JPS60164202A - Thickness measuring method of double layered materials - Google Patents

Thickness measuring method of double layered materials

Info

Publication number
JPS60164202A
JPS60164202A JP59019688A JP1968884A JPS60164202A JP S60164202 A JPS60164202 A JP S60164202A JP 59019688 A JP59019688 A JP 59019688A JP 1968884 A JP1968884 A JP 1968884A JP S60164202 A JPS60164202 A JP S60164202A
Authority
JP
Japan
Prior art keywords
radiation
layer
thickness
double layered
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59019688A
Other languages
Japanese (ja)
Inventor
Utaro Taira
卯太郎 平
Kiyohiko Kawaguchi
川口 清彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59019688A priority Critical patent/JPS60164202A/en
Publication of JPS60164202A publication Critical patent/JPS60164202A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • G01B15/025Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness by measuring absorption

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To simplify the measurement and to avoid necessity of a highly skilled measuring person, by obtaining the thickness of each layer of the double layered materials from the total thickness measured by the expression of relation, which is obtained by a radiation transmitting method, and a method other than the radiation transmitting method. CONSTITUTION:Radiation, whose radiation intensity is I0, is transmitted through laminated materials 1 from a radiation source 2. Radiation intensity It is detected by a radiation detector 3. The degree of the transmission in the case of the double layered steel plates is expressed by the expression I , where rho1 and rho2 are the densities of the materials, mum1 and mum2 are mass absorption coefficients and t1 and t2 are thicknesses. The total thickness t0 is measured by laser distance meters 4 and 4' and the expression II is obtained. By solving the simultaneous equations of the expressions I and II, the thicknesses t1 and t2 of the layers are obtained.

Description

【発明の詳細な説明】 【発明の技術分野] 本発明は、二層鋼板等の材質の異なる二層積層材の各層
の厚みを放射線透過法を基礎として測定する方法に関す
る。 【発明の技術的背景とその聞題点】 近年、表裏異なる材質層から成る二層鋼板が?V及する
に従い、二層合計の厚みのみならず、各層毎の厚みをそ
れぞれ非破壊的に測定したいとの要請が強まっている。 そこで従来、この種の各層ごとの厚み測定に当っては、
二層鋼板の一方の表面から超音波を入射し、入射表面、
および二層の境界面からの反射波を観測し、超音波が入
射してから境界面に達するまでの時間(T)と、予めテ
ストピースを用いて測定しておいたその層内での音速<
V)から、厚さ=TXVという関係より、大川面側の一
層の厚みを算出し、他の層の厚みは、もう一方の表面か
ら同じ操作を行うか、他の方法によってめた、二層合計
の厚みから、L配力法によってめた一層の厚みを差し引
いて算出していた。ところが、この方法では超音波の反
射が二層の境界面のみならず他の位置でも発生するので
、種々の反射波の中から境界面の反射波を抽出弁別する
ことが難しく、高度の熟練を要した。またこの、ll音
波方式は、接触式の測定方法であるため、高温、あるい
は高速で移動する対象物には、適用できなかった。 また、本出願人は先に、特願昭58−116700号と
して提案したように、材質の異なる積層材の各材料の厚
みをγ線透過法によって測定する方法を開発済であり、
この方法は非接触的、非破壊的に厚みA111定が可能
である利点がある。しかしこの方法は、n(本方法に対
応しては、n=2)層の材料に対してはn(本方法に対
応しては、n−2)種類のエネルギーのγ線を使用し、
n(本方法に対応しては、n=2)回の測定をして算出
するものであり、筒便性の点で難があった。 [発明の目的1 本発明は、上記ことがらに鑑み研究開発されたものであ
り、その目的とするところは、測定者の高度の熟練を必
要とせず、非接触式の測定方法で高温、あるいは高速移
動物体をも非破壊的にAll!定可能であり、特に二層
積層材の各層の厚みを簡便に測定できる放射線透過法を
利用した二層積層材の厚み測定方法を提供することにあ
る。 [発明の概要] この目的を達成するための本発明法の要旨は。 材質の異なる二層積層材の各層の厚みtl + A2を
:ある放射線強度■0で二層積層材に入射し透過放射線
強度Itoを検出して得られる次記■式の関係と、 9−1+ ”ρ1 ″ tl+p−mzeρ2° A2
(ここでJj、Ilt + JL Ilzは各材質の質
量吸収係数、ρ1.ρ2は各材質の密度) 放射線透過法以外の方法によって二層積層材の全厚みt
oを測定して得られる次記(Φ式の関係と、t□+t2
=to・番11(り から測定することを特徴とする二層積層材の厚み測疋法
にある。 すなわち、本発明は、超音波による二層積層材の厚み測
定では、境界面からの反射波の弁別が困難であり精度に
欠けることに鑑み、放射線透過法を採用するとともに、
また先願発明のように2種の強度のγ線透過法では測定
が複雑であることから、これを避けるためにある強度の
一回の放射線透過のみで各層の厚み関係を得て、全厚み
については、放射線透過法ではなく、他の簡易手段によ
って得られることを利用したものである。 1発明の具体例1 以下本発明を図面を参照しながら詳述する。 1は積層材、たとえば材質a、bの2種の材料からなる
二層鋼板で、その一方に放射線を発生する放射線源2が
、他方に放射線検出器3が配設される。放射線v2から
放射線を積層材lに透過させ放射線透過#11を放射線
検出器3により検出する。 ところで、放射線の物質透過の程度はその物質の厚み密
度および放射線のエネルギーと物質の種類によって定ま
る質量吸収係数とにより(1)式によって表わされる。 It=Ioe−””ρ”−−−(1) ここで Io ;物質透過前の放射線強度 工t;物質透過後の放射線強度 t;物質の厚さ ρ;物質の密度 wffi;質量吸収係数 よって第1図′のような二層鋼板の場合の透過の程度は
それぞれの材料の密度をρ1.ρ2、質1jl吸収係数
をI’ l111 * JL1112 、厚さをt+ 
、tz とすると(2)式で表わされる。 I to= I oe−” ” °ρ1 ° 1. +
u 1+2 Φρ2◆ A2)・・(2)さらに(2)
式を(3)式に変形する メLL”ps”ts+メL102@ρ2”t2また全厚
さをtoとすると to−tl + h ・・(4) であり、toが既知ならは(3)式、(4)式の連立法
定式を解くことにより tw、hをめることができる。 ところで、toの測定には、第1図に示すように、放射
線Io、Itoの測定と並行して、所定位置に設けたレ
ーザ距離計4,4°を用いて、そこから二層積層材表面
までの距離を測定して厚みtoを測定しても良いし、他
に超音波、マイクロ波等を使う方法などにより、クラツ
ド鋼板の表裏面部分に関する距離測定を行なう方法、ま
たは、鋼板が静11ユ状態である場合であれば、マイク
ロメータ等を使用しての機械的方法によって測定するこ
とができる。このように全厚みtoは放射線を用いず直
接厚みとして測定することができるので先の方法のよう
に二種類のγ線強度による測定を行わなくてもよいので
、より簡便な方法となる。 [実施例1 本発明法に従って、第一層の材質が鋼、第二層の材質が
アルミニウムである二層鋼板について、放射線として、
そのエネルギーが0.8 MeVのγ線を用いて各層の
厚みを測定した。それぞれの層の密度および質量吸収係
数は次の通りである。 /)i −7,85g/ C1n’ 、Jl−11+ 
−0,0762cm’/gρz −2,70g / c
m’ 、 JLat = 0.0777 cm″/gこ
の二層鋼板を透過する前の放射線強度Io=41800
cps、透過後の放射線強度I t = 20H4cp
sであった。二層合計の厚みは、2台のレーザー距離計
を用いて測定したところto=1.5cmであった。 よって前記(3) 、(4)式に上記値を代入し、次式
を得る。 0.5982 t+ +0.2098 h ” 0.7
0315 + t2= 1.5 この連立二元方程式を解くことにより なる値をギ11た。 ちなみに、−に犯例の二層鋼板の切断面を直接観察測定
した結果、各層の厚みはそれぞれ第一層が1.Ocm 第二層が0.5c+i であり、本方法による結果とほぼ一致し、本方法の有効
性が確認された。 [発明の効果1 以上のように本発明によると、ある強度の一回の放射線
透過法によると共に、他の簡易に測定できる全厚みとに
より測定するものであるから、測定が著しく簡便であり
、また超音波による従来法に比して測定者の高度の熟練
を要せず、さらに通常非接触式測定方法とすることがで
きるので、高温あるいは高速度移動物体をも非破壊的に
測定できる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for measuring the thickness of each layer of a two-layer laminate made of different materials, such as a two-layer steel plate, based on a radiographic method. [Technical background of the invention and its issues] In recent years, two-layer steel plates consisting of different material layers on the front and back have become popular. As technology continues to grow, there is an increasing demand for non-destructive measurement of not only the total thickness of two layers but also the thickness of each layer. Conventionally, when measuring the thickness of each layer,
Ultrasonic waves are incident on one surface of the double-layer steel plate, and the incident surface,
Then, the reflected waves from the interface between the two layers were observed, and the time (T) from when the ultrasonic wave was incident until it reached the interface, and the sound velocity within that layer, which had been measured in advance using a test piece. <
From V), from the relationship thickness = TXV, calculate the thickness of one layer on the Okawa side, and calculate the thickness of the other layer by performing the same operation from the other surface, or by using another method to calculate the thickness of the other layer. It was calculated by subtracting the thickness of each layer determined by the L distribution method from the total thickness. However, with this method, reflection of ultrasonic waves occurs not only at the interface between the two layers but also at other locations, so it is difficult to extract and distinguish the waves reflected from the interface from among various reflected waves, and it requires a high level of skill. It took. Furthermore, since this sonic wave method is a contact measurement method, it cannot be applied to objects that move at high temperatures or at high speeds. Additionally, as previously proposed in Japanese Patent Application No. 58-116700, the present applicant has developed a method for measuring the thickness of each material in a laminated material made of different materials by the γ-ray transmission method.
This method has the advantage that the thickness A111 can be determined in a non-contact and non-destructive manner. However, this method uses γ-rays of n (n-2, corresponding to this method) types of energy for n (n=2, corresponding to this method) layers of material;
It is calculated by measuring n times (corresponding to this method, n=2), and there is a problem in terms of ease of use. [Objective of the Invention 1 The present invention has been researched and developed in view of the above-mentioned problems, and its purpose is to measure high temperature or All high-speed moving objects can be handled non-destructively! The object of the present invention is to provide a method for measuring the thickness of a two-layer laminate using a radiation transmission method, which can easily measure the thickness of each layer of the two-layer laminate. [Summary of the Invention] The gist of the method of the present invention for achieving this purpose is as follows. Thickness tl + A2 of each layer of a two-layer laminated material made of different materials: The relationship of the following formula ■ obtained by detecting the transmitted radiation intensity Ito incident on a two-layer laminated material at a certain radiation intensity ■0, and 9-1+ "ρ1" tl+p-mzeρ2° A2
(Here, Jj, Ilt + JL Ilz is the mass absorption coefficient of each material, and ρ1.ρ2 is the density of each material.) The total thickness t of the two-layer laminate material is determined by a method other than the radiographic method.
The following (relationship of Φ formula and t□+t2 obtained by measuring o)
=to・No. 11 In view of the difficulty and lack of accuracy in distinguishing between waves, we adopted the radiographic method and
In addition, as in the prior invention, measurements are complicated in the gamma ray transmission method with two different intensities, so in order to avoid this, the thickness relationship of each layer can be obtained by only one radiation transmission with a certain intensity, and the total thickness This method takes advantage of the fact that it can be obtained by other simple means rather than the radiographic method. 1 Specific Example 1 of the Invention The present invention will be described in detail below with reference to the drawings. Reference numeral 1 denotes a laminated material, for example, a two-layer steel plate made of two materials, materials a and b, on one of which a radiation source 2 that generates radiation is disposed, and on the other side a radiation detector 3 is disposed. The radiation from the radiation v2 is transmitted through the laminated material l, and the radiation transmitted #11 is detected by the radiation detector 3. Incidentally, the degree of radiation penetration through a material is expressed by equation (1) using the thickness density of the material, the energy of the radiation, and the mass absorption coefficient determined by the type of material. It=Ioe-""ρ"---(1) where Io; Radiation intensity before passing through the material t; Radiation intensity after passing through the material t; Thickness of the material ρ; Density of the material wffi; Mass absorption coefficient The degree of transmission in the case of a double-layered steel plate as shown in Figure 1' is determined by the density of each material being ρ1.ρ2, the quality 1jl absorption coefficient being I' l111 * JL1112, and the thickness being t+.
, tz, it is expressed by equation (2). I to= I oe−” ” °ρ1 ° 1. +
u 1+2 Φρ2◆ A2)...(2) Further (2)
Transforming the equation into equation (3) LL"ps"ts + meL102@ρ2"t2 Also, if the total thickness is to, then to-tl + h...(4), and if to is known, then (3) tw and h can be determined by solving the simultaneous formulas of equations (4) and (4).By the way, to measure to, as shown in Figure 1, in parallel with the measurements of radiation Io and Ito, The thickness to can be measured by measuring the distance from there to the surface of the two-layer laminated material using a laser rangefinder 4.4 degrees installed at a predetermined position, or by using ultrasonic waves, microwaves, etc. Depending on the method used, the distance can be measured by measuring the distance on the front and back surfaces of the clad steel plate, or if the steel plate is in a static state, it can be measured by a mechanical method using a micrometer etc. In this way, the total thickness to can be directly measured as a thickness without using radiation, so there is no need to measure using two types of γ-ray intensities as in the previous method, and this becomes a simpler method. [Example 1] According to the method of the present invention, for a two-layer steel plate in which the material of the first layer is steel and the material of the second layer is aluminum, as radiation,
The thickness of each layer was measured using gamma rays whose energy was 0.8 MeV. The density and mass absorption coefficient of each layer are as follows. /) i -7,85g/ C1n', Jl-11+
-0,0762cm'/gρz -2,70g/c
m', JLat = 0.0777 cm''/g Radiation intensity Io before passing through this double layer steel plate = 41800
cps, radiation intensity after transmission I t = 20H4cp
It was s. The total thickness of the two layers was measured using two laser distance meters and was found to be 1.5 cm. Therefore, by substituting the above values into equations (3) and (4), the following equations are obtained. 0.5982 t+ +0.2098 h” 0.7
0315 + t2= 1.5 The value obtained by solving this simultaneous binary equation is 11. By the way, as a result of directly observing and measuring the cut surface of the two-layer steel plate used in the criminal case, the thickness of each layer was 1.5 mm for the first layer. The Ocm second layer was 0.5c+i, which was almost the same as the result obtained by this method, and the effectiveness of this method was confirmed. [Effects of the Invention 1] As described above, according to the present invention, the measurement is extremely simple because the measurement is performed by one-time radiographic method with a certain intensity and by other easily measurable total thickness. Furthermore, compared to the conventional method using ultrasound, it does not require a high level of skill on the part of the measurer, and since it is usually a non-contact measurement method, it is possible to measure objects at high temperatures or moving at high speeds non-destructively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細説明図である。 l ・・積層材 2・・放射線源 3・・放射線検出器 4,4°・・レーザ距離計特許出
願人 住友金属工業株式会社
FIG. 1 is a detailed explanatory diagram of the present invention. l...Laminated material 2...Radiation source 3...Radiation detector 4,4°...Laser distance meter patent applicant Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)材質の異なる二層積層材の各層の厚みt!。 1z を:ある放射線透過法0で二層積層材の入射し透
過放射線強度Itoを検出して得られる次記■式の関係
と、 ILlII ・ρ8・ tI+ ILllz ・ρ2・
 t21o ゛ 一1n−一一一一一一一−−−−−−−−−鍮一一一、
−−・・・く1()It。 (ここでJL m+ 、μm12は各材質の質量吸収係
数、ρ!、ρ2は各材質の密度) 放射線透過状以外の方法によって二層積層材の、全厚み
toを測定して得られる次記(0式の関係と、j+ 十
 tz = toe m a (?+から測定すること
を特徴とする二層積層材の厚みJlll定法。
(1) Thickness t of each layer of a two-layer laminate made of different materials! . 1z: The relationship of the following formula (■) obtained by detecting the incident and transmitted radiation intensity Ito of a two-layer laminated material using a certain radiation transmission method 0, and ILlII ・ρ8・ tI+ ILllz ・ρ2・
t21o ゛11n-111111------Brass 111,
--...ku1()It. (Here, JL m+ and μm12 are the mass absorption coefficients of each material, and ρ! and ρ2 are the density of each material.) The following ( The Jllll method for determining the thickness of two-layer laminates is characterized by the relationship of the equation 0 and the measurement from j+ tz = toe m a (?+).
JP59019688A 1984-02-06 1984-02-06 Thickness measuring method of double layered materials Pending JPS60164202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59019688A JPS60164202A (en) 1984-02-06 1984-02-06 Thickness measuring method of double layered materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59019688A JPS60164202A (en) 1984-02-06 1984-02-06 Thickness measuring method of double layered materials

Publications (1)

Publication Number Publication Date
JPS60164202A true JPS60164202A (en) 1985-08-27

Family

ID=12006178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59019688A Pending JPS60164202A (en) 1984-02-06 1984-02-06 Thickness measuring method of double layered materials

Country Status (1)

Country Link
JP (1) JPS60164202A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002951A1 (en) * 1989-08-25 1991-03-07 Abb Process Automation Inc. Method and apparatus for measuring characteristics of a multilayer product
JP2003035530A (en) * 2001-07-25 2003-02-07 Nkk Corp Board thickness measuring method, board thickness measuring device, and board thickness controlling method of hot-rolled steel sheet
WO2008071337A1 (en) * 2006-12-15 2008-06-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for thickness measurement
JP2009052944A (en) * 2007-08-24 2009-03-12 Fujitsu Ltd Element evaluation method and apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002951A1 (en) * 1989-08-25 1991-03-07 Abb Process Automation Inc. Method and apparatus for measuring characteristics of a multilayer product
JP2003035530A (en) * 2001-07-25 2003-02-07 Nkk Corp Board thickness measuring method, board thickness measuring device, and board thickness controlling method of hot-rolled steel sheet
JP4686924B2 (en) * 2001-07-25 2011-05-25 Jfeスチール株式会社 Thickness measuring method, thickness measuring device and thickness control method for hot rolled steel sheet
WO2008071337A1 (en) * 2006-12-15 2008-06-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for thickness measurement
JP2010512524A (en) * 2006-12-15 2010-04-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Method and apparatus for thickness measurement
US8064072B2 (en) 2006-12-15 2011-11-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method and apparatus for thickness measurement
US8228488B2 (en) 2006-12-15 2012-07-24 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method and apparatus for thickness measurement
JP2009052944A (en) * 2007-08-24 2009-03-12 Fujitsu Ltd Element evaluation method and apparatus

Similar Documents

Publication Publication Date Title
US3720098A (en) Ultrasonic apparatus and method for nondestructively measuring the physical properties of a sample
Cho Estimation of ultrasonic guided wave mode conversion in a plate with thickness variation
US3302453A (en) Method of inspection utilizing ultrasonic energy
CN105158335B (en) A kind of steel glass reinforced plastic composite board material unsticking supersonic guide-wave evaluation method
US20040085550A1 (en) Material thickness measurement method and apparatus
Drinkwater et al. The measurement of a 0 and s 0 lamb wave attenuation to determine the normal and shear stiffnesses of a compressively loaded interface
CN107764195A (en) Coating high accuracy thickness detecting method based on Fresnel matrix THz ripple propagation models
Predoi et al. Use of shear horizontal waves to distinguish adhesive thickness variation from reduction in bonding strength
Pomarède et al. Application of ultrasonic coda wave interferometry for micro-cracks monitoring in woven fabric composites
Mineo et al. Solving ultrasonic ray tracing in parts with multiple material layers through Root-Finding methods
JPS60164202A (en) Thickness measuring method of double layered materials
Fukuoka et al. Nondestructive residual-stress measurement in a wide-flanged rolled beam by acoustoelasticity: Acoustoelasticity stress analysis is applied to measure residual-stress distribution in a wide-flanged rolled beam and the results are compared with those obtained by the conventional destructive method
GB2091889A (en) Plastic anisotropy in sheet materials
Whitmarsh et al. Forward scattering of sound in the sea and its correlation with the temperature microstructure
US3379051A (en) Multiple beam ultrasonic nondestructive testing device
Huang et al. Detection and localization of corrosion using identical-group-velocity Lamb wave modes
US3592052A (en) Ultrasonic crack depth measurement
Athanassiadis et al. Broadband leaky Lamb waves excited by optical breakdown in water
Ech Cherif El Kettani et al. Effects of the interface roughness in metal-adhesive-metal structure on the propagation of shear horizontal waves
JPH1194806A (en) Ultrasonic flaw detection method end surface or side face of steel material
Costley et al. Viscosity measurement with laser-generated and detected shear waves
Van Otterloo et al. How isotropic are quasi-isotropic laminates
Lematre et al. Acoustic microscopy measurement of elastic constants by using an optimization method on measured and calculated SAW velocities: effect of initial cij values on the calculation convergence and influence of the LFI transducer parameters on the determination of the SAW velocity
Fuhrmann et al. Determination of frequency dependent ultrasound absorption by means of radiation force based power measurements
Jakevičius et al. Measurement of thickness of layer and sound velocity in multi-layered structure by the use of angular ultrasonic transducers