JPS60162559A - Method for controlling electromagnetic stirring in continuous casting machine - Google Patents

Method for controlling electromagnetic stirring in continuous casting machine

Info

Publication number
JPS60162559A
JPS60162559A JP1435484A JP1435484A JPS60162559A JP S60162559 A JPS60162559 A JP S60162559A JP 1435484 A JP1435484 A JP 1435484A JP 1435484 A JP1435484 A JP 1435484A JP S60162559 A JPS60162559 A JP S60162559A
Authority
JP
Japan
Prior art keywords
stirring
unsolidified
billet
thickness
electromagnetic stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1435484A
Other languages
Japanese (ja)
Inventor
Isao Suzuki
鈴木 功夫
Masashi Yoshida
正志 吉田
Miwato Noguchi
野口 三和人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1435484A priority Critical patent/JPS60162559A/en
Publication of JPS60162559A publication Critical patent/JPS60162559A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To permit easy formation of an equiaxed crystal rate and to improve the quality of a billet by using adequately and selectively rotational stirring and translational stirring according to the flattening ratio in the unsolidified part of the billet and the thickness of the unsolidified part. CONSTITUTION:The magnetic field directions 4 of electromagnetic stirrers 3, 3' facing each other are made the same and translational stirring is executed in the case of >=2 the flattening ratio n=(B-2d)/(A-2d) in the unsolidified part of a billet on the front face of the electromagnetic stirrers (where, A: the width on the short side of the billet, B: the width on the long side of the billet, d: the thickness of the shell) and <150mm. the thickness (a) in the unsolidified part. The magnetic field directions are reversed in other cases except said case and rotational stirring is executed. The equiaxed crystal rate is thus easily formed and the quality of the billet is improved.

Description

【発明の詳細な説明】 (M業上の利用分野) 本発明はリニアモーター型電磁攪拌装置を用いた連続鋳
造・閣における電磁攪拌方法に関するもので゛ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of application in M industry) The present invention relates to an electromagnetic stirring method in continuous casting and casting using a linear motor type electromagnetic stirring device.

(従来技術) 連@機の電磁攪拌方法には、ブルームなど偏平比(長辺
長/短辺長)の小さい駒片に、主として適用する未凝固
部に回転流を生じさせて、中心偏析の改善を計る回転攪
拌方法と、誘片吃面形状の偏平比が大きいスラブに、王
として適用する並進攪拌方法がある。
(Prior art) The electromagnetic stirring method of the continuous @ machine is mainly applied to pieces with a small aspect ratio (long side length / short side length), such as blooms, by generating a rotational flow in the unsolidified part to prevent center segregation. There is a rotational agitation method that aims to improve this, and a translational agitation method that is applied to slabs with a high aspect ratio of the diagonal profile.

偏平比が大きい鋳片の場合、鋳片未凝固部の断面形状は
、凝固が進むにつれて、その形状がより便万形となり、
回転攪拌では円滑な回転流乞侍ることができない。又、
未凝固部の厚みが繞固の進行とともに薄くなると、回転
攪拌では、駒片をはさんで相対する電磁攪拌装置の磁極
の移動方向が逆向きであるので、未凝固部の中央におい
て、四にそって流れる溶銅の流れが接触し、その境界に
互いの流れ馨妨げる剪萌力が働き、十分な攪拌流を倚ら
れないということがある。
In the case of a slab with a large aspect ratio, the cross-sectional shape of the unsolidified part of the slab becomes more round as solidification progresses.
Rotary stirring cannot provide smooth rotational flow. or,
When the thickness of the unsolidified area becomes thinner as solidification progresses, in rotary stirring, the moving directions of the magnetic poles of the electromagnetic stirring devices that face each other across the pieces are opposite, so the thickness of the unsolidified area becomes thinner in the center of the unsolidified area. When the flows of molten copper come into contact with each other, a shearing force acts on the boundary that hinders the flow of each other, and the agitation flow may not be sufficiently absorbed.

又偏平比の小さいブルームに、並進攪拌ン適用した場合
にも、俗調が十分に攪拌されないという六点を有し、従
って駒片のサイズ(ブルーム、スラブ)に応じて、回転
攪拌、並進攪拌を便い分けている。しかし現状は年にス
ラブ、ブルームなどの形状に応じて、攪拌方法を単に使
い分けしているに過ぎない。
In addition, even when translational stirring is applied to a bloom with a small aspect ratio, there are six points in which the agitation is not sufficient. I'm sorting it out. However, at present, stirring methods are simply used depending on the shape of slabs, blooms, etc. each year.

これらに関する従来技術として種々のものがあるか、例
えば特公昭52−2367号公報に示されるものがある
。即ち電磁攪拌装置による俗調の攪拌に関し、並進攪拌
と回転攪拌についてそれぞれ記載がある。しかしながら
鋳片の偏平比や未凝固厚みと、並進、回転攪拌の具体的
な便い分けについては何ら記載がない。他の公知技術に
ついても同様である。
There are various prior art related to these, such as the one shown in Japanese Patent Publication No. 52-2367. That is, regarding conventional stirring using an electromagnetic stirring device, there are descriptions of translational stirring and rotational stirring, respectively. However, there is no description of the aspect ratio of the slab, the unsolidified thickness, and the specifics of translational and rotational stirring. The same applies to other known techniques.

(発明の目的) 本発明は前記状況に鑑み、回転攪拌と並進攪拌の最適使
い分けをすることにより、常に最も中心偏析rX%に効
果的な攪拌を行なわせることを目的としている。
(Objective of the Invention) In view of the above-mentioned circumstances, the object of the present invention is to always perform stirring most centrally segregated rX% by optimally using rotational stirring and translational stirring.

(発明の構成、作用) 本発明は、電磁攪拌装置前回の嗣片未凝固世〃−面形状
に漸目し、その未凝固偏平比が2.0以上の1ばで、か
つ未凝固厚みが150w1+1未満の時に並進攪拌を行
ない、他の条件の下では回転攪拌ン行第1図は、電磁攪
拌装置設直都前面の鋳片断面であり、1は猷固部、2は
未凝固部であり、Aは鋳片短辺幅、Bは鋳片長辺幅、d
はシェル厚である。ここでA、Bは@型の寸法からまり
、dは公知の手段、例えばγm?用いた計1jl14ヤ
、プロセス情報を基にした計算による推定方法がある。
(Structure and operation of the invention) The present invention gradually changes the surface shape of the unsolidified heir of the previous electromagnetic stirring device, has an unsolidified aspect ratio of 2.0 or more, and has an unsolidified thickness of 1. Translational stirring was performed when the pressure was less than 150W1+1, and rotational stirring was performed under other conditions. Yes, A is the width of the short side of the slab, B is the width of the long side of the slab, d
is the shell thickness. Here, A and B are intertwined with @-type dimensions, and d is a known means, for example, γm? There is an estimation method based on calculations based on process information.

計算でめる場合の一例としては a(t) =KJτ で近似的にめる方法がある。As an example of calculation, There is a method to approximate it by a(t) = KJτ.

也しKは冷却水流電密度(−3,んシ2渡)であり、t
は鋳込み後の経過時ta](see)である。
Also, K is the cooling water current density (-3, 2 times), and t
is the elapsed time ta] (see) after casting.

このようにしてめた短辺幅A、長辺幅Bいシェル厚dか
ら、次式により未凝固部偏平比nを又禾凝固厚みaは、
a−A−2dでめられる。
From the short side width A, long side width B, and shell thickness d obtained in this way, the unsolidified part aspect ratio n and the solidified thickness a can be calculated by the following formula:
It is determined by a-A-2d.

この未凝固偏平比nと、行に拌方法(回転、並進)、飴
片の品質指標となる等I紬晶軍及び涙固厚みaの関係に
ついて、種々試鋏の結果、第2図に示j纜呆を侍だ。
The relationship between this unsolidified aspect ratio n, the stirring method (rotation, translation), the quality index of the candy pieces, and the solid thickness a is shown in Figure 2 as a result of various tests. A samurai is a samurai.

即ち、横軸に未凝固部の偏平比nをとり、縦軸に等軸晶
率比mをとって、未凝固厚み毎に比較したものである。
That is, the horizontal axis represents the aspect ratio n of the unsolidified portion, and the vertical axis represents the equiaxed crystallinity ratio m, and the comparison is made for each unsolidified thickness.

ここで等軸晶率比mは で表わす。Here, the equiaxed crystallinity ratio m is It is expressed as

等軸晶率比mlJ″=1.0の時は、回転攪拌、並進攪
拌とも等軸晶率・、の生成に差異はなく、m>1.0の
時は並進攪拌の方が高い等細晶率が得やすく、又mく1
0の時は、回転攪拌の方が高い等軸晶率を得やすい。
When the equiaxed crystal ratio mlJ''=1.0, there is no difference in the generation of equiaxed crystal ratio . It is easy to obtain crystallinity, and m
When the ratio is 0, it is easier to obtain a higher equiaxed crystal ratio by rotary stirring.

第2図から明らかなように、未凝固偏平比nが2.0を
超え、かつ未凝固厚aが150叫未満の時は並進攪拌を
行な(・、他の乗件の時は回転攪拌を行なうのが、より
渦い等軸晶率を得ることができる。
As is clear from Fig. 2, when the unsolidified aspect ratio n exceeds 2.0 and the unsolidified thickness a is less than 150 mm, translational stirring is performed (・, for other conditions, rotational stirring is performed. By doing this, it is possible to obtain a more vortex equiaxed crystallinity.

第3図は回転攪拌の説明図であり、鋳片の前後に設げた
電磁攪拌装置3.3′の磁界方向4を互に逆方向とする
ことにより、未凝固部2に回転攪拌流5を生じさせる。
FIG. 3 is an explanatory diagram of rotary stirring. By setting the magnetic field directions 4 of electromagnetic stirring devices 3 and 3' installed before and after the slab in opposite directions, a rotary stirring flow 5 is applied to the unsolidified portion 2. bring about

又第4図は並進攪拌の説明図であり、電磁攪拌装置3.
3′の磁界方向4を同一とすることにより、並進攪拌流
5を生じさせる。
FIG. 4 is an explanatory diagram of translational stirring, and shows the electromagnetic stirring device 3.
By making the directions 4 of the magnetic fields 3' the same, a translational stirring flow 5 is generated.

(実施例) C:0.20%、鋳片サイズ: 247X330の鋳片
を鋳造中、シェル厚d=90mのところで、′電磁攪拌
装置により、第4図に示す方法で並進撹拌を行なった。
(Example) While casting a slab with C: 0.20% and slab size: 247 x 330, translational stirring was performed using an electromagnetic stirring device in the manner shown in FIG. 4 at a point where the shell thickness d=90 m.

未凝固部偏平比nは であり、未凌同鄭厚みa = 67 vaであった。こ
の時の等軸晶率は36%であり、高い等軸晶率を得た。
The aspect ratio n of the unsolidified part was , and the thickness a of the unsolidified part was 67 va. The equiaxed crystal ratio at this time was 36%, and a high equiaxed crystal ratio was obtained.

(比較例) C:0.20%、鋳片サイズ: 247X330の鋳片
を、鋳造中シェル厚d : 9 Q 咽のところで、電
磁攪拌装置により第3図に示す方法で、回転攪拌を行な
った。未凝固部偏平比nはn =2.23 、未凝固厚
みa= 57 rran、生成等軸晶率は26%であっ
た。
(Comparative example) A slab of C: 0.20%, slab size: 247 x 330 was rotary stirred at the shell thickness d: 9 Q during casting using the method shown in Figure 3 using an electromagnetic stirring device. . The aspect ratio n of the unsolidified portion was n = 2.23, the unsolidified thickness a = 57 rran, and the equiaxed crystal ratio formed was 26%.

(発明の効果) 本発明の実施効果としては、鋳片未凝固部の偏平比と未
凝固部の厚みによって、回転攪拌、並進攪拌を適確に使
い分けることができ、等軸晶率の生成を容易ならしめ、
もって鋳片品質の向上に寄与するものである。
(Effects of the Invention) As an effect of implementing the present invention, rotational stirring and translational stirring can be appropriately used depending on the aspect ratio of the unsolidified part of the slab and the thickness of the unsolidified part, and the generation of equiaxed crystallinity can be improved. Make it easy,
This contributes to improving the quality of slabs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋳片の断面図、第2図は未凝固部の偏平比と等
軸晶率比の関係を、未凝固厚み毎に表わした図表、第3
図は回転攪拌の説明図、第4図は並進攪拌の説明図であ
る。 1:凝同部 2:未凝固部 3.3’ :電磁攪拌器 4:磁界方向5:攪拌流 第1図 未凝固部の4Ja手比(n)
Figure 1 is a cross-sectional view of the slab, Figure 2 is a chart showing the relationship between the aspect ratio of the unsolidified part and the equiaxed crystallinity ratio for each unsolidified thickness.
The figure is an explanatory diagram of rotational agitation, and FIG. 4 is an explanatory diagram of translational agitation. 1: Coagulated area 2: Unsolidified area 3.3': Electromagnetic stirrer 4: Magnetic field direction 5: Stirring flow Figure 1 4Ja hand ratio (n) of unsolidified area

Claims (1)

【特許請求の範囲】[Claims] 電磁攪拌装置を用いた連続鋳造において、電磁攪拌装置
前面における切片の未凝固部偏平比nが2.0以上で、
かつ未凝固厚みaが150瓢未満の場合は、相対する電
磁攪拌装置の磁極の移動方向を同一にして、並進攪拌を
行ない、それ以外の場合は、相対する電磁攪拌装置の磁
極の移動方向暑逆向きにして、回転攪拌を行なうことを
特徴とする連鋳機における電磁攪拌方法。
In continuous casting using an electromagnetic stirring device, the unsolidified part aspect ratio n of the section in front of the electromagnetic stirring device is 2.0 or more,
If the unsolidified thickness a is less than 150 mm, translational stirring is performed with the magnetic poles of the opposing electromagnetic stirring devices moving in the same direction; otherwise, the moving direction of the magnetic poles of the opposing electromagnetic stirring devices is the same. An electromagnetic stirring method in a continuous casting machine characterized by performing rotational stirring in the opposite direction.
JP1435484A 1984-01-31 1984-01-31 Method for controlling electromagnetic stirring in continuous casting machine Pending JPS60162559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1435484A JPS60162559A (en) 1984-01-31 1984-01-31 Method for controlling electromagnetic stirring in continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1435484A JPS60162559A (en) 1984-01-31 1984-01-31 Method for controlling electromagnetic stirring in continuous casting machine

Publications (1)

Publication Number Publication Date
JPS60162559A true JPS60162559A (en) 1985-08-24

Family

ID=11858728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1435484A Pending JPS60162559A (en) 1984-01-31 1984-01-31 Method for controlling electromagnetic stirring in continuous casting machine

Country Status (1)

Country Link
JP (1) JPS60162559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241004B1 (en) * 1996-05-13 2001-06-05 Ebis Corporation Method and apparatus for continuous casting
CN106536087A (en) * 2014-04-25 2017-03-22 蒂森克虏伯钢铁欧洲股份公司 Method and device for thin-slab strand casting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597855A (en) * 1979-01-22 1980-07-25 Sumitomo Metal Ind Ltd Electromagnetic stirring method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597855A (en) * 1979-01-22 1980-07-25 Sumitomo Metal Ind Ltd Electromagnetic stirring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241004B1 (en) * 1996-05-13 2001-06-05 Ebis Corporation Method and apparatus for continuous casting
US6508299B2 (en) * 1996-05-13 2003-01-21 Ebis Corporation Method and apparatus for continuous casting
US6530418B2 (en) * 1996-05-13 2003-03-11 Ebis Corporation Method and apparatus for continuous casting
CN106536087A (en) * 2014-04-25 2017-03-22 蒂森克虏伯钢铁欧洲股份公司 Method and device for thin-slab strand casting
US10486228B2 (en) * 2014-04-25 2019-11-26 Thyssenkrupp Steel Europe Ag Method and device for thin-slab strand casting

Similar Documents

Publication Publication Date Title
US3656537A (en) Apparatus for producing continuously cast sections with agitation of the liquid core
EP1726383B1 (en) Cast slab and method for casting molten metal, apparatus for the same
Kunstreich Electromagnetic stirring for continuous casting
JP6264524B1 (en) Steel continuous casting method
JPS60162559A (en) Method for controlling electromagnetic stirring in continuous casting machine
JP3119203B2 (en) Unsolidified rolling method of slab
Kunstreich Electromagnetic stirring for continuous casting-Part 2
JP4132653B2 (en) Steel
KR840001298B1 (en) Continuous cast steel production process
JP3027260B2 (en) Method for producing semi-solid slurry
JPH07214262A (en) Method for preventing center segregation of continuous casting slab
JP2000094101A (en) Continuously cast slab, continuous casting method thereof and production of thick steel plate
JP4872723B2 (en) Steel continuous casting method
JP3018809B2 (en) Method of manufacturing thin sheet ingot by electromagnetic force
JPH05228597A (en) Method for controlling segregation in continuously
JP3394730B2 (en) Continuous casting method of steel slab
JPS60137562A (en) Continuous casting method for thin sheet
JP4934438B2 (en) Method and apparatus for producing oxygen-free copper wire or copper alloy wire
JPS611459A (en) Continuous casting method of steel
JPS6153144B2 (en)
KR870002050B1 (en) Electromagnetic stirring method of molten steel in continuous casting
JPS5844953A (en) Electromagnetic agitating method for continuous casting of slab
JP2574582B2 (en) Adjustment method of slab strand segregation in continuous casting
JP2541953B2 (en) Center segregation prevention method for continuously cast slabs
JPS5946701B2 (en) How to continuously cast metal