic field for mass analysis, with the ion flight direction reversed in order to obtain a high-resolution mass spectrum. This device has a collision chamber in which a collision gas is introduced at an ion convergence point between a magnetic field and an electric field. This collision chamber is placed on the surface where a mass spectrum is formed by the mass spectrometer and needs to have the ability to select one spectral peak. 6 to 7 mm), and the ion exit hole is also a narrow slit in order to maintain the required pressure of the collision gas inside. For this reason, the ion exit hole in the collision chamber must be aligned accurately with the ion trajectory, but conventionally, the collision chamber installation depends on the precision of the structure, and the collision chamber is aligned with the designed ion trajectory. It was fixed so that the ion exit holes were aligned.

しかしCAイオン測定の場合、質量分析部では質量走査
を行わず、一つの質量に設定して測定を行うので、設定
のわずかな誤差によって所定質量のイオンの収束点が衝
突室のイオン入射孔位置がらずれ、′止だ衝突室人出射
孔を連ねる線がイオン軌道に対してわずかに傾いていた
りして、検出されるイオンの検出強度が低いと云う欠点
があった。
However, in the case of CA ion measurement, the mass spectrometer does not perform mass scanning and performs measurement by setting a single mass, so a slight error in the setting may cause the convergence point of ions of a predetermined mass to be at the ion entrance hole in the collision chamber. The line connecting the exit holes in the collision chamber was slightly tilted with respect to the ion trajectory, resulting in a low detection intensity of ions.

ハ、目 的 本発明はCAイオンの測定を行う従来装置の上述した問
題点を解消しようとするものである。
C. Purpose The present invention is intended to solve the above-mentioned problems of conventional devices for measuring CA ions.

二・ 構 成 本発明は、外部操作によって衝突室の分析装置内のイオ
ン軌道面に沿いかつイオン軌道と直角方向の位置調整及
びイオン軌道面に垂直な軸まわりの傾き調整を可能とし
たMIKES測定装置に係るO ホ、実施例 第1図は本発明の一実施例装置の全体を示す0工Sはイ
オン源、Bは質量分析用磁場、CCが衝突室で、Eはエ
ネルギー分析用電場、MPはイオン検出用2次電子増倍
管である。TOがイオン軌道であり、図の紙面がイオン
軌道面である。衝突室CCにおいて、Slはイオン入射
孔、Soはイオン出射孔で、図の紙面即ちイオン軌道面
に対して垂直方向に長いスリット状になっておp、He
等の衝突ガスが導入されている。磁場Bを通過した特定
質量のイオンが衝突室CGのイオン入射孔S1上に収束
して衝突室内に進入し、衝突ガスと衝突して活性化でれ
開裂を起す。開裂によって生じた開裂イオンはもとのイ
オンと同じ速度を保持してイオン出射孔SOから出射し
、エネルギー分析用電場Eでエネルギー分析されてイオ
ン検出器MPによシ検出され、エネルギー分析用電場で
エネルギー走査を行うことにより、特定質量の親イオン
の開裂によって生じた一横イオ ンのスペクトルが得られる。
2. Configuration The present invention provides a MIKES measuring device that enables positional adjustment along the ion trajectory plane and perpendicular direction to the ion trajectory and tilt adjustment around an axis perpendicular to the ion trajectory plane in the analysis device of the collision chamber by external operation. Figure 1 shows the entire apparatus of an embodiment of the present invention. S is an ion source, B is a magnetic field for mass spectrometry, CC is a collision chamber, E is an electric field for energy analysis, and MP is an ion source. is a secondary electron multiplier for ion detection. TO is the ion orbit, and the paper plane of the figure is the ion orbit plane. In the collision chamber CC, Sl is an ion entrance hole, So is an ion exit hole, and they are shaped like long slits in the direction perpendicular to the paper plane of the figure, that is, the ion orbital plane.
A collision gas such as the following is introduced. Ions of a specific mass that have passed through the magnetic field B converge on the ion entrance hole S1 of the collision chamber CG, enter the collision chamber, collide with the collision gas, become activated, and cause cleavage. The cleavage ions generated by the cleavage are emitted from the ion exit hole SO while maintaining the same velocity as the original ions, are energy analyzed by the electric field E for energy analysis, and detected by the ion detector MP. By performing an energy scan at , a spectrum of a single lateral ion produced by the cleavage of a parent ion of a specific mass can be obtained.

衝突室CCは図の紙面即ちイオン軌道面内でイオン軌道
と直角のY方向に微動可能であシ、まだイオン軌道面に
垂直な2軸まわりに微小回転可能である。P’l、P2
は二重つまみであって、分析装置の真空器壁Wの外にあ
って、PLを回わすことによシ、衝突室CCのY方向位
置微調整を行い、P2を回わすことで2@まわシの傾き
を調整する。
The collision chamber CC can be moved slightly in the Y direction perpendicular to the ion orbit within the plane of the drawing, that is, within the ion orbit plane, and can still be slightly rotated around two axes perpendicular to the ion orbit plane. P'l, P2
is a double knob located outside the vacuum chamber wall W of the analyzer.By turning PL, fine adjustment of the Y-direction position of the collision chamber CC is made, and by turning P2, 2@ Adjust the tilt of the mawashi.

第2図は衝突室の位置微調整機構の詳細を示す。FIG. 2 shows details of the collision chamber position fine adjustment mechanism.

Gは真空器壁Wに設けられた筒状ガイドでY方向調整棒
Ri″が気密にY方向摺動可能でY軸まわシの回転を阻
止されて貫通しており、衝突室CCはこの棒の先端部に
ビンZpによってZ軸まわ)に回転可能に保持されてお
シ、ばね力によって反時計方向に付勢されている。Y方
向調整棒RYのガイドGから左方に突出している部分に
つまみPIが軸受b1を介して回転可能に取付けである
。つ−捷みPlの内面とガイドGの外面とにねじT1が
形成してあり相互に係合していて、つまみPlをまわす
とPlはY方向に進退し、それに伴ってY方向調整棒が
Y方向に動いて、衝突室CCのY方向位置の微調整が行
われる。更にY方向調整棒RYを軸方向に貫通して2軸
まわり調整棒RZが設けられている。2まわり調整棒R
ZはY方向調整棒RYに対して気密にY方向摺動可能で
Y軸まわシの回転を阻止されておシ、その右端が衝突室
CCから突設した腕Aに当っており〜棒RZの“方向の
進退に応じて腕Aが押動され衝突室CCはビンzpを軸
として2軸まわりに回転せしめられ、2軸まわ9の傾き
の調整が行われる。÷皓士わ→舌 ’ ” z軸 まわシ調整棒RZの左端には軸受b2を介して回転可能
につまみP2が取付けてあり、Y方向調整棒RYの左端
部内面とつまみP2の柄部外面とに形成されたねじT2
が互に係合し、つまみP2を回わすと、同つまみが棒R
Mに対してY方向に進退し、これと一体的に棒RZがY
方向に進退して上記したように衝突室CCの2軸まわシ
の傾きの調整が行われる。
G is a cylindrical guide provided on the wall W of the vacuum chamber, through which the Y-direction adjustment rod Ri'' can airtightly slide in the Y direction and prevent rotation of the Y-axis rotary; the collision chamber CC is connected to this rod. It is held rotatably around the Z-axis by a bottle Zp at the tip of the rod, and is biased counterclockwise by a spring force.The portion of the Y-direction adjustment rod RY that protrudes leftward from the guide G. A knob PI is rotatably attached via a bearing b1.A screw T1 is formed on the inner surface of the knob PI and the outer surface of the guide G, and they engage with each other, so that when the knob PI is turned, Pl moves forward and backward in the Y direction, and the Y-direction adjustment rod moves in the Y direction to finely adjust the Y-direction position of the collision chamber CC.Furthermore, it passes through the Y-direction adjustment rod RY in the axial direction. A shaft rotation adjustment rod RZ is provided.Two rotation adjustment rods R
Z is airtightly slidable in the Y direction with respect to the Y-direction adjustment rod RY, and rotation of the Y-axis rotation is prevented.The right end of Z is in contact with the arm A protruding from the collision chamber CC. As the arm A moves forward and backward in the direction of the arrow, the collision chamber CC is rotated around two axes around the bin zp, and the inclination of the two axes 9 is adjusted. ” A knob P2 is rotatably attached to the left end of the Z-axis rotation adjustment rod RZ via a bearing b2, and a screw T2 is formed on the inner surface of the left end of the Y-direction adjustment rod RY and the outer surface of the handle of the knob P2.
are engaged with each other, and when knob P2 is turned, the same knob is connected to rod R.
Moves forward and backward in the Y direction with respect to M, and integrally moves the rod RZ in the Y direction.
As described above, the inclination of the two-axis rotation of the collision chamber CC is adjusted by moving forward and backward in the direction.

衝突室CCとY方向調整棒RYとの間の結合は上側では
ビン結合であるが、図の紙面に垂直な方向に幅を持つ板
ばねによって両者を結合し、この板ばねの撓みによって
衝突室を2軸まわシに回動可能としてもよい。
The connection between the collision chamber CC and the Y-direction adjustment rod RY is a bottle connection on the upper side, but they are connected by a leaf spring whose width is perpendicular to the plane of the drawing, and the collision chamber is adjusted by the deflection of this leaf spring. may be rotatable about two axes.

第3図は本発明の詳細な説明する図で、同図aは衝突室
CCの位置調整が行−われない場合で、目的とする質量
のイオンビームよりと衝突室との関係は一般的にこの図
のようになっていて、質量分析されたイオンの多くは衝
突室に入射できない。
Figure 3 is a diagram explaining the present invention in detail, and figure a shows the case where the position of the collision chamber CC is not adjusted, and the relationship between the ion beam of the target mass and the collision chamber is generally As shown in this figure, many of the ions subjected to mass spectrometry cannot enter the collision chamber.

こ\で衝突室をY方向に移動させて入射孔Siをイオン
ビームよりの中心に合せただけでは衝突室に入射するイ
オンは増加するが、同じ方向に運動する開裂イオンは出
射孔SOの縁に当ってしまい、イオン出射効率は低い。
In this case, simply moving the collision chamber in the Y direction and aligning the entrance hole Si with the center of the ion beam will increase the number of ions entering the collision chamber, but the cleavage ions moving in the same direction will fall to the edge of the exit hole SO. , and the ion ejection efficiency is low.

第3図すは本発明による位置調整を行った場合を示し、
衝突室CC位置をY方向に調整すると共に2軸まわシの
傾きも調整なお図で(1はイオン収束電極で衝突室から
出射したイオンを効率的にエネルギー分析用電場Eに導
く本のであり、2は引出し電極で衝突室からイオンを効
率的に引出すものである。
FIG. 3 shows the case where position adjustment according to the present invention is performed,
Adjust the position of the collision chamber CC in the Y direction and also adjust the tilt of the two-axis rotation (1 is a book that uses an ion focusing electrode to efficiently guide ions emitted from the collision chamber to an electric field E for energy analysis, 2 is an extraction electrode that efficiently extracts ions from the collision chamber.

へ・効 果 本発明によれば衝突室の位置、傾きの最適調整により開
裂イオンの検出感度が大幅に向上でき、常時外部から調
整できるから調整操作が簡単であり、装置製作時2組立
時の誤差に対する許容幅に余裕ができて製造コストが低
下できる。
Effects According to the present invention, the detection sensitivity of cleavage ions can be greatly improved by optimally adjusting the position and inclination of the collision chamber, and the adjustment operation is easy because it can be adjusted from the outside at all times, and the adjustment operation is simple during device production and 2nd assembly. There is a margin for tolerance for errors, and manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置の全体を示す平面図、第
2図は同実施例の衝突室の位置調整機構の詳細を示す水
平断面図、第3図は本発明の詳細な説明する図である。 工S・・・イオン源、B・・・質量分析用磁場、CC・
・・衝突室、E・・・エネルギー分析用電場、MP・・
・イオン検出器、W・・・真空器壁、Pl・・・Y方向
調整つまみ、P2・・・Z軸まわシ傾き調整用つまみ、
RY・・・Y方向調整棒、RZ・・・2@まわシ調整棒
、TIJ T2・・・ねじ溝、bl、b2・・・軸受、
G・・・筒状ガイド。 代理人 弁理士 縣 浩 介
FIG. 1 is a plan view showing the entire apparatus according to an embodiment of the present invention, FIG. 2 is a horizontal sectional view showing details of the collision chamber position adjustment mechanism of the same embodiment, and FIG. 3 is a detailed explanation of the present invention. This is a diagram. Engineering S...Ion source, B...Magnetic field for mass spectrometry, CC/
... Collision chamber, E... Electric field for energy analysis, MP...
・Ion detector, W... Vacuum chamber wall, Pl... Y direction adjustment knob, P2... Z axis rotation tilt adjustment knob,
RY...Y direction adjustment rod, RZ...2 @ rotating adjustment rod, TIJ T2...thread groove, bl, b2...bearing,
G...Cylindrical guide. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 試料をイオン化するイオン源と、同イオン源で生成され
た試料イオンを質量分析する質量分析部と、イオン軌道
上、同質量分析部の後方に配置されるイオンエネルギー
分析部と、上記質量分析部とエネルギー分析部との中間
でイオン軌道上に配置され衝突ガスが導入される衝突室
とよりなる装置において、上記衝突室を上記イオン軌道
の面内で同軌道と直角の方向の位置及び同軌道面に垂直
な軸まわりの傾きを外部から調整可能としたことを特徴
とする、衝突活性化による開裂イオン分析装置。
An ion source that ionizes a sample, a mass spectrometer that performs mass spectrometry on sample ions generated by the ion source, an ion energy analyzer that is placed behind the mass spectrometer on the ion trajectory, and the mass spectrometer. In an apparatus comprising a collision chamber placed on the ion trajectory and into which a collision gas is introduced between the ion trajectory and the energy analysis section, the collision chamber is located in the plane of the ion trajectory in a direction perpendicular to the same trajectory and in the same orbit. A fragmentation ion analyzer using collisional activation, characterized in that the tilt around the axis perpendicular to the surface can be adjusted from the outside.
JP59021226A 1984-02-07 1984-02-07 Split ion analyzing device by collision activation Pending JPS60165034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021226A JPS60165034A (en) 1984-02-07 1984-02-07 Split ion analyzing device by collision activation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021226A JPS60165034A (en) 1984-02-07 1984-02-07 Split ion analyzing device by collision activation

Publications (1)

Publication Number Publication Date
JPS60165034A true JPS60165034A (en) 1985-08-28

Family

ID=12049100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021226A Pending JPS60165034A (en) 1984-02-07 1984-02-07 Split ion analyzing device by collision activation

Country Status (1)

Country Link
JP (1) JPS60165034A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009290A (en) * 2010-06-25 2012-01-12 Hitachi High-Technologies Corp Mass spectrometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336291A (en) * 1976-09-16 1978-04-04 Hitachi Ltd Mass spectrometer
JPS5825057A (en) * 1981-07-16 1983-02-15 Jeol Ltd Mass spectrograph

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336291A (en) * 1976-09-16 1978-04-04 Hitachi Ltd Mass spectrometer
JPS5825057A (en) * 1981-07-16 1983-02-15 Jeol Ltd Mass spectrograph

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009290A (en) * 2010-06-25 2012-01-12 Hitachi High-Technologies Corp Mass spectrometer
US8669518B2 (en) 2010-06-25 2014-03-11 Hitachi High-Technologies Corporation Mass spectrometer

Similar Documents

Publication Publication Date Title
US5340983A (en) Method and apparatus for mass analysis using slow monochromatic electrons
US7564026B2 (en) Linear TOF geometry for high sensitivity at high mass
US7273996B2 (en) Inductively coupled plasma alignment apparatus and method
US6423965B1 (en) Mass spectrometer
EP2943970B1 (en) Mass spectrometer with optimized magnetic shunt
JPS58161237A (en) Mass analyzer
EP2943971B1 (en) Mass spectrometer with improved magnetic sector
US4952803A (en) Mass Spectrometry/mass spectrometry instrument having a double focusing mass analyzer
US5091645A (en) Selectable-resolution charged-particle beam analyzers
US20040056192A1 (en) Ap-maldi target illumination device and method for using an ap-maldi target illumination device
JPS60165034A (en) Split ion analyzing device by collision activation
EP3594990A1 (en) Adjustable multipole assembly for a mass spectrometer
JPH0547935B2 (en)
Scott et al. Highly reproducible laser beam scanning device for an internal source laser desorption microprobe Fourier transform mass spectrometer
JP2870910B2 (en) Variable mass spectrometer
JP2015502645A (en) Improvements in or related to mass spectrometry
US3800151A (en) Method for adjusting the ion beam height in a mass spectrometer
US3546450A (en) Aperture devices for mass spectrometers
EP1649487B1 (en) Device for measuring and quantitative profiling of charged particle beams
JPWO2019049272A1 (en) Ion source and ion analyzer
US10161750B2 (en) Ion source alignment
Hill et al. A bebe four-sector mass spectrometer: a new lease of life for two old instruments
US4427885A (en) Double focussing mass spectrometer
Balcaen 4 Inductively coupled plasma–mass spectrometry
EP2718960B1 (en) Mass spectrometry for a gas analysis with a two-stage charged particle deflector lens between a charged particle source and a charged particle analyzer both offset from a central axis of the deflector lens